Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a323433 -id:a323433
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of conjugacy classes in GL(n,2).
(Formerly M2577)
+10
55
1, 1, 3, 6, 14, 27, 60, 117, 246, 490, 1002, 1998, 4053, 8088, 16284, 32559, 65330, 130626, 261726, 523374, 1047690, 2095314, 4192479, 8384808, 16773552, 33546736, 67101273, 134202258, 268420086, 536839446, 1073710914, 2147420250, 4294904430, 8589807438
OFFSET
0,3
COMMENTS
Unlabeled permutations of sets. - Christian G. Bower, Jan 29 2004
From Joerg Arndt, Jan 02 2013: (Start)
Set q=2 and f(m)=q^(m-1)*(q-1), then a(n) is the sum over all partitions P of n over all products Product_{k=1..L} f(m_k) where L is the number of different parts in the partition P=[p_1^m_1, p_2^m_2, ..., p_L^m_L], see the Macdonald reference.
Setting q to a prime power gives the sequence "Number of conjugacy classes in GL(n,q)":
q=3: A006952, q=4: A049314, q=5: A049315, q=7: A049316, q=8: A182603,
q=9: A182604, q=11: A182605, q=13: A182606, q=16: A182607, q=17: A182608,
q=19: A182609, q=23: A182610, q=25: A182611, q=27: A182612.
Sequences where q is not a prime power are:
q=6: A221578, q=10: A221579, q=12: A221580,
q=14: A221581, q=15: A221582, q=18: A221583, q=20: A221584.
(End)
From Gus Wiseman, Jan 21 2019: (Start)
Also the number of ways to split an integer partition of n into consecutive constant subsequences. For example, the a(5) = 27 ways (subsequences shown as rows) are:
5 11111
.
4 3 3 22 2 1111 1 111 11
1 2 11 1 111 1 1111 11 111
.
3 2 2 2 111 1 1 11 11 1
1 2 11 1 1 111 1 11 1 11
1 1 1 11 1 1 111 1 11 11
.
2 11 1 1 1
1 1 11 1 1
1 1 1 11 1
1 1 1 1 11
.
1
1
1
1
1
(End)
REFERENCES
W. D. Smith, personal communication.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
W. Feit and N. J. Fine, Pairs of commuting matrices over a finite field, Duke Math. Journal, 27 (1960) 91-94.
I. G. Macdonald, Numbers of conjugacy classes in some finite classical groups, Bulletin of the Australian Mathematical Society, vol.23, no.01, pp.23-48, (February-1981).
N. J. A. Sloane, Transforms
FORMULA
G.f.: Product_{n>=1} (1-x^n)/(1-2*x^n). - Joerg Arndt, Jan 02 2013
The number a(n) of conjugacy classes in the group GL(n, q) is the coefficient of t^n in Product_{k>=1} (1-t^k)/(1-q*t^k). - Noam Katz (noamkj(AT)hotmail.com), Mar 30 2001
Euler transform of A008965. - Christian G. Bower, Jan 29 2004
a(n) ~ 2^n - (1+sqrt(2) + (-1)^n*(1-sqrt(2))) * 2^(n/2-1). - Vaclav Kotesovec, Nov 21 2015
G.f.: exp(Sum_{k>=1} ( Sum_{d|k} d*(2^(k/d) - 1) ) * x^k/k). - Ilya Gutkovskiy, Sep 27 2018
EXAMPLE
For the 5 partitions of 4 (namely [1^4]; [2,1^2]; [2^2]; [3,1]; [4]) we have
(f(m) = 2^(m-1)*(2-1) = 2^(m-1) and)
f([1^4]) = 2^3 = 8,
f([2,1^2]) = 1*2^1 = 2,
f([2^2]) = 2^1 = 2,
f([3,1]) = 1*1 = 1,
f([4]) = 1,
the sum is 8+2+2+1+1 = 14 = a(4).
- Joerg Arndt, Jan 02 2013
MAPLE
with(numtheory):
b:= n-> add(phi(d)*2^(n/d), d=divisors(n))/n-1:
a:= proc(n) option remember; `if`(n=0, 1,
add(add(d*b(d), d=divisors(j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..40); # Alois P. Heinz, Oct 20 2012
MATHEMATICA
b[n_] := Sum[EulerPhi[d]*2^(n/d), {d, Divisors[n]}]/n-1; a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*b[d], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 17 2014, after Alois P. Heinz *)
Table[Sum[2^(Length[ptn]-Length[Split[ptn]]), {ptn, IntegerPartitions[n]}], {n, 30}] (* Gus Wiseman, Jan 21 2019 *)
PROG
(Magma) /* The program does not work for n>19: */
[1] cat [NumberOfClasses(GL(n, 2)): n in [1..19]]; // Sergei Haller (sergei(AT)sergei-haller.de), Dec 21 2006; edited by Vincenzo Librandi Jan 24 2013
(PARI)
N=66; x='x+O('x^N);
gf=prod(n=1, N, (1-x^n)/(1-2*x^n) );
v=Vec(gf)
/* Joerg Arndt, Jan 02 2013 */
KEYWORD
nonn
EXTENSIONS
More terms from Christian G. Bower, Jan 29 2004
STATUS
approved
Number of ways to split an integer partition of n into consecutive subsequences.
+10
26
1, 1, 3, 7, 17, 37, 83, 175, 373, 773, 1603, 3275, 6693, 13557, 27447, 55315, 111397, 223769, 449287, 900795, 1805465, 3615929, 7240327, 14491623, 29001625, 58027017, 116093259, 232237583, 464558201, 929224589, 1858623819, 3717475031, 7435314013, 14871103069
OFFSET
0,3
FORMULA
a(n) = A070933(n)/2.
O.g.f.: (1/2)*Product_{n >= 1} 1/(1 - 2*x^n).
G.f.: 1 + Sum_{k>=1} 2^(k - 1) * x^k / Product_{j=1..k} (1 - x^j). - Ilya Gutkovskiy, Jan 28 2020
EXAMPLE
The a(3) = 7 ways to split an integer partition of 3 into consecutive subsequences are (3), (21), (2)(1), (111), (11)(1), (1)(11), (1)(1)(1).
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1/2, `if`(i<1, 0,
b(n, i-1) +`if`(i>n, 0, 2*b(n-i, i))))
end:
a:= n-> ceil(b(n$2)):
seq(a(n), n=0..33); # Alois P. Heinz, Jan 01 2023
MATHEMATICA
Table[Sum[2^(Length[ptn]-1), {ptn, IntegerPartitions[n]}], {n, 40}]
(* Second program: *)
(1/2) CoefficientList[1 - 1/QPochhammer[2, x] + O[x]^100 , x] (* Jean-François Alcover, Jan 02 2022, after Vladimir Reshetnikov in A070933 *)
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jan 19 2019
STATUS
approved
Number of ways to split a composition of n into contiguous subsequences with different sums.
+10
20
1, 1, 2, 8, 16, 48, 144, 352, 896, 2432, 7168, 16896, 46080, 114688, 303104, 843776, 2080768, 5308416, 13762560, 34865152, 87818240, 241172480, 583008256, 1503657984, 3762290688, 9604956160, 23689428992, 60532195328, 156397207552, 385137770496, 967978254336
OFFSET
0,3
COMMENTS
A composition of n is a finite sequence of positive integers summing to n.
FORMULA
a(n) = Sum_{k=0..n} 2^(n-k) k! A008289(n,k).
EXAMPLE
The a(0) = 1 through a(4) = 16 splits:
() (1) (2) (3) (4)
(1,1) (1,2) (1,3)
(2,1) (2,2)
(1,1,1) (3,1)
(1),(2) (1,1,2)
(2),(1) (1,2,1)
(1),(1,1) (1),(3)
(1,1),(1) (2,1,1)
(3),(1)
(1,1,1,1)
(1),(1,2)
(1),(2,1)
(1,2),(1)
(2,1),(1)
(1),(1,1,1)
(1,1,1),(1)
MATHEMATICA
splits[dom_]:=Append[Join@@Table[Prepend[#, Take[dom, i]]&/@splits[Drop[dom, i]], {i, Length[dom]-1}], {dom}];
Table[Sum[Length[Select[splits[ctn], UnsameQ@@Total/@#&]], {ctn, Join@@Permutations/@IntegerPartitions[n]}], {n, 0, 10}]
CROSSREFS
The version with equal instead of different sums is A074854.
Starting with a strict composition gives A336128.
Starting with a partition gives A336131.
Starting with a strict partition gives A336132
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 09 2020
STATUS
approved
a(n) = Sum_{d|n} (2^(n-d)).
+10
16
1, 3, 5, 13, 17, 57, 65, 209, 321, 801, 1025, 3905, 4097, 12417, 21505, 53505, 65537, 233985, 262145, 885761, 1327105, 3147777, 4194305, 16060417, 17825793, 50339841, 84148225, 220217345, 268435457, 990937089, 1073741825, 3506503681
OFFSET
1,2
COMMENTS
A034729 = Sum_{d|n} (2^(d-1)).
If p is a prime, then a(p) = A034729(p) = 2^(p-1)+1.
From Gus Wiseman, Jul 14 2020: (Start)
Number of ways to tile a rectangle of size n using horizontal strips. Also the number of ways to choose a composition of each part of a constant partition of n. The a(0) = 1 through a(5) = 17 splittings are:
() (1) (2) (3) (4) (5)
(1,1) (1,2) (1,3) (1,4)
(1),(1) (2,1) (2,2) (2,3)
(1,1,1) (3,1) (3,2)
(1),(1),(1) (1,1,2) (4,1)
(1,2,1) (1,1,3)
(2,1,1) (1,2,2)
(2),(2) (1,3,1)
(1,1,1,1) (2,1,2)
(1,1),(2) (2,2,1)
(2),(1,1) (3,1,1)
(1,1),(1,1) (1,1,1,2)
(1),(1),(1),(1) (1,1,2,1)
(1,2,1,1)
(2,1,1,1)
(1,1,1,1,1)
(1),(1),(1),(1),(1)
(End)
LINKS
FORMULA
G.f.: 2^n times coefficient of x^n in Sum_{k>=1} x^k/(2-x^k). - Benoit Cloitre, Apr 21 2003; corrected by Joerg Arndt, Mar 28 2013
G.f.: Sum_{k>0} 2^(k-1)*x^k/(1-2^(k-1)*x^k). - Vladeta Jovovic, Jun 24 2003
G.f.: Sum_{n>=1} a*z^n/(1-a*z^n) (generalized Lambert series) where z=2*x and a=1/2. - Joerg Arndt, Jan 30 2011
Triangle A051731 mod 2 converted to decimal. - Philippe Deléham, Oct 04 2003
G.f.: Sum_{k>0} 1 / (2 / (2*x)^k - 1). - Michael Somos, Mar 28 2013
EXAMPLE
Divisors of 6 = 1,2,3,6 and 6-1 = 5, 6-2 = 4, 6-3 = 3, 6-6 = 0. a(6) = 2^5 + 2^4 + 2^3 + 2^0 = 32 + 16 + 8 + 1 = 57.
G.f. = x + 3*x^2 + 5*x^3 + 13*x^4 + 17*x^5 + 57*x^6 + 65*x^7 + ...
a(14) = 1 + 2^7 + 2^12 + 2^13 = 12417. - Gus Wiseman, Jun 20 2018
MATHEMATICA
a[ n_] := If[ n < 1, 0, Sum[ 2^(n - d), {d, Divisors[n]}]] (* Michael Somos, Mar 28 2013 *)
PROG
(PARI) a(n)=if(n<1, 0, 2^n*polcoeff(sum(k=1, n, 2/(2-x^k), x*O(x^n)), n))
(PARI) a(n) = sumdiv(n, d, 2^(n-d) ); /* Joerg Arndt, Mar 28 2013 */
CROSSREFS
Cf. A080267.
Cf. A051731.
The version looking at lengths instead of sums is A101509.
The strictly increasing (or strictly decreasing) version is A304961.
Starting with a partition gives A317715.
Starting with a strict partition gives A318683.
Requiring distinct instead of equal sums gives A336127.
Starting with a strict composition gives A336130.
Partitions of partitions are A001970.
Splittings of compositions are A133494.
Splittings of partitions are A323583.
KEYWORD
easy,nonn
AUTHOR
Miklos Kristof, Sep 11 2002
EXTENSIONS
a(14) corrected from 9407 to 12417 by Gus Wiseman, Jun 20 2018
STATUS
approved
Number of ways to split an integer partition of n into contiguous subsequences with strictly decreasing sums.
+10
16
1, 1, 2, 5, 8, 16, 29, 50, 79, 135, 213, 337, 522, 796, 1191, 1791, 2603, 3799, 5506, 7873, 11154, 15768, 21986, 30565, 42218, 57917, 78968, 107399, 144932, 194889, 261061, 347773, 461249, 610059, 802778, 1053173, 1377325, 1793985, 2329009, 3015922, 3891142
OFFSET
0,3
LINKS
EXAMPLE
The a(1) = 1 through a(5) = 16 splittings:
(1) (2) (3) (4) (5)
(1,1) (2,1) (2,2) (3,2)
(1,1,1) (3,1) (4,1)
(2),(1) (2,1,1) (2,2,1)
(1,1),(1) (3),(1) (3,1,1)
(1,1,1,1) (3),(2)
(2,1),(1) (4),(1)
(1,1,1),(1) (2,1,1,1)
(2,2),(1)
(3),(1,1)
(3,1),(1)
(1,1,1,1,1)
(2,1),(1,1)
(2,1,1),(1)
(1,1,1),(1,1)
(1,1,1,1),(1)
MATHEMATICA
splits[dom_]:=Append[Join@@Table[Prepend[#, Take[dom, i]]&/@splits[Drop[dom, i]], {i, Length[dom]-1}], {dom}];
Table[Sum[Length[Select[splits[ctn], Greater@@Total/@#&]], {ctn, IntegerPartitions[n]}], {n, 0, 10}]
PROG
(PARI) a(n)={my(recurse(r, m, s, t, f)=if(m==0, r==0, if(f, self()(r, min(m, t-1), t-1, 0, 0)) + self()(r, m-1, s, t, 0) + if(t+m<=s, self()(r-m, min(m, r-m), s, t+m, 1)))); recurse(n, n, n, 0)} \\ Andrew Howroyd, Jan 18 2024
CROSSREFS
The version with equal sums is A317715.
The version with strictly increasing sums is A336134.
The version with weakly increasing sums is A336136.
The version with weakly decreasing sums is A316245.
The version with different sums is A336131.
Starting with a composition gives A304961.
Starting with a strict partition gives A318684.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 11 2020
EXTENSIONS
a(21) onwards from Andrew Howroyd, Jan 18 2024
STATUS
approved
Number of square plane partitions of n.
+10
13
1, 1, 1, 1, 2, 2, 4, 5, 8, 11, 16, 21, 31, 41, 57, 78, 108, 146, 202, 274, 375, 509, 690, 929, 1255, 1679, 2246, 2991, 3979, 5266, 6971, 9187, 12104, 15898, 20870, 27322, 35762, 46690, 60927, 79348, 103270, 134138, 174108, 225576, 291990, 377320, 487083
OFFSET
0,5
COMMENTS
Number of ways of writing n as a sum p(1,1) + p(1,2) + ... + p(1,k) + p(2,1) + ... + p(2,k) + ... + p(k,1) + ... + p(k,k) for some k so that in the square array {p(i,j)} the numbers are nonincreasing along rows and columns. All the p(i,j) are >= 1.
LINKS
FORMULA
G.f.: Sum_{k>=0} x^(k^2) / Product_{j=1..2k-1} (1-x^j)^min(j,2k-j). - Franklin T. Adams-Watters, Jun 14 2006
EXAMPLE
a(7) = 5:
7 41 32 31 22
. 11 11 21 21
a(10) = 16 from {{10}}, {{3, 2}, {3, 2}}, {{3, 3}, {2, 2}}, {{3, 3}, {3, 1}}, {{4, 1}, {4, 1}}, {{4, 2}, {2, 2}}, {{4, 2}, {3, 1}}, {{4, 3}, {2, 1}}, {{4, 4}, {1, 1}}, {{5, 1}, {3, 1}}, {{5, 2}, {2, 1}}, {{5, 3}, {1, 1}}, {{6, 1}, {2, 1}}, {{6, 2}, {1, 1}}, {{7, 1}, {1, 1}}, {{2, 1, 1}, {1, 1, 1}, {1, 1, 1}}
From Gus Wiseman, Jan 16 2019: (Start)
The a(10) = 16 square plane partitions:
[ten]
.
[32] [33] [33] [41] [42] [42] [43] [44] [51] [52] [53] [61] [62] [71]
[32] [22] [31] [41] [22] [31] [21] [11] [31] [21] [11] [21] [11] [11]
.
[211]
[111]
[111]
(End)
MATHEMATICA
Table[Sum[Length[Select[Union[Sort/@Tuples[IntegerPartitions[#, {Length[ptn]}]&/@ptn]], And@@OrderedQ/@Transpose[#]&]], {ptn, IntegerPartitions[n]}], {n, 30}] (* Gus Wiseman, Jan 16 2019 *)
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 25 2003
EXTENSIONS
Corrected and extended by Wouter Meeussen, Dec 30 2003
a(21)-a(25) from John W. Layman, Jan 02 2004
More terms from Franklin T. Adams-Watters, Jun 14 2006
Name edited by Gus Wiseman, Jan 16 2019
STATUS
approved
Number of ways to split a strict integer partition of n into contiguous subsequences all having different sums.
+10
13
1, 1, 1, 3, 3, 5, 8, 11, 14, 21, 30, 37, 51, 66, 86, 120, 146, 186, 243, 303, 378, 495, 601, 752, 927, 1150, 1395, 1741, 2114, 2571, 3134, 3788, 4541, 5527, 6583, 7917, 9511, 11319, 13448, 16040, 18996, 22455, 26589, 31317, 36844, 43518, 50917, 59655, 69933
OFFSET
0,4
EXAMPLE
The a(1) = 1 through a(7) = 14 splits:
(1) (2) (3) (4) (5) (6) (7)
(2,1) (3,1) (3,2) (4,2) (4,3)
(2),(1) (3),(1) (4,1) (5,1) (5,2)
(3),(2) (3,2,1) (6,1)
(4),(1) (4),(2) (4,2,1)
(5),(1) (4),(3)
(3,2),(1) (5),(2)
(3),(2),(1) (6),(1)
(4),(2,1)
(4,2),(1)
(4),(2),(1)
MATHEMATICA
splits[dom_]:=Append[Join@@Table[Prepend[#, Take[dom, i]]&/@splits[Drop[dom, i]], {i, Length[dom]-1}], {dom}];
Table[Sum[Length[Select[splits[ctn], UnsameQ@@Total/@#&]], {ctn, Select[IntegerPartitions[n], UnsameQ@@#&]}], {n, 0, 30}]
CROSSREFS
The version with equal instead of different sums is A318683.
Starting with a composition gives A336127.
Starting with a strict composition gives A336128.
Starting with a partition gives A336131.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 11 2020
STATUS
approved
Number of ways to split an integer partition of n into contiguous subsequences all having different sums.
+10
12
1, 1, 2, 6, 9, 20, 44, 74, 123, 231, 441, 681, 1188, 1889, 3110, 5448, 8310, 13046
OFFSET
0,3
EXAMPLE
The a(1) = 1 through a(4) = 9 splits:
(1) (2) (3) (4)
(1,1) (2,1) (2,2)
(1,1,1) (3,1)
(2),(1) (2,1,1)
(1),(1,1) (3),(1)
(1,1),(1) (1,1,1,1)
(2,1),(1)
(1),(1,1,1)
(1,1,1),(1)
MATHEMATICA
splits[dom_]:=Append[Join@@Table[Prepend[#, Take[dom, i]]&/@splits[Drop[dom, i]], {i, Length[dom]-1}], {dom}];
Table[Sum[Length[Select[splits[ctn], UnsameQ@@Total/@#&]], {ctn, IntegerPartitions[n]}], {n, 0, 10}]
CROSSREFS
The version with equal instead of different sums is A317715.
Starting with a composition gives A336127.
Starting with a strict composition gives A336128.
Starting with a strict partition gives A336132.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Jul 11 2020
STATUS
approved
Number of ways to split an integer partition of n into contiguous subsequences with strictly increasing sums.
+10
11
1, 1, 2, 4, 6, 11, 17, 27, 37, 62, 82, 125, 168, 246, 320, 462, 585, 839, 1078, 1466, 1830, 2528, 3136, 4188, 5210, 6907, 8498, 11177, 13570, 17668, 21614, 27580, 33339, 42817, 51469, 65083, 78457, 98409, 117602, 147106, 174663, 217400, 259318, 319076, 377707
OFFSET
0,3
LINKS
EXAMPLE
The a(1) = 1 through a(6) = 17 splits:
(1) (2) (3) (4) (5) (6)
(1,1) (2,1) (2,2) (3,2) (3,3)
(1,1,1) (3,1) (4,1) (4,2)
(1),(1,1) (2,1,1) (2,2,1) (5,1)
(1,1,1,1) (3,1,1) (2,2,2)
(1),(1,1,1) (2,1,1,1) (3,2,1)
(2),(2,1) (4,1,1)
(1,1,1,1,1) (2,2,1,1)
(2),(1,1,1) (2),(2,2)
(1),(1,1,1,1) (3,1,1,1)
(1,1),(1,1,1) (2,1,1,1,1)
(2),(2,1,1)
(1,1,1,1,1,1)
(2),(1,1,1,1)
(1),(1,1,1,1,1)
(1,1),(1,1,1,1)
(1),(1,1),(1,1,1)
MATHEMATICA
splits[dom_]:=Append[Join@@Table[Prepend[#, Take[dom, i]]&/@splits[Drop[dom, i]], {i, Length[dom]-1}], {dom}];
Table[Sum[Length[Select[splits[ctn], Less@@Total/@#&]], {ctn, IntegerPartitions[n]}], {n, 0, 10}]
PROG
(PARI) a(n)={my(recurse(r, m, s, t, f)=if(m==0, r==0, if(f && r > t && t >= s, self()(r, m, t+1, 0, 0)) + self()(r, m-1, s, t, 0) + self()(r-m, min(m, r-m), s, t+m, 1))); recurse(n, n, 0, 0, 0)} \\ Andrew Howroyd, Jan 18 2024
CROSSREFS
The version with equal sums is A317715.
The version with strictly decreasing sums is A336135.
The version with weakly decreasing sums is A316245.
The version with different sums is A336131.
Starting with a composition gives A304961.
Starting with a strict partition gives A336133.
Partitions of partitions are A001970.
Partitions of compositions are A075900.
Compositions of compositions are A133494.
Compositions of partitions are A323583.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jul 11 2020
EXTENSIONS
a(21) onwards from Andrew Howroyd, Jan 18 2024
STATUS
approved
Number of compositions of n into a square number of parts.
+10
10
1, 1, 1, 1, 2, 5, 11, 21, 36, 58, 94, 166, 331, 716, 1574, 3368, 6892, 13447, 25127, 45391, 80428, 142615, 259085, 491855, 982400, 2045001, 4352661, 9291361, 19609786, 40574017, 81973315, 161568281, 311062991, 586764281, 1089615033, 2005257849, 3688711427
OFFSET
0,5
COMMENTS
From Gus Wiseman, Jan 17 2019: (Start)
Also the number of ways to fill a square matrix with the parts of an integer partition of n. For example, the a(6) = 11 matrices are:
[6]
.
[1 1] [1 1] [1 3] [3 1] [1 1] [1 2] [1 2] [2 1] [2 1] [2 2]
[1 3] [3 1] [1 1] [1 1] [2 2] [1 2] [2 1] [1 2] [2 1] [1 1]
(End)
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..3329 (terms n = 1..1000 from Vaclav Kotesovec)
Vaclav Kotesovec, a(n+1)/a(n) as a graph
FORMULA
a(n) = Sum_{k>=0} (x/(1-x))^(k^2).
Binomial transform of the characteristic function of squares A010052, with 0th term omitted. - Carl Najafi, Sep 09 2011
a(n) = Sum_{k >= 0} binomial(n-1,k^2-1). - Gus Wiseman, Jan 17 2019
MAPLE
b:= proc(n, t) option remember; `if`(n=0,
`if`(issqr(t), 1, 0), add(b(n-j, t+1), j=1..n))
end:
a:= n-> b(n, 0):
seq(a(n), n=0..40); # Alois P. Heinz, Jan 18 2019
MATHEMATICA
nmax = 40; Rest[CoefficientList[Series[-1/2 + EllipticTheta[3, 0, x/(1-x)]/2, {x, 0, nmax}], x]] (* Vaclav Kotesovec, Jan 03 2017 *)
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Mar 18 2005
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Jan 18 2019
STATUS
approved

Search completed in 0.011 seconds