Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a323882 -id:a323882
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(0) = 0, a(2n) = a(n), a(3n) = a(n), a(6n+1) = 2n + 1, a(6n+5) = 2n + 2.
+10
34
0, 1, 1, 1, 1, 2, 1, 3, 1, 1, 2, 4, 1, 5, 3, 2, 1, 6, 1, 7, 2, 3, 4, 8, 1, 9, 5, 1, 3, 10, 2, 11, 1, 4, 6, 12, 1, 13, 7, 5, 2, 14, 3, 15, 4, 2, 8, 16, 1, 17, 9, 6, 5, 18, 1, 19, 3, 7, 10, 20, 2, 21, 11, 3, 1, 22, 4, 23, 6, 8, 12, 24, 1, 25, 13, 9, 7, 26, 5, 27, 2, 1, 14, 28, 3, 29, 15, 10, 4, 30, 2
OFFSET
0,6
COMMENTS
For further information see A126759, which provided the original motivation for this sequence.
From Antti Karttunen, Jan 28 2015: (Start)
The odd bisection of the sequence gives A253887, and the even bisection gives the sequence itself.
A254048 gives the sequence obtained when this sequence is restricted to A007494 (numbers congruent to 0 or 2 mod 3).
For all odd numbers k present in square array A135765, a(k) = the column index of k in that array. (End)
A322026 and this sequence (without the initial zero) are ordinal transforms of each other. - Antti Karttunen, Feb 09 2019
Also ordinal transform of A065331 (after the initial 0). - Antti Karttunen, Sep 08 2024
LINKS
FORMULA
a(n) = A126759(n)-1. [The original definition.]
From Antti Karttunen, Jan 28 2015: (Start)
a(0) = 0, a(2n) = a(n), a(3n) = a(n), a(6n+1) = 2n + 1, a(6n+5) = 2n + 2.
Or with the last clause represented in another way:
a(0) = 0, a(2n) = a(n), a(3n) = a(n), a(6n+1) = 2n + 1, a(6n-1) = 2n.
Other identities. For all n >= 1:
a(n) = A253887(A003602(n)).
a(6n-3) = a(4n-2) = a(2n-1) = A253887(n).
(End)
a(n) = A249746(A003602(A064989(n))). - Antti Karttunen, Feb 04 2015
a(n) = A323882(4*n). - Antti Karttunen, Apr 18 2022
MATHEMATICA
f[n_] := Block[{a}, a[0] = 0; a[1] = a[2] = a[3] = 1; a[x_] := Which[EvenQ@ x, a[x/2], Mod[x, 3] == 0, a[x/3], Mod[x, 6] == 1, 2 (x - 1)/6 + 1, Mod[x, 6] == 5, 2 (x - 5)/6 + 2]; Table[a@ i, {i, 0, n}]] (* Michael De Vlieger, Feb 03 2015 *)
PROG
(Scheme, with memoizing macro definec)
(definec (A126760 n) (cond ((zero? n) n) ((even? n) (A126760 (/ n 2))) ((zero? (modulo n 3)) (A126760 (/ n 3))) ((= 1 (modulo n 6)) (+ 1 (/ (- n 1) 3))) (else (/ (+ n 1) 3))))
;; Antti Karttunen, Jan 28 2015
(PARI) A126760(n)={n&&n\=3^valuation(n, 3)<<valuation(n, 2); n%3+n\6*2} \\ M. F. Hasler, Jan 19 2016
CROSSREFS
One less than A126759.
Cf. A347233 (Möbius transform) and also A349390, A349393, A349395 for other Dirichlet convolutions.
Ordinal transform of A065331 and of A322026 (after the initial 0).
Related arrays: A135765, A254102.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Feb 19 2007
EXTENSIONS
Name replaced with an independent recurrence and the old description moved to the Formula section - Antti Karttunen, Jan 28 2015
STATUS
approved
Sum of Kimberling's paraphrases (A003602) and its Dirichlet inverse.
+10
10
2, 0, 0, 1, 0, 4, 0, 1, 4, 6, 0, 2, 0, 8, 12, 1, 0, 6, 0, 3, 16, 12, 0, 2, 9, 14, 12, 4, 0, 4, 0, 1, 24, 18, 24, 5, 0, 20, 28, 3, 0, 6, 0, 6, 26, 24, 0, 2, 16, 17, 36, 7, 0, 16, 36, 4, 40, 30, 0, 8, 0, 32, 36, 1, 42, 10, 0, 9, 48, 12, 0, 5, 0, 38, 46, 10, 48, 12, 0, 3, 37, 42, 0, 11, 54, 44, 60, 6, 0, 20, 56, 12
OFFSET
1,1
COMMENTS
Question: Are all terms nonnegative?
FORMULA
a(n) = A003602(n) + A349134(n).
a(1) = 2, and for n > 1, a(n) = -Sum_{d|n, 1<d<n} A003602(d) * A349134(n/d).
For all n >= 1, a(4*n) = A003602(n). - Antti Karttunen, Dec 07 2021
MATHEMATICA
k[n_] := (n/2^IntegerExponent[n, 2] + 1)/2; d[1] = 1; d[n_] := d[n] = -DivisorSum[n, d[#]*k[n/#] &, # < n &]; a[n_] := k[n] + d[n]; Array[a, 100] (* Amiram Eldar, Nov 13 2021 *)
PROG
(PARI)
up_to = 16384;
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
A003602(n) = (1+(n>>valuation(n, 2)))/2;
v349134 = DirInverseCorrect(vector(up_to, n, A003602(n)));
A349134(n) = v349134[n];
A349135(n) = (A003602(n)+A349134(n));
(PARI) A349135(n) = if(1==n, 2, -sumdiv(n, d, if(1==d||n==d, 0, A003602(d)*A349134(n/d)))); \\ (Demonstrates the "cut convolution" formula) - Antti Karttunen, Nov 13 2021
CROSSREFS
Cf. A003602 (also quadrisection of this sequence), A349134.
Cf. also A323882, A349126.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Nov 13 2021
STATUS
approved
Dirichlet inverse of A126760.
+10
8
1, -1, -1, 0, -2, 1, -3, 0, 0, 2, -4, 0, -5, 3, 2, 0, -6, 0, -7, 0, 3, 4, -8, 0, -5, 5, 0, 0, -10, -2, -11, 0, 4, 6, 0, 0, -13, 7, 5, 0, -14, -3, -15, 0, 0, 8, -16, 0, -8, 5, 6, 0, -18, 0, -3, 0, 7, 10, -20, 0, -21, 11, 0, 0, -2, -4, -23, 0, 8, 0, -24, 0, -25, 13, 5, 0, -2, -5, -27, 0, 0, 14, -28, 0, -5, 15, 10, 0, -30, 0, -1, 0
OFFSET
1,5
LINKS
MATHEMATICA
b[n_] := b[n] = Which[n == 0, 0, 0 < n < 4, 1, EvenQ[n], b[n/2], Mod[n, 3] == 0, b[n/3], Mod[n, 6] == 1, (n-1)/3 + 1, Mod[n, 6] == 5, (n-5)/3 + 2];
a[n_] := a[n] = If[n == 1, 1, -Sum[b[n/d] a[d], {d, Most@ Divisors[n]}]];
Array[a, 100] (* Jean-François Alcover, Feb 16 2020 *)
PROG
(PARI)
up_to = 20000;
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1])*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v (correctly!)
A126760(n) = {n&&n\=3^valuation(n, 3)<<valuation(n, 2); n%3+n\6*2}; \\ From A126760
v323881 = DirInverseCorrect(vector(up_to, n, A126760(n)));
A323881(n) = v323881[n];
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Feb 08 2019
STATUS
approved
Sum of A001511 and its Dirichlet inverse.
+10
8
2, 0, 0, 4, 0, 4, 0, 4, 1, 4, 0, 2, 0, 4, 2, 5, 0, 2, 0, 2, 2, 4, 0, 4, 1, 4, 1, 2, 0, 0, 0, 6, 2, 4, 2, 3, 0, 4, 2, 4, 0, 0, 0, 2, 1, 4, 0, 5, 1, 2, 2, 2, 0, 2, 2, 4, 2, 4, 0, 4, 0, 4, 1, 7, 2, 0, 0, 2, 2, 0, 0, 4, 0, 4, 1, 2, 2, 0, 0, 5, 1, 4, 0, 4, 2, 4, 2, 4, 0, 2, 2, 2, 2, 4, 2, 6, 0, 2, 1, 3, 0, 0, 0, 4, 0
OFFSET
1,1
LINKS
FORMULA
a(n) = A001511(n) + A092673(n).
PROG
(PARI)
A001511(n) = (1+valuation(n, 2));
A092673(n) = (moebius(n)-if(n%2, 0, moebius(n/2)));
A323885(n) = (A001511(n)+A092673(n));
(Python)
from sympy import mobius
def A323885(n): return (n&-n).bit_length()+mobius(n)-(0 if n&1 else mobius(n>>1)) # Chai Wah Wu, Jul 13 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
Antti Karttunen, Feb 08 2019
STATUS
approved
Sum of Per Nørgård's "infinity sequence" (A004718) and its Dirichlet inverse (A323886).
+10
7
2, 0, 0, 1, 0, -4, 0, -1, 4, 0, 0, 2, 0, -6, 0, 1, 0, 0, 0, 0, 12, -2, 0, -2, 0, 2, 0, 3, 0, -8, 0, -1, 4, 0, 0, 2, 0, -6, -4, 0, 0, 10, 0, 1, 16, -4, 0, 2, 9, -6, 0, -1, 0, 0, 0, -3, 12, 4, 0, 4, 0, -10, -20, 1, 0, 0, 0, 0, 8, -2, 0, -2, 0, 2, 12, 3, 6, -12, 0, 0, -4, -2, 0, 1, 0, -4, -8, -1, 0, 16, -6, 2, 20, -6, 0, -2, 0, 11, 0, 3, 0, -8, 0, 1, 28
OFFSET
1,1
COMMENTS
The composer Per Nørgård's name is also written in the OEIS as Per Noergaard.
FORMULA
a(n) = A004718(n) + A323886(n).
PROG
(PARI)
up_to = 65537;
A004718list(up_to) = { my(v=vector(up_to)); v[1]=1; v[2]=-1; for(n=3, up_to, v[n] = if(n%2, 1+v[n>>1], -v[n/2])); (v); }; \\ After code in A004718.
DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(d<n, v[n/d]*u[d], 0))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
v004718 = A004718list(up_to);
A004718(n) = v004718[n];
v323886 = DirInverse(v004718);
A323886(n) = v323886[n];
A323887(n) = (A004718(n)+A323886(n));
CROSSREFS
KEYWORD
sign
AUTHOR
Antti Karttunen, Feb 08 2019
STATUS
approved
Sum of A322026 and its Dirichlet inverse.
+10
5
2, 0, 0, 4, 0, 12, 0, 8, 9, 4, 0, 8, 0, 4, 6, 8, 0, 4, 0, 4, 6, 4, 0, 0, 1, 4, 15, 4, 0, -2, 0, 12, 6, 4, 2, 13, 0, 4, 6, 4, 0, -2, 0, 4, 5, 4, 0, 22, 1, 2, 6, 4, 0, 7, 2, 4, 6, 4, 0, 8, 0, 4, 5, 20, 2, -2, 0, 4, 6, 0, 0, 38, 0, 4, 3, 4, 2, -2, 0, 10, 13, 4, 0, 8, 2, 4, 6, 4, 0, 16, 2, 4, 6, 4, 2, 28, 0, 2, 5, 4, 0, -2, 0, 4, 0
OFFSET
1,1
FORMULA
a(n) = A322026(n) + A323883(n).
PROG
(PARI)
up_to = 65537;
rgs_transform(invec) = { my(om = Map(), outvec = vector(length(invec)), u=1); for(i=1, length(invec), if(mapisdefined(om, invec[i]), my(pp = mapget(om, invec[i])); outvec[i] = outvec[pp] , mapput(om, invec[i], i); outvec[i] = u; u++ )); outvec; };
A007814(n) = valuation(n, 2);
A007949(n) = valuation(n, 3);
v322026 = rgs_transform(vector(up_to, n, [A007814(n), A007949(n)]));
A322026(n) = v322026[n];
DirInverse(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = -sumdiv(n, d, if(d<n, v[n/d]*u[d], 0))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v.
v323883 = DirInverse(v322026);
A323883(n) = v323883[n];
A323884(n) = (A322026(n)+A323883(n));
KEYWORD
sign
AUTHOR
Antti Karttunen, Feb 08 2019
STATUS
approved
Sum of A353420 and its Dirichlet inverse.
+10
5
2, 0, 0, 1, 0, 4, 0, 1, 4, 6, 0, 2, 0, 8, 12, 1, 0, 14, 0, 3, 16, 10, 0, 2, 9, 12, 28, 4, 0, 12, 0, 1, 20, 14, 24, 9, 0, 16, 24, 3, 0, 22, 0, 5, 66, 20, 0, 2, 16, 25, 28, 6, 0, 56, 30, 4, 32, 22, 0, 12, 0, 26, 100, 1, 36, 24, 0, 7, 40, 28, 0, 9, 0, 28, 86, 8, 40, 34, 0, 3, 157, 30, 0, 19, 42, 32, 44, 5, 0, 52, 48
OFFSET
1,1
COMMENTS
The first negative term is a(255255) = -11936.
FORMULA
a(n) = A353420(n) + A353335(n).
For n > 1, a(n) = -Sum_{d|n, 1<d<n} A353420(d) * A353335(n/d).
PROG
(PARI)
up_to = 65537;
DirInverseCorrect(v) = { my(u=vector(#v)); u[1] = (1/v[1]); for(n=2, #v, u[n] = (-u[1]*sumdiv(n, d, if(d<n, v[n/d]*u[d], 0)))); (u) }; \\ Compute the Dirichlet inverse of the sequence given in input vector v (correctly!)
A003961(n) = { my(f = factor(n)); for(i=1, #f~, f[i, 1] = nextprime(f[i, 1]+1)); factorback(f); };
A126760(n) = {n&&n\=3^valuation(n, 3)<<valuation(n, 2); n%3+n\6*2}; \\ From A126760
v353335 = DirInverseCorrect(vector(up_to, n, A353420(n)));
A353335(n) = v353335[n];
A353336(n) = (A353420(n)+A353335(n));
CROSSREFS
Cf. A003961, A126760, A353420 (also a quadrisection of this sequence), A353335.
Cf. also A323882, A323894, A349135.
KEYWORD
sign
AUTHOR
Antti Karttunen, Apr 20 2022
STATUS
approved
Difference between A126760 and its Möbius transform.
+10
2
0, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 1, 2, 3, 4, 1, 1, 2, 5, 1, 3, 1, 2, 1, 1, 4, 6, 4, 1, 1, 7, 5, 2, 1, 3, 1, 4, 2, 8, 1, 1, 3, 9, 6, 5, 1, 1, 5, 3, 7, 10, 1, 2, 1, 11, 3, 1, 6, 4, 1, 6, 8, 12, 1, 1, 1, 13, 9, 7, 6, 5, 1, 2, 1, 14, 1, 3, 7, 15, 10, 4, 1, 2, 7, 8, 11, 16, 8, 1, 1, 17
OFFSET
1,10
FORMULA
a(n) = A126760(n) - A347233(n).
a(n) = Sum_{d|n, d<n} A347233(d).
a(n) = -Sum_{d|n, d<n} A008683(n/d)*A126760(d).
PROG
(PARI)
A126760(n) = {n&&n\=3^valuation(n, 3)<<valuation(n, 2); n%3+n\6*2}; \\ From A126760.
A347233(n) = sumdiv(n, d, moebius(n/d)*A126760(d));
A359165(n) = (A126760(n)-A347233(n));
CROSSREFS
Cf. also A323882, A359164.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Dec 22 2022
STATUS
approved

Search completed in 0.010 seconds