Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a324524 -id:a324524
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of partitions of n into squares.
(Formerly M0221 N0079)
+10
111
1, 1, 1, 1, 2, 2, 2, 2, 3, 4, 4, 4, 5, 6, 6, 6, 8, 9, 10, 10, 12, 13, 14, 14, 16, 19, 20, 21, 23, 26, 27, 28, 31, 34, 37, 38, 43, 46, 49, 50, 55, 60, 63, 66, 71, 78, 81, 84, 90, 98, 104, 107, 116, 124, 132, 135, 144, 154, 163, 169, 178, 192, 201, 209, 220, 235, 247, 256
OFFSET
0,5
COMMENTS
Number of partitions of n such that number of parts equal to k is multiple of k for all k. - Vladeta Jovovic, Aug 01 2004
Of course p_{4*square}(n)>0. In fact p_{4*square}(32n+28)=3 times p_{4*square}(8n+7) and p_{4*square}(72n+69) is even. These seem to be the only arithmetic properties the function p_{4*square(n)} possesses. Similar results hold for partitions into positive squares, distinct squares and distinct positive squares. - Michael David Hirschhorn, May 05 2005
The Heinz numbers of these partitions are given by A324588. - Gus Wiseman, Mar 09 2019
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10000 (first 1001 terms from T. D. Noe)
J. Bohman et al., Partitions in squares, Nordisk Tidskr. Informationsbehandling (BIT) 19 (1979), 297-301.
J. Bohman et al., Partitions in squares, Nordisk Tidskr. Informationsbehandling (BIT) 19 (1979), 297-301. (Annotated scanned copy)
G. H. Hardy and S. Ramanujan, Asymptotic formulae in combinatory analysis, Proceedings of the London Mathematical Society, 2, XVI, 1917, p. 373.
M. D. Hirschhorn and J. A. Sellers, On a problem of Lehmer on partitions into squares, The Ramanujan Journal 8 (2004), 279-287.
F. Iacobescu, Smarandache Partition Type and Other Sequences, Bull. Pure Appl. Sci. 16E, 237-240, 1997.
Igor Pak, Complexity problems in enumerative combinatorics, arXiv:1803.06636 [math.CO], 2018.
James A. Sellers, Partitions Excluding Specific Polygonal Numbers As Parts, Journal of Integer Sequences, Vol. 7 (2004), Article 04.2.4.
F. Smarandache, Sequences of Numbers Involved in Unsolved Problems, Hexis, Phoenix, 2006.
Florentin Smarandache, Sequences of Numbers Involved in Unsolved Problems, arXiv:math/0604019 [math.GM], 2006.
Eric Weisstein's World of Mathematics, Partition
Eric Weisstein's World of Mathematics, Smarandache Sequences
Eric Weisstein's World of Mathematics, Square Number
FORMULA
G.f.: Product_{m>=1} 1/(1-x^(m^2)).
G.f.: Sum_{n>=0} x^(n^2) / Product_{k=1..n} (1 - x^(k^2)). - Paul D. Hanna, Mar 09 2012
a(n) = (1/n)*Sum_{k=1..n} A035316(k)*a(n-k). - Vladeta Jovovic, Nov 20 2002
a(n) = f(n,1,3) with f(x,y,z) = if x<y then 0^x else f(x-y,y,z)+f(x,y+z,z+2). - Reinhard Zumkeller, Nov 08 2009
Conjecture (Jan Bohman, Carl-Erik Fröberg, Hans Riesel, 1979): a(n) ~ c * n^(-alfa) * exp(beta*n^(1/3)), where c = 1/18.79656, beta = 3.30716, alfa = 1.16022. - Vaclav Kotesovec, Aug 19 2015
From Vaclav Kotesovec, Dec 29 2016: (Start)
Correct values of these constants are:
1/c = sqrt(3) * (4*Pi)^(7/6) / Zeta(3/2)^(2/3) = 17.49638865935104978665...
alfa = 7/6 = 1.16666666666666666...
beta = 3/2 * (Pi/2)^(1/3) * Zeta(3/2)^(2/3) = 3.307411783596651987...
a(n) ~ 3^(-1/2) * (4*Pi*n)^(-7/6) * Zeta(3/2)^(2/3) * exp(2^(-4/3) * 3 * Pi^(1/3) * Zeta(3/2)^(2/3) * n^(1/3)). [Hardy & Ramanujan, 1917]
(End)
EXAMPLE
p_{4*square}(23)=1 because 23 = 3^2 + 3^2 + 2^2 + 1^2 and there is no other partition of 23 into squares.
G.f.: A(x) = 1 + x + x^2 + x^3 + 2*x^4 + 2*x^5 + 2*x^6 + 2*x^7 +...
such that the g.f. A(x) satisfies the identity [Paul D. Hanna]:
A(x) = 1/((1-x)*(1-x^4)*(1-x^9)*(1-x^16)*(1-x^25)*...)
A(x) = 1 + x/(1-x) + x^4/((1-x)*(1-x^4)) + x^9/((1-x)*(1-x^4)*(1-x^9)) + x^16/((1-x)*(1-x^4)*(1-x^9)*(1-x^16)) + ...
From Gus Wiseman, Mar 09 2019: (Start)
The a(14) = 6 integer partitions into squares are:
(941)
(911111)
(44411)
(44111111)
(41111111111)
(11111111111111)
while the a(14) = 6 integer partitions in which the multiplicity of k is a multiple of k for all k are:
(333221)
(33311111)
(22222211)
(2222111111)
(221111111111)
(11111111111111)
(End)
MAPLE
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+ `if`(i^2>n, 0, b(n-i^2, i))))
end:
a:= n-> b(n, isqrt(n)):
seq(a(n), n=0..120); # Alois P. Heinz, May 30 2014
MATHEMATICA
CoefficientList[ Series[Product[1/(1 - x^(m^2)), {m, 70}], {x, 0, 68}], x] (* Or *)
Join[{1}, Table[Length@PowersRepresentations[n, n, 2], {n, 68}]] (* Robert G. Wilson v, Apr 12 2005, revised Sep 27 2011 *)
f[n_] := Length@ IntegerPartitions[n, All, Range@ Sqrt@ n^2]; Array[f, 67] (* Robert G. Wilson v, Apr 14 2013 *)
b[n_, i_] := b[n, i] = If[n==0, 1, If[i<1, 0, b[n, i-1] + If[i^2>n, 0, b[n-i^2, i]]]]; a[n_] := b[n, Sqrt[n]//Floor]; Table[a[n], {n, 0, 120}] (* Jean-François Alcover, Nov 02 2015, after Alois P. Heinz *)
PROG
(Haskell)
a001156 = p (tail a000290_list) where
p _ 0 = 1
p ks'@(k:ks) m = if m < k then 0 else p ks' (m - k) + p ks m
-- Reinhard Zumkeller, Oct 31 2012, Aug 14 2011
(PARI) {a(n)=polcoeff(1/prod(k=1, sqrtint(n+1), 1-x^(k^2)+x*O(x^n)), n)} \\ Paul D. Hanna, Mar 09 2012
(PARI) {a(n)=polcoeff(1+sum(m=1, sqrtint(n+1), x^(m^2)/prod(k=1, m, 1-x^(k^2)+x*O(x^n))), n)} \\ Paul D. Hanna, Mar 09 2012
(Magma) m:=70; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (&*[1/(1-x^(k^2)): k in [1..(m+2)]]) )); // G. C. Greubel, Nov 11 2018
CROSSREFS
KEYWORD
nonn,easy
EXTENSIONS
More terms from Eric W. Weisstein
More terms from Gh. Niculescu (ghniculescu(AT)yahoo.com), Oct 08 2006
STATUS
approved
Primal codes of finite idempotent functions on positive integers.
+10
40
1, 2, 9, 18, 125, 250, 1125, 2250, 2401, 4802, 21609, 43218, 161051, 300125, 322102, 600250, 1449459, 2701125, 2898918, 4826809, 5402250, 9653618, 20131375, 40262750, 43441281, 86882562, 181182375, 362364750, 386683451, 410338673, 603351125, 773366902, 820677346
OFFSET
1,2
COMMENTS
Finite idempotent functions are identity maps on finite subsets, counting the empty function as the idempotent on the empty set.
From Gus Wiseman, Mar 09 2019: (Start)
Also numbers whose ordered prime signature is equal to the distinct prime indices in increasing order. A prime index of n is a number m such that prime(m) divides n. The ordered prime signature (A124010) is the sequence of multiplicities (or exponents) in a number's prime factorization, taken in order of the prime base. The case where the prime indices are taken in decreasing order is A324571.
Also numbers divisible by prime(k) exactly k times for each prime index k. These are a kind of self-describing numbers (cf. A001462, A304679).
Also Heinz numbers of integer partitions where the multiplicity of m is m for all m in the support (counted by A033461). The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also products of distinct elements of A062457. For example, 43218 = prime(1)^1 * prime(2)^2 * prime(4)^4.
(End)
LINKS
J. Awbrey, Riffs and Rotes
FORMULA
Sum_{n>=1} 1/a(n) = Product_{n>=1} (1 + 1/prime(n)^n) = 1.6807104966... - Amiram Eldar, Jan 03 2021
EXAMPLE
Writing (prime(i))^j as i:j, we have the following table of examples:
Primal Codes of Finite Idempotent Functions on Positive Integers
` ` ` 1 = { }
` ` ` 2 = 1:1
` ` ` 9 = ` ` 2:2
` ` `18 = 1:1 2:2
` ` 125 = ` ` ` ` 3:3
` ` 250 = 1:1 ` ` 3:3
` `1125 = ` ` 2:2 3:3
` `2250 = 1:1 2:2 3:3
` `2401 = ` ` ` ` ` ` 4:4
` `4802 = 1:1 ` ` ` ` 4:4
` 21609 = ` ` 2:2 ` ` 4:4
` 43218 = 1:1 2:2 ` ` 4:4
`161051 = ` ` ` ` ` ` ` ` 5:5
`300125 = ` ` ` ` 3:3 4:4
`322102 = 1:1 ` ` ` ` ` ` 5:5
`600250 = 1:1 ` ` 3:3 4:4
From Gus Wiseman, Mar 09 2019: (Start)
The sequence of terms together with their prime indices begins as follows. For example, we have 18: {1,2,2} because 18 = prime(1) * prime(2) * prime(2) has prime signature {1,2} and the distinct prime indices are also {1,2}.
1: {}
2: {1}
9: {2,2}
18: {1,2,2}
125: {3,3,3}
250: {1,3,3,3}
1125: {2,2,3,3,3}
2250: {1,2,2,3,3,3}
2401: {4,4,4,4}
4802: {1,4,4,4,4}
21609: {2,2,4,4,4,4}
43218: {1,2,2,4,4,4,4}
161051: {5,5,5,5,5}
300125: {3,3,3,4,4,4,4}
322102: {1,5,5,5,5,5}
600250: {1,3,3,3,4,4,4,4}
(End)
MATHEMATICA
Select[Range[10000], And@@Cases[If[#==1, {}, FactorInteger[#]], {p_, k_}:>PrimePi[p]==k]&]
PROG
(PARI) is(n) = my(f = factor(n)); for(i = 1, #f~, if(prime(f[i, 2]) != f[i, 1], return(0))); 1 \\ David A. Corneth, Mar 09 2019
CROSSREFS
Cf. A001156, A033461, A056239, A062457, A112798, A118914, A124010 (ordered prime signature), A181819, A276078, A304679.
Sequences related to self-description: A000002, A001462, A079000, A079254, A276625, A304360.
KEYWORD
nonn
AUTHOR
Jon Awbrey, Jul 06 2005
EXTENSIONS
Offset set to 1, missing terms inserted and more terms added by Alois P. Heinz, Mar 08 2019
STATUS
approved
Primal codes of finite permutations on positive integers.
+10
28
1, 2, 9, 12, 18, 40, 112, 125, 250, 352, 360, 540, 600, 675, 832, 1008, 1125, 1350, 1500, 2176, 2250, 2268, 2352, 2401, 3168, 3969, 4802, 4864, 7488, 7938, 10692, 11616, 11776, 14000, 19584, 21609, 27440, 28812, 29403, 29696, 32448, 35000, 37908, 43218, 43776
OFFSET
1,2
COMMENTS
A finite permutation is a bijective mapping from a finite set to itself, counting the empty mapping as a permutation of the empty set.
Also Heinz numbers of integer partitions where the set of distinct parts is equal to the set of distinct multiplicities. These partitions are counted by A114640. The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k). - Gus Wiseman, Apr 02 2019
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..300 (terms 1..100 from Alois P. Heinz)
Jon Awbrey, Riffs and Rotes.
EXAMPLE
Writing (prime(i))^j as i:j, we have the following table:
Primal Codes of Finite Permutations on Positive Integers
` ` ` 1 = { }
` ` ` 2 = 1:1
` ` ` 9 = 2:2
` ` `12 = 1:2 2:1
` ` `18 = 1:1 2:2
` ` `40 = 1:3 3:1
` ` 112 = 1:4 4:1
` ` 125 = 3:3
` ` 250 = 1:1 3:3
` ` 352 = 1:5 5:1
` ` 360 = 1:3 2:2 3:1
` ` 540 = 1:2 2:3 3:1
` ` 600 = 1:3 2:1 3:2
` ` 675 = 2:3 3:2
` ` 832 = 1:6 6:1
` `1008 = 1:4 2:2 4:1
` `1125 = 2:2 3:3
` `1350 = 1:1 2:3 3:2
` `1500 = 1:2 2:1 3:3
` `2176 = 1:7 7:1
` `2250 = 1:1 2:2 3:3
MAPLE
a:= proc(n) option remember; local k; for k from 1+`if`(n=1, 0,
a(n-1)) while (l-> sort(map(i-> i[2], l)) <> sort(map(
i-> numtheory[pi](i[1]), l)))(ifactors(k)[2]) do od; k
end:
seq(a(n), n=1..45); # Alois P. Heinz, Mar 08 2019
MATHEMATICA
Select[Range[1000], #==1||Union[PrimePi/@First/@FactorInteger[#]]==Union[Last/@FactorInteger[#]]&] (* Gus Wiseman, Apr 02 2019 *)
PROG
(PARI) is(n) = {my(f = factor(n), p = f[, 1], e = vecsort(f[, 2])); for(i=1, #p, if(primepi(p[i]) != e[i], return(0))); 1}; \\ Amiram Eldar, Jul 30 2022
KEYWORD
nonn
AUTHOR
Jon Awbrey, Jul 08 2005
EXTENSIONS
More terms from Franklin T. Adams-Watters, Dec 19 2005
Offset set to 1 by Alois P. Heinz, Mar 08 2019
STATUS
approved
Numbers n in whose prime factorization no exponent of any prime(k) exceeds k.
+10
28
1, 2, 3, 5, 6, 7, 9, 10, 11, 13, 14, 15, 17, 18, 19, 21, 22, 23, 25, 26, 29, 30, 31, 33, 34, 35, 37, 38, 39, 41, 42, 43, 45, 46, 47, 49, 50, 51, 53, 55, 57, 58, 59, 61, 62, 63, 65, 66, 67, 69, 70, 71, 73, 74, 75, 77, 78, 79, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94, 95, 97, 98, 99, 101, 102, 103, 105, 106, 107, 109, 110, 111, 113, 114, 115, 117, 118, 119, 121
OFFSET
1,2
COMMENTS
Numbers not divisible by p^(1+A000720(p)) for any prime p, where A000720(p) gives the index of prime p: 1 for 2, 2 for 3, 3 for 5, and so on.
Also Heinz numbers of integer partitions where the multiplicity of i does not exceed i for any i (A052335). Differs from A048103 in lacking {625, 1250, 1875, 3750, 4375, 5625, 6875, 8125, 8750, ...}. - Gus Wiseman, Mar 09 2019
Asymptotic density is Product_{i>=1} 1-prime(i)^(-1-i) = 0.72102334... - Amiram Eldar, Oct 20 2020
LINKS
MATHEMATICA
Select[Range@ 121, Or[# == 1, AllTrue[FactorInteger[#], PrimePi[#1] >= #2 & @@ # &]] &] (* Michael De Vlieger, Jun 24 2017 *)
PROG
(Scheme, with Antti Karttunen's IntSeq-library)
(define A276078 (ZERO-POS 1 1 A276077))
(Python)
from sympy import factorint, primepi
def ok(n):
f = factorint(n)
return all(f[i] <= primepi(i) for i in f)
print([n for n in range(1, 151) if ok(n)]) # Indranil Ghosh, Jun 24 2017
(PARI) isok(n) = my(f=factor(n)); for (k=1, #f~, if (f[k, 2] > primepi(f[k, 1]), return(0))); return (1); \\ Michel Marcus, Jun 24 2017
(PARI) is(n) = {my(t=1); forprime(p = 2, , t++; pp = p^t; if(n%pp==0, return(0)); if(pp > n, return(1)))} \\ David A. Corneth, Jun 24 2017
(PARI) upto(n) = {my(v = vector(n, i, 1), t=1, res=List()); forprime(p=2, , t++; pp = p^t; if(pp>n, break); for(i=1, n\pp, v[pp*i] = 0)); for(i=1, n, if(v[i]==1, listput(res, i))); res} \\ David A. Corneth, Jun 24 2017
CROSSREFS
Positions of zeros in A276077.
Complement: A276079.
Sequence A276076 sorted into ascending order.
Subsequence of A048103 from which it differs for the first time at n=451, where a(451) = 626, while A048103(451) = 625, a value missing from here.
KEYWORD
nonn
AUTHOR
Antti Karttunen, Aug 18 2016
STATUS
approved
Number of integer partitions of n whose multiplicities (where if x < y the multiplicity of x is counted prior to the multiplicity of y) are equal to the distinct parts in decreasing order.
+10
21
1, 1, 0, 0, 2, 0, 1, 0, 1, 1, 2, 0, 3, 0, 2, 0, 4, 1, 2, 1, 4, 1, 3, 1, 5, 3, 5, 1, 6, 2, 6, 1, 7, 2, 7, 2, 11, 4, 8, 3, 11, 5, 10, 4, 13, 5, 11, 5, 16, 8, 14, 5, 19, 8, 18, 6, 22, 8, 22, 7, 26, 10, 25, 8, 33, 12, 29, 11, 36, 13, 34, 12, 40, 16, 41, 14, 47, 17, 45, 16, 55
OFFSET
0,5
COMMENTS
These are a kind of self-describing partitions (cf. A001462, A304679).
The Heinz numbers of these partitions are given by A324571.
The case where the distinct parts are taken in increasing order is counted by A033461, with Heinz numbers given by A109298.
EXAMPLE
The first 19 terms count the following integer partitions:
1: (1)
4: (22)
4: (211)
6: (3111)
8: (41111)
9: (333)
10: (511111)
10: (322111)
12: (6111111)
12: (4221111)
12: (33222)
14: (71111111)
14: (52211111)
16: (811111111)
16: (622111111)
16: (4444)
16: (442222)
17: (43331111)
18: (9111111111)
18: (7221111111)
19: (533311111)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], Union[#]==Length/@Split[#]&]], {n, 0, 30}]
CROSSREFS
Sequences related to self-description: A000002, A001462, A079000, A079254, A276625, A304360.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 08 2019
EXTENSIONS
More terms from Alois P. Heinz, Mar 08 2019
STATUS
approved
Numbers divisible by prime(k)^k for each prime index k.
+10
18
1, 2, 4, 8, 9, 16, 18, 27, 32, 36, 54, 64, 72, 81, 108, 125, 128, 144, 162, 216, 243, 250, 256, 288, 324, 432, 486, 500, 512, 576, 625, 648, 729, 864, 972, 1000, 1024, 1125, 1152, 1250, 1296, 1458, 1728, 1944, 2000, 2048, 2187, 2250, 2304, 2401, 2500, 2592
OFFSET
1,2
COMMENTS
These are a kind of self-describing numbers (cf. A001462, A304679).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The prime signature of a number is the multiset of multiplicities (or exponents) in its prime factorization.
Also Heinz numbers of integer partitions where the multiplicity of k is at least k (A117144). The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
LINKS
FORMULA
Closed under multiplication.
Sum_{n>=1} 1/a(n) = Product_{k>=1} 1 + 1/(prime(k)^(k-1) * (prime(k)-1)) = 2.35782843100111139159... - Amiram Eldar, Nov 23 2020
EXAMPLE
The sequence of terms together with their prime indices begins as follows. For example, 36 = prime(1) * prime(1) * prime(2) * prime(2) is a term because the prime multiplicities are {2,2}, which are greater than or equal to the prime indices {1,2}.
1: {}
2: {1}
4: {1,1}
8: {1,1,1}
9: {2,2}
16: {1,1,1,1}
18: {1,2,2}
27: {2,2,2}
32: {1,1,1,1,1}
36: {1,1,2,2}
54: {1,2,2,2}
64: {1,1,1,1,1,1}
72: {1,1,1,2,2}
81: {2,2,2,2}
108: {1,1,2,2,2}
125: {3,3,3}
128: {1,1,1,1,1,1,1}
MAPLE
q:= n-> andmap(i-> i[2]>=numtheory[pi](i[1]), ifactors(n)[2]):
select(q, [$1..3000])[]; # Alois P. Heinz, Mar 08 2019
MATHEMATICA
Select[Range[1000], And@@Cases[If[#==1, {}, FactorInteger[#]], {p_, k_}:>k>=PrimePi[p]]&]
seq[max_] := Module[{ps = {2}, p, s = {1}, s1, s2, emax}, While[ps[[-1]]^Length[ps] < max, AppendTo[ps, NextPrime[ps[[-1]]]]]; Do[p = ps[[k]]; emax = Floor[Log[p, max]]; s1 = Join[{1}, p^Range[k, emax]]; s2 = Select[Union[Flatten[Outer[Times, s, s1]]], # <= max &]; s = Union[s, s2], {k, 1, Length[ps]}]; s]; seq[3000] (* Amiram Eldar, Nov 23 2020 *)
CROSSREFS
Sequences related to self-description: A000002, A001462, A079000, A079254, A276625, A304360.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 08 2019
STATUS
approved
Numbers whose ordered prime signature is equal to the set of distinct prime indices in decreasing order.
+10
16
1, 2, 9, 12, 40, 112, 125, 352, 360, 675, 832, 1008, 2176, 2401, 3168, 3969, 4864, 7488, 11776, 14000, 19584, 29403, 29696, 43776, 44000, 63488, 75600, 104000, 105984, 123201, 151552, 161051, 214375, 237600, 267264, 272000, 335872, 496125, 561600, 571392, 608000
OFFSET
1,2
COMMENTS
These are a kind of self-describing numbers (cf. A001462, A304679). The increasing case is A109298.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. The ordered prime signature (A124010) is the sequence of multiplicities (or exponents) in a number's prime factorization, taken in order of the prime base.
Also Heinz numbers of the integer partitions counted by A324572. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Each finite set of positive integers determines a unique term with those prime indices. For example, corresponding to {1,2,4,5} is 1397088 = prime(1)^5 * prime(2)^4 * prime(4)^2 * prime(5)^1.
EXAMPLE
The sequence of terms together with their prime indices begins as follows. For example, we have 40: {1,1,1,3} because 40 = prime(1) * prime(1) * prime(1) * prime(3).
1: {}
2: {1}
9: {2,2}
12: {1,1,2}
40: {1,1,1,3}
112: {1,1,1,1,4}
125: {3,3,3}
352: {1,1,1,1,1,5}
360: {1,1,1,2,2,3}
675: {2,2,2,3,3}
832: {1,1,1,1,1,1,6}
1008: {1,1,1,1,2,2,4}
2176: {1,1,1,1,1,1,1,7}
2401: {4,4,4,4}
3168: {1,1,1,1,1,2,2,5}
3969: {2,2,2,2,4,4}
4864: {1,1,1,1,1,1,1,1,8}
7488: {1,1,1,1,1,1,2,2,6}
11776: {1,1,1,1,1,1,1,1,1,9}
14000: {1,1,1,1,3,3,3,4}
19584: {1,1,1,1,1,1,1,2,2,7}
MATHEMATICA
Select[Range[1000], Reverse[PrimePi/@First/@If[#==1, {}, FactorInteger[#]]]==Last/@If[#==1, {}, FactorInteger[#]]&]
CROSSREFS
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 08 2019
STATUS
approved
Numbers where the sum of distinct prime indices (A066328) is equal to the number of prime factors counted with multiplicity (A001222).
+10
13
1, 2, 9, 12, 18, 40, 100, 112, 125, 240, 250, 352, 360, 392, 405, 540, 600, 672, 675, 810, 832, 900, 1008, 1125, 1350, 1372, 1500, 1512, 1701, 1875, 1936, 2112, 2176, 2240, 2250, 2268, 2352, 2401, 3168, 3402, 3528, 3750, 3969, 4752, 4802, 4864, 4992, 5292
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. For example, 540 = prime(1)^2 * prime(2)^3 * prime(3)^1 has sum of distinct prime indices 1 + 2 + 3 = 6, while the number of prime factors counted with multiplicity is 2 + 3 + 1 = 6, so 540 belongs to the sequence.
Also Heinz numbers of the integer partitions counted by A114638. The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
FORMULA
A066328(a(n)) = A001222(a(n)).
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
9: {2,2}
12: {1,1,2}
18: {1,2,2}
40: {1,1,1,3}
100: {1,1,3,3}
112: {1,1,1,1,4}
125: {3,3,3}
240: {1,1,1,1,2,3}
250: {1,3,3,3}
352: {1,1,1,1,1,5}
360: {1,1,1,2,2,3}
392: {1,1,1,4,4}
405: {2,2,2,2,3}
540: {1,1,2,2,2,3}
600: {1,1,1,2,3,3}
672: {1,1,1,1,1,2,4}
MAPLE
with(numtheory):
q:= n-> is(add(pi(p), p=factorset(n))=bigomega(n)):
select(q, [$1..5600])[]; # Alois P. Heinz, Mar 07 2019
MATHEMATICA
Select[Range[1000], Total[PrimePi/@First/@FactorInteger[#]]==PrimeOmega[#]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 07 2019
STATUS
approved
Heinz numbers of integer partitions of n into perfect squares (A001156).
+10
11
1, 2, 4, 7, 8, 14, 16, 23, 28, 32, 46, 49, 53, 56, 64, 92, 97, 98, 106, 112, 128, 151, 161, 184, 194, 196, 212, 224, 227, 256, 302, 311, 322, 343, 368, 371, 388, 392, 419, 424, 448, 454, 512, 529, 541, 604, 622, 644, 661, 679, 686, 736, 742, 776, 784, 827, 838
OFFSET
1,2
COMMENTS
The Heinz number of an integer partition (y_1, ..., y_k) is prime(y_1) * ... * prime(y_k).
Also products of elements of A011757.
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
2: {1}
4: {1,1}
7: {4}
8: {1,1,1}
14: {1,4}
16: {1,1,1,1}
23: {9}
28: {1,1,4}
32: {1,1,1,1,1}
46: {1,9}
49: {4,4}
53: {16}
56: {1,1,1,4}
64: {1,1,1,1,1,1}
92: {1,1,9}
97: {25}
98: {1,4,4}
MATHEMATICA
Select[Range[100], And@@Cases[FactorInteger[#], {p_, _}:>IntegerQ[Sqrt[PrimePi[p]]]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Mar 08 2019
STATUS
approved
Numbers in whose prime factorization the exponent of prime(k) is less than k for all prime indices k.
+10
10
1, 3, 5, 7, 11, 13, 15, 17, 19, 21, 23, 25, 29, 31, 33, 35, 37, 39, 41, 43, 47, 49, 51, 53, 55, 57, 59, 61, 65, 67, 69, 71, 73, 75, 77, 79, 83, 85, 87, 89, 91, 93, 95, 97, 101, 103, 105, 107, 109, 111, 113, 115, 119, 121, 123, 127, 129, 131, 133, 137, 139, 141
OFFSET
1,2
COMMENTS
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The Heinz number of an integer partition (y_1,...,y_k) is prime(y_1)*...*prime(y_k), so these are Heinz numbers of integer partitions where each part k appears fewer than k times. Such partitions are counted by A087153.
The asymptotic density of this sequence is Product_{k>=1} (1 - 1/prime(k)^k) = 0.44070243286030291209... - Amiram Eldar, Feb 02 2021
LINKS
EXAMPLE
The sequence of terms together with their prime indices begins:
1: {}
3: {2}
5: {3}
7: {4}
11: {5}
13: {6}
15: {2,3}
17: {7}
19: {8}
21: {2,4}
23: {9}
25: {3,3}
29: {10}
31: {11}
33: {2,5}
35: {3,4}
37: {12}
39: {2,6}
41: {13}
43: {14}
47: {15}
49: {4,4}
MATHEMATICA
Select[Range[100], And@@Cases[If[#==1, {}, FactorInteger[#]], {p_, k_}:>k<PrimePi[p]]&]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Apr 01 2019
STATUS
approved

Search completed in 0.011 seconds