Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a325705 -id:a325705
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of partitions of n whose mean is a part.
+10
90
1, 2, 2, 3, 2, 5, 2, 6, 5, 8, 2, 21, 2, 14, 22, 30, 2, 61, 2, 86, 67, 45, 2, 283, 66, 80, 197, 340, 2, 766, 2, 663, 543, 234, 703, 2532, 2, 388, 1395, 4029, 2, 4688, 2, 4476, 7032, 1005, 2, 17883, 2434, 9713, 7684, 14472, 2, 25348, 17562, 37829, 16786, 3721
OFFSET
1,2
COMMENTS
a(n) = 2 if and only if n is a prime.
FORMULA
a(n) = A000041(n) - A327472(n). - Gus Wiseman, Sep 14 2019
EXAMPLE
a(6) counts these partitions: 6, 33, 321, 222, 111111.
From Gus Wiseman, Sep 14 2019: (Start)
The a(1) = 1 through a(10) = 8 partitions (A = 10):
1 2 3 4 5 6 7 8 9 A
11 111 22 11111 33 1111111 44 333 55
1111 222 2222 432 22222
321 3221 531 32221
111111 4211 111111111 33211
11111111 42211
52111
1111111111
(End)
MATHEMATICA
Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Mean[p]]], {n, 40}]
PROG
(Python)
from sympy.utilities.iterables import partitions
def A237984(n): return sum(1 for s, p in partitions(n, size=True) if not n%s and n//s in p) # Chai Wah Wu, Sep 21 2023
CROSSREFS
Cf. A238478.
The Heinz numbers of these partitions are A327473.
A similar sequence for subsets is A065795.
Dominated by A067538.
The strict case is A240850.
Partitions without their mean are A327472.
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Feb 27 2014
STATUS
approved
Number of subsets of {1,2,...,n} that contain the average of their elements.
+10
15
1, 2, 4, 6, 10, 16, 26, 42, 72, 124, 218, 390, 706, 1292, 2388, 4436, 8292, 15578, 29376, 55592, 105532, 200858, 383220, 732756, 1403848, 2694404, 5179938, 9973430, 19229826, 37125562, 71762396, 138871260, 269021848, 521666984, 1012520400, 1966957692, 3824240848
OFFSET
1,2
COMMENTS
Also the number of subsets of {1,2,...,n} with sum of entries divisible by the largest element (compare A000016). See the Palmer Melbane link for a bijection. - Joel B. Lewis, Nov 13 2014
LINKS
Palmer Melbane, Art of Problem Solving thread. - Joel B. Lewis, Nov 13 2014
FORMULA
a(n) = (1/2)*Sum_{i=1..n} (f(i) - 1) where f(i) = (1/i) * Sum_{d | i and d is odd} 2^(i/d) * phi(d).
a(n) = (n + A051293(n))/2.
a(n) = 2^n - A327471(n). - Gus Wiseman, Sep 14 2019
EXAMPLE
a(4)=6, since {1}, {2}, {3}, {4}, {1,2,3} and {2,3,4} contain their averages.
From Gus Wiseman, Sep 14 2019: (Start)
The a(1) = 1 through a(6) = 16 subsets:
{1} {1} {1} {1} {1} {1}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{1,2,3} {4} {4} {4}
{1,2,3} {5} {5}
{2,3,4} {1,2,3} {6}
{1,3,5} {1,2,3}
{2,3,4} {1,3,5}
{3,4,5} {2,3,4}
{1,2,3,4,5} {2,4,6}
{3,4,5}
{4,5,6}
{1,2,3,6}
{1,4,5,6}
{1,2,3,4,5}
{2,3,4,5,6}
(End)
MATHEMATICA
Table[ Sum[a = Select[Divisors[i], OddQ[ # ] &]; Apply[ Plus, 2^(i/a) * EulerPhi[a]]/i, {i, n}]/2, {n, 34}]
(* second program *)
Table[Length[Select[Subsets[Range[n]], MemberQ[#, Mean[#]]&]], {n, 0, 10}] (* Gus Wiseman, Sep 14 2019 *)
PROG
(PARI) a(n) = (1/2)*sum(i=1, n, (1/i)*sumdiv(i, d, if (d%2, 2^(i/d)*eulerphi(d)))); \\ Michel Marcus, Dec 20 2020
(Python)
from sympy import totient, divisors
def A065795(n): return sum((sum(totient(d)<<k//d-1 for d in divisors(k>>(~k&k-1).bit_length(), generator=True))<<1)//k for k in range(1, n+1))>>1 # Chai Wah Wu, Feb 22 2023
CROSSREFS
Subsets containing n whose mean is an element are A000016.
The version for integer partitions is A237984.
Subsets not containing their mean are A327471.
KEYWORD
nonn
AUTHOR
John W. Layman, Dec 05 2001
EXTENSIONS
Edited and extended by Robert G. Wilson v, Nov 15 2002
STATUS
approved
Number of compositions of n whose own run-lengths are a subsequence (not necessarily consecutive).
+10
13
1, 1, 0, 0, 1, 2, 3, 2, 2, 8, 17, 26, 43, 77, 129, 210, 351, 569
OFFSET
0,6
EXAMPLE
The a(0) = 1 through a(9) = 8 compositions (empty columns indicated by dots):
() (1) . . (22) (122) (1122) (11221) (21122) (333)
(221) (1221) (12211) (22112) (22113)
(2211) (22122)
(31122)
(121122)
(122112)
(211221)
(221121)
For example, the composition y = (2,2,3,3,1) has run-lengths (2,2,1), which form a (non-consecutive) subsequence, so y is counted under a(11).
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], MemberQ[Subsets[#], Length/@Split[#]]&]], {n, 0, 15}]
CROSSREFS
The version for partitions is A325702.
The recursive version is A353391, ranked by A353431.
The consecutive case is A353392, ranked by A353432.
These compositions are ranked by A353402.
The reverse version is A353403.
The recursive consecutive version is A353430.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A047966 counts uniform partitions, compositions A329738.
A169942 counts Golomb rulers, ranked by A333222.
A325676 counts knapsack compositions, ranked by A333223, partitions A108917.
A325705 counts partitions containing all of their distinct multiplicities.
A329739 counts compositions with all distinct run-lengths, for runs A351013.
A353400 counts compositions with all run-lengths > 2.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, May 15 2022
STATUS
approved
Number of compositions of n that are empty, a singleton, or whose run-lengths are a subsequence that is already counted.
+10
11
1, 1, 1, 1, 2, 1, 3, 1, 1, 4, 5, 7, 9, 11, 15, 22, 38, 45, 87, 93
OFFSET
0,5
EXAMPLE
The a(9) = 4 through a(14) = 15 compositions (A..E = 10..14):
(9) (A) (B) (C) (D) (E)
(333) (2233) (141122) (2244) (161122) (2255)
(121122) (3322) (221123) (4422) (221125) (5522)
(221121) (131122) (221132) (151122) (221134) (171122)
(221131) (221141) (221124) (221143) (221126)
(231122) (221142) (221152) (221135)
(321122) (221151) (221161) (221153)
(241122) (251122) (221162)
(421122) (341122) (221171)
(431122) (261122)
(521122) (351122)
(531122)
(621122)
(122121122)
(221121221)
MATHEMATICA
yosQ[y_]:=Length[y]<=1||MemberQ[Subsets[y], Length/@Split[y]]&&yosQ[Length/@Split[y]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], yosQ]], {n, 0, 15}]
CROSSREFS
The non-recursive version is A353390, ranked by A353402.
The non-recursive consecutive version is A353392, ranked by A353432.
The non-recursive reverse version is A353403.
The unordered version is A353426, ranked by A353393 (nonprime A353389).
The consecutive version is A353430.
These compositions are ranked by A353431.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A329738 counts uniform compositions, partitions A047966.
A114901 counts compositions with no runs of length 1.
A169942 counts Golomb rulers, ranked by A333222.
A325676 counts knapsack compositions, ranked by A333223.
A325705 counts partitions containing all of their distinct multiplicities.
A329739 counts compositions with all distinct run-length.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, May 15 2022
STATUS
approved
Numbers k such that the k-th composition in standard order has its own run-lengths as a subsequence (not necessarily consecutive).
+10
10
0, 1, 10, 21, 26, 43, 53, 58, 107, 117, 174, 186, 292, 314, 346, 348, 349, 373, 430, 442, 570, 585, 586, 629, 676, 693, 696, 697, 698, 699, 804, 826, 858, 860, 861, 885, 954, 1082, 1141, 1173, 1210, 1338, 1353, 1387, 1392, 1393, 1394, 1396, 1397, 1398, 1466
OFFSET
0,3
COMMENTS
First differs from A353432 (the consecutive case) in having 0 and 53.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
EXAMPLE
The initial terms, their binary expansions, and the corresponding standard compositions:
0: 0 ()
1: 1 (1)
10: 1010 (2,2)
21: 10101 (2,2,1)
26: 11010 (1,2,2)
43: 101011 (2,2,1,1)
53: 110101 (1,2,2,1)
58: 111010 (1,1,2,2)
107: 1101011 (1,2,2,1,1)
117: 1110101 (1,1,2,2,1)
174: 10101110 (2,2,1,1,2)
186: 10111010 (2,1,1,2,2)
292: 100100100 (3,3,3)
314: 100111010 (3,1,1,2,2)
346: 101011010 (2,2,1,2,2)
348: 101011100 (2,2,1,1,3)
349: 101011101 (2,2,1,1,2,1)
373: 101110101 (2,1,1,2,2,1)
430: 110101110 (1,2,2,1,1,2)
442: 110111010 (1,2,1,1,2,2)
MATHEMATICA
stc[n_]:=Differences[Prepend[Join@@Position[ Reverse[IntegerDigits[n, 2]], 1], 0]]//Reverse;
rosQ[y_]:=Length[y]==0||MemberQ[Subsets[y], Length/@Split[y]];
Select[Range[0, 100], rosQ[stc[#]]&]
CROSSREFS
The version for partitions is A325755, counted by A325702.
These compositions are counted by A353390.
The recursive version is A353431, counted by A353391.
The consecutive case is A353432, counted by A353392.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A066099 lists compositions in standard order, reverse A228351.
A333769 lists run-lengths of compositions in standard order.
Words with all distinct run-lengths: A032020, A044813, A098859, A130091, A329739, A351017.
Statistics of standard compositions:
- Length is A000120, sum A070939.
- Runs are counted by A124767, distinct A351014.
- Subsequences are counted by A334299, consecutive A124770/A124771.
- Runs-resistance is A333628.
Classes of standard compositions:
- Partitions are A114994, strict A333255, rev A225620, strict rev A333256.
- Runs are A272919.
- Golomb rulers are A333222, counted by A169942.
- Knapsack compositions are A333223, counted by A325676.
- Anti-runs are A333489, counted by A003242.
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 15 2022
STATUS
approved
Number of compositions of n whose own run-lengths are a consecutive subsequence.
+10
9
1, 1, 0, 0, 1, 2, 2, 2, 2, 8, 12, 16, 20, 35, 46, 59, 81, 109, 144, 202, 282
OFFSET
0,6
EXAMPLE
The a(0) = 0 through a(10) = 12 compositions (empty columns indicated by dots, 0 is the empty composition):
0 1 . . 22 122 1122 11221 21122 333 1333
221 2211 12211 22112 22113 2233
22122 3322
31122 3331
121122 22114
122112 41122
211221 122113
221121 131122
221131
311221
1211221
1221121
MATHEMATICA
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], #=={}||MemberQ[Join@@Table[Take[#, {i, j}], {i, Length[#]}, {j, i, Length[#]}], Length/@Split[#]]&]], {n, 0, 15}]
CROSSREFS
The non-consecutive version for partitions is A325702.
The non-consecutive version is A353390, ranked by A353402.
The non-consecutive recursive version is A353391, ranked by A353431.
The non-consecutive reverse version is A353403.
The recursive version is A353430.
These compositions are ranked by A353432.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A169942 counts Golomb rulers, ranked by A333222.
A325676 counts knapsack compositions, ranked by A333223.
A329738 counts uniform compositions, partitions A047966.
A329739 counts compositions with all distinct run-lengths.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, May 15 2022
STATUS
approved
Number of compositions of n whose own reversed run-lengths are a subsequence (not necessarily consecutive).
+10
9
1, 1, 0, 0, 3, 2, 5, 12, 16, 30, 45, 94, 159, 285, 477, 864, 1487, 2643
OFFSET
0,5
EXAMPLE
The a(0) = 1 through a(7) = 12 compositions:
() (1) . . (22) (1121) (1113) (1123)
(112) (1211) (1122) (1132)
(211) (1221) (2311)
(2211) (3211)
(3111) (11131)
(11212)
(11221)
(12112)
(12211)
(13111)
(21121)
(21211)
MATHEMATICA
Table[Length[Select[Join@@Permutations/@ IntegerPartitions[n], MemberQ[Subsets[#], Reverse[Length/@Split[#]]]&]], {n, 0, 15}]
CROSSREFS
The non-reversed version is A353390, ranked by A353402, partitions A325702.
The non-reversed recursive version is A353391, ranked by A353431.
The non-reversed consecutive case is A353392, ranked by A353432.
The non-reversed recursive consecutive version is A353430.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A169942 counts Golomb rulers, ranked by A333222.
A325676 counts knapsack compositions, ranked by A333223, partitions A108917.
A325705 counts partitions containing all of their distinct multiplicities.
A329739 counts compositions with all distinct run-lengths, for runs A351013.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, May 15 2022
STATUS
approved
Numbers k such that the k-th composition in standard order is empty, a singleton, or has its own run-lengths as a subsequence (not necessarily consecutive) that is already counted.
+10
9
0, 1, 2, 4, 8, 10, 16, 32, 43, 58, 64, 128, 256, 292, 349, 442, 512, 586, 676, 697, 826, 1024, 1210, 1338, 1393, 1394, 1396, 1594, 2048, 2186, 2234, 2618, 2696, 2785, 2786, 2792, 3130, 4096, 4282, 4410, 4666, 5178, 5569, 5570, 5572, 5576, 5584, 6202, 8192
OFFSET
1,3
COMMENTS
First differs from A353696 (the consecutive version) in having 22318, corresponding to the binary word 101011100101110 and standard composition (2,2,1,1,3,2,1,1,2), whose run-lengths (2,2,1,1,2,1) are subsequence but not a consecutive subsequence.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
EXAMPLE
The initial terms, their binary expansions, and the corresponding standard compositions:
0: 0 ()
1: 1 (1)
2: 10 (2)
4: 100 (3)
8: 1000 (4)
10: 1010 (2,2)
16: 10000 (5)
32: 100000 (6)
43: 101011 (2,2,1,1)
58: 111010 (1,1,2,2)
64: 1000000 (7)
128: 10000000 (8)
256: 100000000 (9)
292: 100100100 (3,3,3)
349: 101011101 (2,2,1,1,2,1)
442: 110111010 (1,2,1,1,2,2)
512: 1000000000 (10)
586: 1001001010 (3,3,2,2)
676: 1010100100 (2,2,3,3)
697: 1010111001 (2,2,1,1,3,1)
MATHEMATICA
stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n, 2]], 1], 0]]//Reverse;
rorQ[y_]:=Length[y]<=1||MemberQ[Subsets[y], Length/@Split[y]]&& rorQ[Length/@Split[y]];
Select[Range[0, 100], rorQ[stc[#]]&]
CROSSREFS
The non-recursive version for partitions is A325755, counted by A325702.
These compositions are counted by A353391.
The version for partitions A353393, counted by A353426, w/o primes A353389.
The non-recursive version is A353402, counted by A353390.
The non-recursive consecutive case is A353432, counted by A353392.
The consecutive case is A353696, counted by A353430.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A066099 lists compositions in standard order, rev A228351, run-lens A333769.
A329738 counts uniform compositions, partitions A047966.
Statistics of standard compositions:
- Length is A000120, sum A070939.
- Runs are counted by A124767, distinct A351014.
- Subsequences are counted by A334299, contiguous A124770/A124771.
- Runs-resistance is A333628.
Classes of standard compositions:
- Partitions are A114994, multisets A225620, strict A333255, sets A333256.
- Constant compositions are A272919, counted by A000005.
- Golomb rulers are A333222, counted by A169942.
- Knapsack compositions are A333223, counted by A325676.
- Anti-runs are A333489, counted by A003242.
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 16 2022
STATUS
approved
Numbers k such that the k-th composition in standard order has its own run-lengths as a consecutive subsequence.
+10
9
0, 1, 10, 21, 26, 43, 58, 107, 117, 174, 186, 292, 314, 346, 348, 349, 373, 430, 442, 570, 585, 586, 629, 676, 696, 697, 804, 826, 860, 861, 885, 1082, 1141, 1173, 1210, 1338, 1387, 1392, 1393, 1394, 1396, 1594, 1653, 1700, 1720, 1721, 1882, 2106, 2165, 2186
OFFSET
1,3
COMMENTS
First differs from A353402 (the non-consecutive version) in lacking 53.
The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions.
EXAMPLE
The initial terms, their binary expansions, and the corresponding standard compositions:
0: 0 ()
1: 1 (1)
10: 1010 (2,2)
21: 10101 (2,2,1)
26: 11010 (1,2,2)
43: 101011 (2,2,1,1)
58: 111010 (1,1,2,2)
107: 1101011 (1,2,2,1,1)
117: 1110101 (1,1,2,2,1)
174: 10101110 (2,2,1,1,2)
186: 10111010 (2,1,1,2,2)
292: 100100100 (3,3,3)
314: 100111010 (3,1,1,2,2)
346: 101011010 (2,2,1,2,2)
348: 101011100 (2,2,1,1,3)
349: 101011101 (2,2,1,1,2,1)
373: 101110101 (2,1,1,2,2,1)
430: 110101110 (1,2,2,1,1,2)
442: 110111010 (1,2,1,1,2,2)
MATHEMATICA
stc[n_]:=Differences[Prepend[Join@@ Position[Reverse[IntegerDigits[n, 2]], 1], 0]]//Reverse;
rorQ[y_]:=Length[y]==0||MemberQ[Join@@Table[Take[y, {i, j}], {i, Length[y]}, {j, i, Length[y]}], Length/@Split[y]];
Select[Range[0, 10000], rorQ[stc[#]]&]
CROSSREFS
These compositions are counted by A353392.
This is the consecutive case of A353402, counted by A353390.
The non-consecutive recursive version is A353431, counted by A353391.
The recursive version is A353696, counted by A353430.
A005811 counts runs in binary expansion.
A011782 counts compositions.
A066099 lists compositions in standard order, rev A228351, run-lens A333769.
A329738 counts uniform compositions, partitions A047966.
Statistics of standard compositions:
- Length is A000120, sum A070939.
- Runs are counted by A124767, distinct A351014.
- Subsequences are counted by A334299, contiguous A124770/A124771.
- Runs-resistance is A333628.
Classes of standard compositions:
- Partitions are A114994, strict A333255, rev A225620, strict rev A333256.
- Runs are A272919, counted by A000005.
- Golomb rulers are A333222, counted by A169942.
- Anti-runs are A333489, counted by A003242.
KEYWORD
nonn
AUTHOR
Gus Wiseman, May 16 2022
STATUS
approved
Number of integer compositions of n that are empty, a singleton, or whose own run-lengths are a consecutive subsequence that is already counted.
+10
8
1, 1, 1, 1, 2, 1, 3, 1, 1, 4, 5, 7, 9, 11, 15, 16, 22, 25, 37, 37, 45
OFFSET
0,5
EXAMPLE
The a(n) compositions for selected n (A..E = 10..14):
n=4: n=6: n=9: n=10: n=12: n=14:
-----------------------------------------------------------
(4) (6) (9) (A) (C) (E)
(22) (1122) (333) (2233) (2244) (2255)
(2211) (121122) (3322) (4422) (5522)
(221121) (131122) (151122) (171122)
(221131) (221124) (221126)
(221142) (221135)
(221151) (221153)
(241122) (221162)
(421122) (221171)
(261122)
(351122)
(531122)
(621122)
(122121122)
(221121221)
MATHEMATICA
yoyQ[y_]:=Length[y]<=1||MemberQ[Join@@Table[Take[y, {i, j}], {i, Length[y]}, {j, i, Length[y]}], Length/@Split[y]]&&yoyQ[Length/@Split[y]];
Table[Length[Select[Join@@Permutations/@IntegerPartitions[n], yoyQ]], {n, 0, 15}]
CROSSREFS
Non-recursive non-consecutive version: counted by A353390, ranked by A353402, reverse A353403, partitions A325702.
Non-consecutive version: A353391, ranked by A353431, partitions A353426.
Non-recursive version: A353392, ranked by A353432.
A003242 counts anti-run compositions, ranked by A333489.
A011782 counts compositions.
A114901 counts compositions with no runs of length 1.
A169942 counts Golomb rulers, ranked by A333222.
A325676 counts knapsack compositions, ranked by A333223.
A329738 counts uniform compositions, partitions A047966.
A329739 counts compositions with all distinct run-lengths.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, May 16 2022
STATUS
approved

Search completed in 0.009 seconds