Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a331365 -id:a331365
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers whose set of divisors contains a Pythagorean quadruple.
+10
5
42, 72, 84, 126, 144, 156, 168, 198, 210, 216, 252, 288, 294, 312, 330, 336, 342, 360, 378, 396, 420, 432, 462, 468, 504, 546, 570, 576, 588, 594, 624, 630, 648, 660, 672, 684, 714, 720, 756, 780, 792, 798, 840, 864, 882, 900, 924, 930, 936, 966, 990, 1008, 1026
OFFSET
1,1
COMMENTS
A Pythagorean quadruple (x, y, z, m) is a set of positive integers that satisfy x^2 + y^2 + z^2 = m^2.
The corresponding number of quadruples of the sequence is 1, 1, 2, 2, 2, 1, 3, 1, 3, 2, 4, 3, 2, 2, 1, 4, 1, 2, 3, 2, 7, 4, ... (see the sequence A330894).
It is interesting to note that each set of divisors of a(n) contains m primitive Pythagorean quadruples for some n, m = 1, 2,...
Examples:
- The set of divisors of a(1)= 42 contains only one primitive Pythagorean quadruple: (2, 3, 6, 7).
- The set of divisors of a(9) = 210 contains two primitive Pythagorean quadruples: (2, 3, 6, 7) and (2, 5, 14, 15).
- The set of divisors of a(21) = 420 contains three primitive Pythagorean quadruples: (2, 3, 6, 7), (2, 5, 14, 15) and (4, 5, 20, 21).
If k is in the sequence then so is m*k for m > 1.
Assumes the elements (x,y,z,m) in a quadruple are distinct divisors, as otherwise 6 would be in the sequence with 1^2+2^2+2^2=3^2. - Chai Wah Wu, Nov 16 2020
LINKS
Eric Weisstein's World of Mathematics, Pythagorean Quadruples.
FORMULA
a(n) == 0 (mod 6).
EXAMPLE
168 is in the sequence because the set of divisors {1, 2, 3, 4, 6, 7, 8, 12, 14, 21, 24, 28, 42, 56, 84, 168} contains the Pythagorean quadruples {2, 3, 6, 7}, {4, 6, 12, 14} and {8, 12, 24, 28}. The first quadruple is primitive.
MAPLE
with(numtheory):
for n from 3 to 1200 do :
d:=divisors(n):n0:=nops(d):it:=0:
for i from 1 to n0-3 do:
for j from i+1 to n0-2 do :
for k from j+1 to n0-1 do:
for m from k+1 to n0 do:
if d[i]^2 + d[j]^2 + d[k]^2 = d[m]^2
then
it:=it+1:
else
fi:
od:
od:
od:
od:
if it>0 then
printf(`%d, `, n):
else fi:
od:
MATHEMATICA
nq[n_] := If[ Mod[n, 6]>0, 0, Block[{t, u, v, c = 0, d = Divisors[n], m}, m = Length@ d; Do[ t = d[[i]]^2 + d[[j]]^2; Do[u = t + d[[h]]^2; If[u > n^2, Break[]]; If[ Mod[n^2, u] == 0 && IntegerQ[v = Sqrt@ u] && Mod[n, v] == 0, c++], {h, j+1, m - 1}], {i, m-3}, {j, i+1, m - 2}]; c]]; Select[ Range@ 1026, nq[#] > 0 &] (* Giovanni Resta, May 04 2020 *)
PROG
(PARI) isok(n) = {my(d=divisors(n), x); for (i=1, #d-3, for (j=i+1, #d-2, for (k=j+1, #d-1, if (issquare(d[i]^2 + d[j]^2 + d[k]^2, &x) && !(n % x), return(1)); ); ); ); } \\ Michel Marcus, Nov 16 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, May 01 2020
STATUS
approved
Numbers m such that the elements of all Pythagorean quadruples belonging to the set of divisors are exactly their first k divisors for some k.
+10
3
504, 1008, 1512, 1872, 2016, 3024, 3528, 3744, 4032, 4536, 5616, 6048, 6552, 7056, 7488, 8064, 9072, 9576, 10584, 11232, 12096, 13104, 13608, 14112, 14976, 16128, 16848, 17784, 18144, 19152, 19656, 21168, 21672, 22464, 23688, 24192, 24336, 24696, 26208, 27216
OFFSET
1,1
COMMENTS
Members m in A330893 for which there exists a number k < tau(m) such that the elements of all Pythagorean quadruples included in the set of the divisors of m are the first k divisors of m.
Conjecture 1: a(n) == 0 (mod 72).
Conjecture 2: if the numbers m such that the elements of all Pythagorean quadruples contained in the set of divisors of m are exactly the first k divisors of m, then k = tau(m) - 4 or tau(m) - 5.
The corresponding k of the sequence are given by the sequence {b(n)} = {20, 26, 28, 25, 32, 36, 32, 31, 38, 36, 35, 44, 44, 41,...} and the sequence {c(n)} = {tau(a(n)) - b(n)} = {4, 4, 4, 5, 4, 4, 4, 5, 4, 4, 5, 4, 4, 4, 5, 4, 4, 4, 4, 5, 4, 4, 4,...}. We observe that c(n) = 4 or 5 (see the table in the link). For n = 1, 2,...,400, the statistic observed is 301 occurrences for the number 4 (75.25 %) and 99 occurrences for the number 5 (24.75 %). It is probable that Pr(4) tends to .75 and Pr(5) tends to .25 when n tends into infinity, where Pr(x) is the probability of the occurrence x.
Assumes the elements in the quadruple are distinct. Otherwise 6, 12, 18, 24, ... are also terms. For instance the divisors of 6 are 1,2,3,6 and 1^2 + 2^2 + 2^2 = 3^2. - Chai Wah Wu, Nov 16 2020
LINKS
Michel Lagneau, Table
EXAMPLE
504 is in the sequence because the divisors are {1, 2, 3, 4, 6, 7, 8, 9, 12, 14, 18, 21, 24, 28, 36, 42, 56, 63, 72, 84, 126, 168, 252, 504} and the elements of the 8 Pythagorean quadruples belonging to the set of divisors of 504: (1, 4, 8, 9), (2, 3, 6, 7), (4, 6, 12, 14), (6, 9, 18, 21), (7, 28, 56, 63), (8, 12, 24, 28), (12, 18, 36, 42) and (24, 36, 72, 84) are the first 20 divisors of 504 with 20 = tau(504) - 4 = 24 - 4.
MAPLE
with(numtheory):
for n from 6 by 6 to 20000 do :lst:={}:lst1:={}:
d:=divisors(n):n0:=nops(d):
for i from 1 to n0-3 do:
for j from i+1 to n0-2 do :
for k from j+1 to n0-1 do:
for m from k+1 to n0 do:
if d[i]^2 + d[j]^2 + d[k]^2 = d[m]^2
then
lst:=lst union {d[i]} union {d[j]} union {d[k]} union {d[m]}:
else
fi:
od:
od:
od:
od:
n1:=nops(lst):
for l from 1 to n1 do:
lst1:= lst1 union {d[l]}:
od:
if lst=lst1 and lst<>{}
then
printf(`%d, `, n):
else fi:
od:
CROSSREFS
KEYWORD
nonn
AUTHOR
Michel Lagneau, Jun 16 2020
STATUS
approved
Least k whose set of divisors contains exactly n quadruples (x, y, z, w) such that x^3 + y^3 + z^3 = w^3, or 0 if no such k exists.
+10
1
60, 120, 240, 432, 960, 360, 3840, 1728, 2592, 720, 1800, 2520, 161700, 1440, 6840, 9000, 2160, 2880, 168300, 5040, 41472, 5760, 1520820, 4320, 7200, 11520, 119700, 10080, 682080, 10800, 8640, 14400, 27360, 12960, 373248, 20160, 61560, 17280, 28800, 55440, 171000, 21600
OFFSET
1,1
COMMENTS
Observation: a(n) == 0 (mod 12).
Listing primitive tuples (w, x, y, z) enables to compute for some m how many such tuples are in its divisors using the lcm of such tuples. - David A. Corneth, Sep 26 2020
REFERENCES
Y. Perelman, Solutions to x^3 + y^3 + z^3 = u^3, Mathematics can be Fun, pp. 316-9 Mir Moscow 1985.
LINKS
Fred Richman, Sums of Three Cubes
EXAMPLE
a(3) = 240 because the set of the divisors {1, 2, 3, 4, 5, 6, 8, 10, 12, 15, 16, 20, 24, 30, 40, 48, 60, 80, 120, 240} contains 3 quadruples {3, 4, 5, 6}, {6, 8, 10, 12} and {12, 16, 20, 24}. The first quadruple is primitive.
MAPLE
with(numtheory):divisors(240);
for n from 1 to 52 do :
ii:=0:
for q from 6 by 6 to 10^8 while(ii=0) do:
d:=divisors(q):n0:=nops(d):it:=0:
for i from 1 to n0-3 do:
for j from i+1 to n0-2 do :
for k from j+1 to n0-1 do:
for m from k+1 to n0 do:
if d[i]^3 + d[j]^3 + d[k]^3 = d[m]^3
then
it:=it+1:
else
fi:
od:
od:
od:
od:
if it = n
then
ii:=1: printf (`%d %d \n`, n, q):
else
fi:
od:
od:
MATHEMATICA
With[{s = Array[Count[Subsets[Divisors[#], {4}]^3, _?(#1 + #2 + #3 == #4 & @@ # &)] &, 10^4]}, Rest@ Values[#][[1 ;; 1 + LengthWhile[Differences@ Keys@ #, # == 1 &] ]] &@ KeySort@ PositionIndex[s][[All, 1]]] (* Michael De Vlieger, Sep 18 2020 *)
PROG
(Python)
from itertools import combinations
from sympy import divisors
def A337098(n):
k = 1
while True:
if n == sum(1 for x in combinations((d**3 for d in divisors(k)), 4) if sum(x[:-1]) == x[-1]):
return k
k += 1 # Chai Wah Wu, Sep 25 2020
KEYWORD
nonn,hard
AUTHOR
Michel Lagneau, Aug 15 2020
EXTENSIONS
a(13)-a(22) from Chai Wah Wu, Sep 25 2020
More terms from David A. Corneth, Sep 26 2020
STATUS
approved
Number of Pythagorean quadruples with inradius n.
+10
1
1, 3, 6, 10, 9, 19, 16, 25, 29, 27, 27, 56, 31, 51, 49, 61, 42, 91, 52, 71, 89, 86, 63, 142, 64, 95, 116, 132, 83, 153, 90, 144, 149, 133, 108, 238, 108, 162, 169, 171, 122, 284, 130, 219, 200, 196, 145, 340, 174, 201, 231, 239, 164, 364, 176, 314, 278, 256, 190, 399, 195, 281, 360, 330
OFFSET
1,2
COMMENTS
A Pythagorean quadruple is a quadruple (a,b,c,d) of positive integers such that a^2 + b^2 + c^2 = d^2 with a <= b <= c. Its inradius is (a+b+c-d)/2, which is a positive integer.
For every positive integer n, there is at least one Pythagorean quadruple with inradius n.
REFERENCES
J. M. Blanco Casado, J. M. Sánchez Muñoz, and M. A. Pérez García-Ortega, El Libro de las Ternas Pitagóricas, Preprint 2023.
LINKS
Miguel-Ángel Pérez García-Ortega, Pythagorean Quadruples (in Spanish).
EXAMPLE
For n=1 the a(1)=1 solution is (1,2,2,3).
For n=2 the a(2)=3 solutions are (1,4,8,9), (2,3,6,7) and (2,4,4,6).
For n=3 the a(3)=6 solutions are (1,6,18,19), (2,5,14,15), (2,6,9,11), (3,4,12,13), (3,6,6,9) and (4,4,7,9).
MATHEMATICA
n=50;
div={}; suc={}; A={};
Do[A=Join[A, {Range[1, (1+1/Sqrt[3])q]}], {q, 1, n}];
Do[suc=Join[suc, {Length[div]}]; div={}; For [i=1, i<=Length[Extract[A, q]], i++, div=Join[div, Intersection[Divisors[q^2+(Extract[Extract[A, q], i]-q)^2], Range[2(Extract[Extract[A, q], i]-q), Sqrt[q^2+(Extract[Extract[A, q], i]-q)^2]]]]], {q, 1, n}]; suc=Rest[Join[suc, {Length[div]}]]; matriz={{"q", " ", "cuaternas"}}; For[j=1, j<=n, j++, matriz=Join[matriz, {{j, " ", Extract[suc, j]}}]]; MatrixForm[Transpose[matriz]]
KEYWORD
nonn
STATUS
approved

Search completed in 0.006 seconds