Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a367910 -id:a367910
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of ways to choose a sequence of different binary indices, one of each binary index of n.
+10
61
1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 2, 1, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 2, 1, 1, 3, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 1, 1, 0, 2, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 2, 2, 1, 4, 1, 1, 0, 2, 1, 1, 0, 2, 0, 0, 0, 4, 1, 2, 0, 3, 0, 0, 0
OFFSET
0,5
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
LINKS
Wikipedia, Axiom of choice.
EXAMPLE
352 has binary indices of binary indices {{2,3},{1,2,3},{1,4}}, and there are six possible choices (2,1,4), (2,3,1), (2,3,4), (3,1,4), (3,2,1), (3,2,4), so a(352) = 6.
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Table[Length[Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]], {n, 0, 100}]
PROG
(Python)
from itertools import count, islice, product
def bin_i(n): #binary indices
return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
def a_gen(): #generator of terms
for n in count(0):
c = 0
for j in list(product(*[bin_i(k) for k in bin_i(n)])):
if len(set(j)) == len(j):
c += 1
yield c
A367905_list = list(islice(a_gen(), 90)) # John Tyler Rascoe, May 22 2024
CROSSREFS
A version for multisets is A367771, see A355529, A355740, A355744, A355745.
Positions of positive terms are A367906.
Positions of zeros are A367907.
Positions of ones are A367908.
Positions of terms > 1 are A367909.
Positions of first appearances are A367910, sorted A367911.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers), A326783 (uniform), A326784 (regular), A326788 (simple), A330217 (achiral).
KEYWORD
nonn,base
AUTHOR
Gus Wiseman, Dec 10 2023
STATUS
approved
Numbers n such that it is not possible to choose a different binary index of each binary index of n.
+10
60
7, 15, 23, 25, 27, 29, 30, 31, 39, 42, 43, 45, 46, 47, 51, 53, 54, 55, 57, 58, 59, 60, 61, 62, 63, 71, 75, 77, 78, 79, 83, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95, 99, 101, 102, 103, 105, 106, 107, 108, 109, 110, 111, 113, 114, 115, 116, 117, 118, 119, 120, 121
OFFSET
1,1
COMMENTS
Also BII-numbers of set-systems (sets of nonempty sets) contradicting a strict version of the axiom of choice.
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. A set-system is a finite set of finite nonempty sets. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary digits (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
LINKS
Wikipedia, Axiom of choice.
FORMULA
EXAMPLE
The set-system {{1},{2},{1,2},{1,3}} with BII-number 23 has choices (1,2,1,1), (1,2,1,3), (1,2,2,1), (1,2,2,3), but none of these has all different elements, so 23 is in the sequence.
The terms together with the corresponding set-systems begin:
7: {{1},{2},{1,2}}
15: {{1},{2},{1,2},{3}}
23: {{1},{2},{1,2},{1,3}}
25: {{1},{3},{1,3}}
27: {{1},{2},{3},{1,3}}
29: {{1},{1,2},{3},{1,3}}
30: {{2},{1,2},{3},{1,3}}
31: {{1},{2},{1,2},{3},{1,3}}
39: {{1},{2},{1,2},{2,3}}
42: {{2},{3},{2,3}}
43: {{1},{2},{3},{2,3}}
45: {{1},{1,2},{3},{2,3}}
46: {{2},{1,2},{3},{2,3}}
47: {{1},{2},{1,2},{3},{2,3}}
51: {{1},{2},{1,3},{2,3}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Select[Range[100], Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]=={}&]
PROG
(Python)
from itertools import count, islice, product
def bin_i(n): #binary indices
return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
def a_gen(): #generator of terms
for n in count(1):
p = list(product(*[bin_i(k) for k in bin_i(n)]))
x = len(p)
for j in range(x):
if len(set(p[j])) == len(p[j]): break
if j+1 == x: yield(n)
A367907_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Feb 10 2024
CROSSREFS
These set-systems are counted by A367903, non-isomorphic A368094.
Positions of zeros in A367905, firsts A367910, sorted A367911.
The complement is A367906.
If there is one unique choice we get A367908, counted by A367904.
If there are multiple choices we get A367909, counted by A367772.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers), A326783 (uniform), A326784 (regular), A326788 (simple), A330217 (achiral).
KEYWORD
nonn,base
AUTHOR
Gus Wiseman, Dec 11 2023
STATUS
approved
Numbers k such that it is possible to choose a different binary index of each binary index of k.
+10
53
1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 24, 26, 28, 32, 33, 34, 35, 36, 37, 38, 40, 41, 44, 48, 49, 50, 52, 56, 64, 65, 66, 67, 68, 69, 70, 72, 73, 74, 76, 80, 81, 82, 84, 88, 96, 97, 98, 100, 104, 112, 128, 129, 130, 131, 132
OFFSET
1,2
COMMENTS
Also BII-numbers of set-systems (sets of nonempty sets) satisfying a strict version of the axiom of choice.
A binary index of k (row k of A048793) is any position of a 1 in its reversed binary expansion. A set-system is a finite set of finite nonempty sets. We define the set-system with BII-number k to be obtained by taking the binary indices of each binary index of k. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary digits (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
LINKS
Wikipedia, Axiom of choice.
EXAMPLE
The set-system {{2,3},{1,2,3},{1,4}} with BII-number 352 has choices such as (2,1,4) that satisfy the axiom, so 352 is in the sequence.
The terms together with the corresponding set-systems begin:
1: {{1}}
2: {{2}}
3: {{1},{2}}
4: {{1,2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
12: {{1,2},{3}}
13: {{1},{1,2},{3}}
14: {{2},{1,2},{3}}
16: {{1,3}}
17: {{1},{1,3}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Select[Range[100], Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]!={}&]
PROG
(Python)
from itertools import count, islice, product
def bin_i(n): #binary indices
return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
def a_gen(): #generator of terms
for n in count(1):
for j in list(product(*[bin_i(k) for k in bin_i(n)])):
if len(set(j)) == len(j):
yield(n); break
A367906_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Dec 23 2023
CROSSREFS
These set-systems are counted by A367902, non-isomorphic A368095.
Positions of positive terms in A367905, firsts A367910, sorted A367911.
The complement is A367907.
If there is one unique choice we get A367908, counted by A367904.
If there are multiple choices we get A367909, counted by A367772.
Unlabeled multiset partitions of this type are A368098, complement A368097.
A version for MM-numbers of multisets is A368100, complement A355529.
A048793 lists binary indices, A000120 length, A272020 reverse, A029931 sum.
A058891 counts set-systems, A003465 covering, A323818 connected.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers), A326783 (uniform), A326784 (regular), A326788 (simple), A330217 (achiral).
KEYWORD
base,nonn
AUTHOR
Gus Wiseman, Dec 11 2023
STATUS
approved
Numbers n such that there is only one way to choose a different binary index of each binary index of n.
+10
29
1, 2, 3, 5, 6, 8, 9, 10, 11, 13, 14, 17, 19, 21, 22, 24, 26, 28, 34, 35, 37, 38, 40, 41, 44, 49, 50, 56, 67, 69, 70, 73, 74, 81, 88, 98, 104, 128, 129, 130, 131, 133, 134, 136, 137, 138, 139, 141, 142, 145, 147, 149, 150, 152, 154, 156, 162, 163, 165, 166, 168
OFFSET
1,2
COMMENTS
Also BII-numbers of set-systems (sets of nonempty sets) satisfying a strict version of the axiom of choice in exactly one way.
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. A set-system is a finite set of finite nonempty sets. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary digits (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
LINKS
Wikipedia, Axiom of choice.
FORMULA
EXAMPLE
The set-system {{1},{1,2},{1,3}} with BII-number 21 satisfies the axiom in exactly one way, namely (1,2,3), so 21 is in the sequence.
The terms together with the corresponding set-systems begin:
1: {{1}}
2: {{2}}
3: {{1},{2}}
5: {{1},{1,2}}
6: {{2},{1,2}}
8: {{3}}
9: {{1},{3}}
10: {{2},{3}}
11: {{1},{2},{3}}
13: {{1},{1,2},{3}}
14: {{2},{1,2},{3}}
17: {{1},{1,3}}
19: {{1},{2},{1,3}}
21: {{1},{1,2},{1,3}}
22: {{2},{1,2},{1,3}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Select[Range[100], Length[Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]]==1&]
PROG
(Python)
from itertools import count, islice, product
def bin_i(n): #binary indices
return([(i+1) for i, x in enumerate(bin(n)[2:][::-1]) if x =='1'])
def a_gen(): #generator of terms
for n in count(1):
p = list(product(*[bin_i(k) for k in bin_i(n)]))
x, c = len(p), 0
for j in range(x):
if len(set(p[j])) == len(p[j]): c += 1
if j+1 == x and c == 1: yield(n)
A367908_list = list(islice(a_gen(), 100)) # John Tyler Rascoe, Feb 10 2024
CROSSREFS
These set-systems are counted by A367904.
Positions of 1's in A367905, firsts A367910, sorted firsts A367911.
If there is at least one choice we get A367906, counted by A367902.
If there are no choices we get A367907, counted by A367903.
If there are multiple choices we get A367909, counted by A367772.
The version for MM-numbers of multiset partitions is A368101.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A059201 counts covering T_0 set-systems.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
A368098 counts unlabeled multiset partitions for axiom, complement A368097.
BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers), A326783 (uniform), A326784 (regular), A326788 (simple), A330217 (achiral).
KEYWORD
nonn,base
AUTHOR
Gus Wiseman, Dec 11 2023
STATUS
approved
Number of multisets that can be obtained by choosing a binary index of each binary index of n.
+10
22
1, 1, 1, 1, 2, 2, 2, 2, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 2, 2, 2, 2, 4, 4, 4, 4, 4, 4, 4, 4, 7, 7, 7, 7, 4, 4, 4, 4, 7, 7, 7, 7, 3, 3, 3, 3, 5, 5, 5, 5, 3, 3, 3, 3, 5, 5, 5, 5, 5, 5, 5, 5, 8, 8, 8, 8
OFFSET
0,5
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
The run-lengths are all 4 or 8.
EXAMPLE
The binary indices of binary indices of 52 are {{1,2},{1,3},{2,3}}, with multiset choices {1,1,2}, {1,1,3}, {1,2,2}, {1,2,3}, {1,3,3}, {2,2,3}, {2,3,3}, so a(52) = 7.
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Table[Length[Union[Sort/@Tuples[bpe/@bpe[n]]]], {n, 0, 100}]
CROSSREFS
Positions of ones are A253317.
The version for multisets and divisors is A355733, for sequences A355731.
The version for multisets is A355744, for sequences A355741.
For a sequence of distinct choices we have A367905, firsts A367910.
Positions of first appearances are A367913, sorted A367915.
Choosing a sequence instead of multiset gives A368109, firsts A368111.
Choosing a set instead of multiset gives A368183, firsts A368184.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 12 2023
STATUS
approved
Numbers n such that there is more than one way to choose a different binary index of each binary index of n.
+10
13
4, 12, 16, 18, 20, 32, 33, 36, 48, 52, 64, 65, 66, 68, 72, 76, 80, 82, 84, 96, 97, 100, 112, 132, 140, 144, 146, 148, 160, 161, 164, 176, 180, 192, 193, 194, 196, 200, 204, 208, 210, 212, 224, 225, 228, 240, 256, 258, 260, 264, 266, 268, 272, 274, 276, 288
OFFSET
1,1
COMMENTS
Also BII-numbers of set-systems (sets of nonempty sets) satisfying a strict version of the axiom of choice in more than one way.
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. A set-system is a finite set of finite nonempty sets. We define the set-system with BII-number n to be obtained by taking the binary indices of each binary index of n. Every finite set of finite nonempty sets has a different BII-number. For example, 18 has reversed binary digits (0,1,0,0,1), and since the binary indices of 2 and 5 are {2} and {1,3} respectively, the BII-number of {{2},{1,3}} is 18.
The axiom of choice says that, given any set of nonempty sets Y, it is possible to choose a set containing an element from each. The strict version requires this set to have the same cardinality as Y, meaning no element is chosen more than once.
FORMULA
EXAMPLE
The set-system {{1},{1,2},{1,3}} with BII-number 21 satisfies the axiom in only one way (1,2,3), so 21 is not in the sequence.
The terms together with the corresponding set-systems begin:
4: {{1,2}}
12: {{1,2},{3}}
16: {{1,3}}
18: {{2},{1,3}}
20: {{1,2},{1,3}}
32: {{2,3}}
33: {{1},{2,3}}
36: {{1,2},{2,3}}
48: {{1,3},{2,3}}
52: {{1,2},{1,3},{2,3}}
64: {{1,2,3}}
65: {{1},{1,2,3}}
66: {{2},{1,2,3}}
68: {{1,2},{1,2,3}}
72: {{3},{1,2,3}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Select[Range[100], Length[Select[Tuples[bpe/@bpe[#]], UnsameQ@@#&]]>1&]
CROSSREFS
These set-systems are counted by A367772.
Positions of terms > 1 in A367905, firsts A367910, sorted firsts A367911.
If there is at least one choice we get A367906, counted by A367902.
If there are no choices we get A367907, counted by A367903.
If there is one unique choice we get A367908, counted by A367904.
A048793 lists binary indices, length A000120, reverse A272020, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
A326031 gives weight of the set-system with BII-number n.
A368098 counts unlabeled multiset partitions per axiom, complement A368097.
BII-numbers: A309314 (hyperforests), A326701 (set partitions), A326703 (chains), A326704 (antichains), A326749 (connected), A326750 (clutters), A326751 (blobs), A326752 (hypertrees), A326754 (covers), A326783 (uniform), A326784 (regular), A326788 (simple), A330217 (achiral).
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 11 2023
STATUS
approved
Sorted positions of first appearances in A367905.
+10
13
1, 4, 7, 20, 68, 320, 352, 1088, 3136, 5184, 13376, 16704, 17472, 70720, 82240, 83008, 90112, 90176
OFFSET
1,2
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The terms together with the corresponding set-systems begin:
1: {{1}}
4: {{1,2}}
7: {{1},{2},{1,2}}
20: {{1,2},{1,3}}
68: {{1,2},{1,2,3}}
320: {{1,2,3},{1,4}}
352: {{2,3},{1,2,3},{1,4}}
1088: {{1,2,3},{1,2,4}}
3136: {{1,2,3},{1,2,4},{3,4}}
5184: {{1,2,3},{1,2,4},{1,3,4}}
13376: {{1,2,3},{1,2,4},{1,3,4},{2,3,4}}
16704: {{1,2,3},{1,4},{1,2,3,4}}
17472: {{1,2,3},{1,2,4},{1,2,3,4}}
70720: {{1,2,3},{1,2,4},{1,3,4},{1,5}}
82240: {{1,2,3},{1,4},{1,2,3,4},{1,5}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
c=Table[Length[Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]], {n, 1000}];
Select[Range[Length[c]], FreeQ[Take[c, #-1], c[[#]]]&]
CROSSREFS
Sorted positions of first appearances in A367905.
The unsorted version is A367910.
Multisets without distinctness are A367915, unsorted A367913.
Without distinctness we have A368112, unsorted A368111.
For sets instead of sequences we have A368185, unsorted A368184.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
KEYWORD
nonn,more
AUTHOR
Gus Wiseman, Dec 16 2023
STATUS
approved
Least number k such that there are exactly n ways to choose a multiset consisting of a binary index of each binary index of k.
+10
10
1, 4, 64, 20, 68, 320, 52, 84, 16448, 324, 832, 116, 1104, 308, 816, 340, 836, 848, 1108, 1136, 1360, 3152, 16708, 372, 5188, 5216, 852, 880, 2884, 1364, 13376, 1392, 3184, 3424, 17220, 5204, 5220, 2868, 5728, 884, 19536, 66896, 2900, 1396, 21572, 3188, 3412
OFFSET
1,2
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The terms together with the corresponding set-systems begin:
1: {{1}}
4: {{1,2}}
64: {{1,2,3}}
20: {{1,2},{1,3}}
68: {{1,2},{1,2,3}}
320: {{1,2,3},{1,4}}
52: {{1,2},{1,3},{2,3}}
84: {{1,2},{1,3},{1,2,3}}
16448: {{1,2,3},{1,2,3,4}}
324: {{1,2},{1,2,3},{1,4}}
832: {{1,2,3},{1,4},{2,4}}
116: {{1,2},{1,3},{2,3},{1,2,3}}
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
spnm[y_]:=Max@@NestWhile[Most, y, Union[#]!=Range[0, Max@@#]&];
c=Table[Length[Union[Sort/@Tuples[bpe/@bpe[n]]]], {n, 1000}];
Table[Position[c, n][[1, 1]], {n, spnm[c]}]
CROSSREFS
A version for multisets and divisors is A355734.
With distinctness we have A367910, firsts of A367905, sorted A367911.
Positions of first appearances in A367912.
The sorted version is A367915.
For sequences we have A368111, firsts of A368109, sorted A368112.
For sets we have A368184, firsts of A368183, sorted A368185.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 16 2023
STATUS
approved
Least k such that there are exactly A003586(n) ways to choose a binary index of each binary index of k.
+10
9
1, 4, 64, 20, 68, 52, 1088, 84, 308, 1092, 116, 5184, 820, 1108, 372, 5188, 2868, 1140, 13376, 884, 5204, 17204, 1396, 13380, 2932, 5236, 275520, 19252, 1908, 13396, 17268, 5492, 275524, 84788, 3956, 13428, 1324096, 19316, 6004, 275540, 215860, 18292, 13684
OFFSET
1,2
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The terms together with the corresponding set-systems begin:
1: {{1}}
4: {{1,2}}
64: {{1,2,3}}
20: {{1,2},{1,3}}
68: {{1,2},{1,2,3}}
52: {{1,2},{1,3},{2,3}}
84: {{1,2},{1,3},{1,2,3}}
308: {{1,2},{1,3},{2,3},{1,4}}
116: {{1,2},{1,3},{2,3},{1,2,3}}
820: {{1,2},{1,3},{2,3},{1,4},{2,4}}
372: {{1,2},{1,3},{2,3},{1,2,3},{1,4}}
884: {{1,2},{1,3},{2,3},{1,2,3},{1,4},{2,4}}
MATHEMATICA
nn=10000;
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
dd=Select[Range[nn], Max@@First/@FactorInteger[#]<=3&];
qq=Table[Length[Tuples[bpe/@bpe[n]]], {n, nn}];
kk=Select[Range[Length[dd]], SubsetQ[qq, Take[dd, #]]&]
Table[Position[qq, dd[[n]]][[1, 1]], {n, kk}]
CROSSREFS
With distinctness we have A367910, sorted A367911, firsts of A367905.
For multisets we have A367913, sorted A367915, firsts of A367912.
Positions of first appearances in A368109.
The sorted version is A368112.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 17 2023
STATUS
approved
Number of sets that can be obtained by choosing a different binary index of each binary index of n.
+10
8
1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 0, 2, 1, 2, 1, 3, 1, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 2, 2, 1, 1, 3, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 3, 1, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 3, 2, 2, 1, 3, 1, 1, 0, 2, 1, 1, 0, 1, 0, 0, 0, 3, 1, 1, 0, 1, 0, 0
OFFSET
0,5
COMMENTS
A binary index of n (row n of A048793) is any position of a 1 in its reversed binary expansion. For example, 18 has reversed binary expansion (0,1,0,0,1) and binary indices {2,5}.
EXAMPLE
The binary indices of binary indices of 52 are {{1,2},{1,3},{2,3}}, with choices (1,3,2), (2,1,3), both permutations of {1,2,3}, so a(52) = 1.
MATHEMATICA
bpe[n_]:=Join@@Position[Reverse[IntegerDigits[n, 2]], 1];
Table[Length[Union[Sort/@Select[Tuples[bpe/@bpe[n]], UnsameQ@@#&]]], {n, 0, 100}]
CROSSREFS
For sequences we have A367905, firsts A367910, sorted A367911.
Positions of zeros are A367907.
Without distinctness we have A367912, firsts A367913, sorted A367915.
Positions of positive terms are A367906.
For sequences without distinctness: A368109, firsts A368111, sorted A368112.
Positions of first appearances are A368184, sorted A368185.
A048793 lists binary indices, length A000120, sum A029931.
A058891 counts set-systems, covering A003465, connected A323818.
A070939 gives length of binary expansion.
A096111 gives product of binary indices.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Dec 17 2023
STATUS
approved

Search completed in 0.012 seconds