Location via proxy:   [ UP ]  
[Report a bug]   [Manage cookies]                
Search: a369375 -id:a369375
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers m such that 2^(m+1) - 2^k - 1 is composite for all 0 <= k < m.
+10
6
6, 14, 22, 26, 30, 36, 38, 42, 54, 57, 62, 70, 78, 81, 90, 94, 110, 122, 126, 132, 134, 138, 142, 147, 150, 158, 166, 168, 171, 172, 174, 178, 182, 190, 194, 198, 206, 210, 222, 238, 254, 285, 294, 312, 315, 318, 334, 336, 350, 366, 372, 382, 405, 414, 416, 432
OFFSET
1,1
COMMENTS
The binary representation of 2^(m+1) - 2^k - 1 has m 1-bits and one 0-bit. Note that prime m are very rare: 577 is the first and 5569 is the second.
A208083(a(n)+1) = 0 (cf. A081118). - Reinhard Zumkeller, Feb 23 2012 [Corrected by Thomas Ordowski, Feb 19 2024]
Conjecture: 2^j - 2 are terms for j > 2. - Chai Wah Wu, Sep 07 2021
The proof of this conjecture is in A369375. - Thomas Ordowski, Mar 20 2024
LINKS
Chai Wah Wu, Table of n, a(n) for n = 1..996 (terms 1..275 from T. D. Noe)
FORMULA
For these m, A095058(m) = 0 and A110700(m) > 1.
For n > 0, a(n) = A369375(n+1) - 1. - Thomas Ordowski, Mar 20 2024
EXAMPLE
6 is here because 95, 111, 119, 123, 125 and 126 are all composite.
MATHEMATICA
t={}; Do[num=2^(n+1)-1; k=0; While[k<n && !PrimeQ[num-2^k], k++ ]; If[k==n, AppendTo[t, n]], {n, 100}]; t
Select[Range[500], AllTrue[2^(#+1)-1-2^Range[0, #-1], CompositeQ]&] (* Harvey P. Dale, Apr 09 2022 *)
PROG
(Haskell)
import Data.List (elemIndices)
a138290 n = a138290_list !! (n-1)
a138290_list = map (+ 1) $ tail $ elemIndices 0 a208083_list
-- Reinhard Zumkeller, Feb 23 2012
(Python)
from sympy import isprime
A138290_list = []
for n in range(1, 10**3):
k2, n2 = 1, 2**(n+1)
for k in range(n):
if isprime(n2-k2-1):
break
k2 *= 2
else:
A138290_list.append(n) # Chai Wah Wu, Sep 07 2021
(PARI) isok(m) = my(nb=0); for (k=0, m-1, if (!ispseudoprime(2^(m+1) - 2^k - 1), nb++, break)); nb==m; \\ Michel Marcus, Sep 13 2021
CROSSREFS
Many common terms with A092112.
KEYWORD
nonn
AUTHOR
T. D. Noe, Mar 13 2008
STATUS
approved
a(n) is the smallest k such that 2^(2^n+1)-1 + 2^k is prime, or -1 if no such k exists.
+10
1
1, 2, 4, 16, 1968, 64, 64
OFFSET
0,2
COMMENTS
Conjecture: if n > 0, then 2^(2^n+1)-1 + 2^k is not prime for every k < 2^n.
This conjecture seems provable, because it is not too strong for large n > 6.
If, for n > 6, a(n) does not exist, then 2^(2^n+1)-1 + 2^k is composite for every natural k. Thus, by the dual Sierpinski conjecture, for n > 6, 2^(2^n+1)-1 is a Sierpinski number, i.e., if n > 6, then (2^(2^n+1)-1)2^k+1 is composite for every natural k. For example, the Mersenne number 2^(2^8+1)-1 may be a dual Sierpinski number.
Similarly, if for n > 5, |2^(2^n-1)-1 - 2^m| is not prime for every m > 0, then by the dual Riesel conjecture, 2^(2^n-1)-1 is a Riesel number, i.e., if n > 5, then (2^(2^n-1)-1)2^m-1 is composite for every integer m > 0. For example, the double Mersenne prime 2^(2^7-1)-1 may be a dual Riesel number. By Crocker's theorem; if n > 2, then positive 2^(2^n-1)-1 - 2^m are composite. Let b(n) be the smallest k such that 2^k - (2^(2^n-1)-1) is prime, for n >= 0: {1, 2, 39, 47, 447, 191, ?}.
a(7) > 65000, a(8) thru a(12) > 25000, if they exist. - Robert G. Wilson v, Jan 22 2024
EXAMPLE
a(1) = 2 since for 2^(2^1+1)-1 = 7 we have 7 + 2^1 = 9 and 7 + 2^2 = 11 is prime.
MATHEMATICA
a[n_] := Module[{m = 2^(2^n + 1) - 1, k = 1}, While[! PrimeQ[m + 2^k], k++]; k]; Array[a, 7, 0] (* Amiram Eldar, Jan 22 2024 *)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Thomas Ordowski, Jan 22 2024
STATUS
approved

Search completed in 0.005 seconds