# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a005386 Showing 1-1 of 1 %I A005386 M3017 #61 Nov 17 2022 07:20:52 %S A005386 1,3,16,75,361,1728,8281,39675,190096,910803,4363921,20908800, %T A005386 100180081,479991603,2299777936,11018898075,52794712441,252954664128, %U A005386 1211978608201,5806938376875,27822713276176,133306628004003,638710426743841,3060245505715200 %N A005386 Area of n-th triple of squares around a triangle. %C A005386 a(n)*(-1)^(n+1) is the r=-3 member of the r-family of sequences S_r(n), n>=1, defined in A092184 where more information can be found. %C A005386 The sequence is the case P1 = 3, P2 = -10, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy. - _Peter Bala_, Apr 03 2014 %D A005386 N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). %H A005386 G. C. Greubel, Table of n, a(n) for n = 1..1000 %H A005386 J. Meeus, Letter to N. J. A. Sloane with attachment, Mar 1975 %H A005386 J. C. G. Nottrot, Vierkantenkransen rond een driehoek, Pythagoras (Netherlands), 14 (1975-1976) 77-81. %H A005386 Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009. %H A005386 Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992 %H A005386 H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277. %H A005386 H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume. %H A005386 Index entries for sequences related to Chebyshev polynomials. %H A005386 Index entries for linear recurrences with constant coefficients, signature (4,4,-1). %F A005386 G.f.: x*(1-x)/((1+x)*(1-5*x+x^2)). %F A005386 a(n) = 4*a(n-1) + 4*a(n-2) - a(n-3), a(1)=1, a(2)=3, a(3)=16. %F A005386 a(n) = (2/7)*(T(n, 5/2) - (-1)^n) with twice Chebyshev's polynomials of the first kind evaluated at x=5/2: 2*T(n, 5/2) = A003501(n) = ((5+sqrt(21))^n + (5-sqrt(21))^n)/2^n. - _Wolfdieter Lang_, Oct 18 2004 %F A005386 a(2n) = A003690(n). a(2n+1) = A004253(n)^2. - Alexander Evnin, Mar 11 2012 %F A005386 From _Peter Bala_, Apr 03 2014: (Start) %F A005386 a(n) = |U(n-1, sqrt(3)*i/2)|^2, where U(n,x) denotes the Chebyshev polynomial of the second kind. %F A005386 a(n) = the bottom left entry of the 2 X 2 matrix T(n, M), where M is the 2 X 2 matrix [0, 5/2; 1, 3/2] and T(n,x) denotes the Chebyshev polynomial of the first kind. %F A005386 See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences. (End) %p A005386 A005386:=-(-1+z)/(z+1)/(z**2-5*z+1); [Conjectured by _Simon Plouffe_ in his 1992 dissertation.] %p A005386 a:= n-> (Matrix([[0,1,3]]). Matrix(3, (i,j)-> if (i=j-1) then 1 elif j=1 then [4,4,-1][i] else 0 fi)^(n))[1,1]: seq(a(n), n=1..25); # _Alois P. Heinz_, Aug 05 2008 %t A005386 a[n_]:= Module[{n1=1, n2=0}, Do[{n1, n2}={Sqrt[3]*n1+n2, n1}, {n-1}];n1^2]; %t A005386 Table[a[n], {n,30}] %t A005386 a[n_]:= Round[((5+Sqrt[21])/2)^n/7]; Table[a[n], {n, 30}] %t A005386 Rest@(CoefficientList[Series[x/(1-x*(Sqrt[3]+x)), {x, 0, 30}], x])^2 %t A005386 Abs[ChebyshevU[Range[1,40]-1, I*Sqrt[3]/2]]^2 (* _G. C. Greubel_, Nov 16 2022 *) %o A005386 (Magma) I:=[1, 3, 16]; [n le 3 select I[n] else 4*Self(n-1) +4*Self(n-2) -Self(n-3): n in [1..41]]; // _G. C. Greubel_, Nov 16 2022 %o A005386 (SageMath) %o A005386 def A005386(n): return abs(chebyshev_U(n-1, i*sqrt(3)/2))^2 %o A005386 [A005386(n) for n in range(1,40)] # _G. C. Greubel_, Nov 16 2022 %Y A005386 Essentially the same as A003769. %Y A005386 First differences of A099025. %Y A005386 Cf. A100047. %K A005386 nonn,easy %O A005386 1,2 %A A005386 Jean Meeus %E A005386 Edited by _Peter J. C. Moses_, Apr 23 2004 %E A005386 More terms from Pab Ter (pabrlos(AT)yahoo.com), May 09 2004 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE