# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a036355 Showing 1-1 of 1 %I A036355 #48 Aug 26 2020 02:17:40 %S A036355 1,1,1,2,2,2,3,5,5,3,5,10,14,10,5,8,20,32,32,20,8,13,38,71,84,71,38, %T A036355 13,21,71,149,207,207,149,71,21,34,130,304,478,556,478,304,130,34,55, %U A036355 235,604,1060,1390,1390,1060,604,235,55,89,420,1177,2272,3310,3736,3310 %N A036355 Fibonacci-Pascal triangle read by rows. %C A036355 T(n,k) is the number of lattice paths from (0,0) to (n-k,k) using steps (1,0),(2,0),(0,1),(0,2). - _Joerg Arndt_, Jun 30 2011, corrected by _Greg Dresden_, Aug 25 2020 %C A036355 For a closed-form formula for arbitrary left and right borders of Pascal like triangle see A228196. - _Boris Putievskiy_, Aug 18 2013 %C A036355 For a closed-form formula for generalized Pascal's triangle see A228576. - _Boris Putievskiy_, Sep 09 2013 %H A036355 Reinhard Zumkeller, Rows n = 0..120 of triangle, flattened %H A036355 Index entries for triangles and arrays related to Pascal's triangle %F A036355 T(n, m) = T'(n-1, m-1)+T'(n-2, m-2)+T'(n-1, m)+T'(n-2, m), where T'(n, m) = T(n, m) if 0<=m<=n and n >= 0 and T'(n, m)=0 otherwise. Initial term T(0, 0)=1. %F A036355 G.f.: 1/(1-(1+y)*x-(1+y^2)*x^2). - _Vladeta Jovovic_, Oct 11 2003 %e A036355 Triangle begins %e A036355 1; %e A036355 1, 1; %e A036355 2, 2, 2; %e A036355 3, 5, 5, 3; %e A036355 5, 10, 14, 10, 5; %e A036355 8, 20, 32, 32, 20, 8; %e A036355 13, 38, 71, 84, 71, 38, 13; %e A036355 21, 71, 149, 207, 207, 149, 71, 21; %e A036355 34, 130, 304, 478, 556, 478, 304, 130, 34; %e A036355 55, 235, 604, 1060, 1390, 1390, 1060, 604, 235, 55; %e A036355 with indices %e A036355 T(0,0); %e A036355 T(1,0), T(1,1); %e A036355 T(2,0), T(2,1), T(2,2); %e A036355 T(3,0), T(3,1), T(3,2), T(3,3); %e A036355 T(4,0), T(4,1), T(4,2), T(4,3), T(4,4); %e A036355 For example, T(4,2) = 14 and there are 14 lattice paths from (0,0) to (4-2,2) = (2,2) using steps (1,0),(2,0),(0,1),(0,2). - _Greg Dresden_, Aug 25 2020 %t A036355 nmax = 11; t[n_, m_] := t[n, m] = tp[n-1, m-1] + tp[n-2, m-2] + tp[n-1, m] + tp[n-2, m]; tp[n_, m_] /; 0 <= m <= n && n >= 0 := t[n, m]; tp[n_, m_] = 0; t[0, 0] = 1; Flatten[ Table[t[n, m], {n, 0, nmax}, {m, 0, n}]] (* _Jean-François Alcover_, Nov 09 2011, after formula *) %o A036355 (PARI) /* same as in A092566 but use */ %o A036355 steps=[[1,0], [2,0], [0,1], [0,2]]; %o A036355 /* _Joerg Arndt_, Jun 30 2011 */ %o A036355 (Haskell) %o A036355 a036355 n k = a036355_tabl !! n !! k %o A036355 a036355_row n = a036355_tabl !! n %o A036355 a036355_tabl = [1] : f [1] [1,1] where %o A036355 f us vs = vs : f vs (zipWith (+) %o A036355 (zipWith (+) ([0,0] ++ us) (us ++ [0,0])) %o A036355 (zipWith (+) ([0] ++ vs) (vs ++ [0]))) %o A036355 -- _Reinhard Zumkeller_, Apr 23 2013 %Y A036355 Row sums form sequence A002605. T(n, 0) forms the Fibonacci sequence (A000045). T(n, 1) forms sequence A001629. %Y A036355 Derived sequences: A036681, A036682, A036683, A036684, A036692 (central terms). %Y A036355 Cf. A007318, A051159, A228196, A228576. %Y A036355 Some other Fibonacci-Pascal triangles: A027926, A037027, A074829, A105809, A109906, A111006, A114197, A162741, A228074. %K A036355 nonn,tabl,easy,nice %O A036355 0,4 %A A036355 _Floor van Lamoen_, Dec 28 1998 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE