# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a116503 Showing 1-1 of 1 %I A116503 #21 Jan 03 2019 08:04:59 %S A116503 1,2,3,8,13,26,39,64,98,148,216,322,455,648,904,1258,1711,2336,3128, %T A116503 4198,5548,7330,9569,12496,16146,20836,26674,34098,43273,54846,69072, %U A116503 86848,108627,135612,168527,209066,258271,318482,391321,479946,586709 %N A116503 Sum of the areas of the Durfee squares of all partitions of n. %C A116503 a(n) = sum(k^2*A115994(n,k), k=1..floor(sqrt(n))). %H A116503 Vaclav Kotesovec, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Alois P. Heinz) %F A116503 G.f.: sum(k^2*z^(k^2)/product((1-z^j)^2, j=1..k), k=1..infinity). %F A116503 a(n) ~ sqrt(3) * (log(2))^2 * exp(Pi*sqrt(2*n/3)) / (2*Pi^2). - _Vaclav Kotesovec_, Jan 03 2019 %e A116503 a(4) = 8 because the partitions of 4, namely [4], [3,1], [2,2], [2,1,1] and [1,1,1,1], have Durfee squares of sizes 1,1,2,1 and 1, respectively and 1^2+1^2+2^2+1^2+1^2=8. %p A116503 g:=sum(k^2*z^(k^2)/product((1-z^j)^2,j=1..k),k=1..10): gser:=series(g,z=0,52): seq(coeff(gser,z^n),n=1..45); %p A116503 # second Maple program: %p A116503 b:= proc(n, i) option remember; %p A116503 `if`(n=0, 1, `if`(i<1, 0, b(n, i-1)+`if`(i>n, 0, b(n-i, i)))) %p A116503 end: %p A116503 a:= n-> add(k^2*add(b(m, k)*b(n-k^2-m, k), %p A116503 m=0..n-k^2), k=1..floor(sqrt(n))): %p A116503 seq(a(n), n=1..40); # _Alois P. Heinz_, Apr 09 2012 %t A116503 b[n_, i_] := b[n, i] = If[n == 0, 1, If[i<1, 0, b[n, i-1] + If[i>n, 0, b[n-i, i]]]]; a[n_] := Sum [k^2*Sum[b[m, k]*b[n - k^2 - m, k], {m, 0, n - k^2}], {k, 1, Sqrt[n]}]; Table[a[n], {n, 1, 50}] (* _Jean-François Alcover_, Jan 24 2014, after _Alois P. Heinz_ *) %Y A116503 Cf. A115994, A115995. %K A116503 easy,nonn %O A116503 1,2 %A A116503 _Emeric Deutsch_, _Vladeta Jovovic_, Feb 18 2006 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE