# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a198957 Showing 1-1 of 1 %I A198957 #30 Nov 30 2016 20:35:01 %S A198957 1,1,2,7,26,102,424,1827,8078,36466,167376,778718,3664164,17407068, %T A198957 83375616,402198915,1952296598,9528757098,46735576816,230227356906, %U A198957 1138609205372,5651170500612,28138939936704,140527262919342,703704207921932,3532664478314484,17775185122527776 %N A198957 G.f. satisfies: A(x) = (1 + x*A(x))*(1 + x^2*A(x)^4). %F A198957 G.f. A(x) satisfies: %F A198957 (1) A(x) = exp( Sum_{n>=1} x^n/n * Sum_{k=0..n} C(n,k)^2 * x^k * A(x)^(3*k) ). %F A198957 (2) A(x) = (1/x)*Series_Reversion( 2*x^3*(1+x)/(1 - sqrt(1-4*x^2*(1+x)^2)) ). %F A198957 (3) A(x) = G(x*A(x)) where G(x) = A(x/G(x)) is the g.f. of A104545 (Motzkin paths of length n having no consecutive (1,0) steps). %F A198957 (4) A(x) = exp( Sum_{n>=1} x^n/n * (1-x*A(x)^3)^(2*n+1)*Sum_{k>=0} C(n+k,k)^2 * x^k * A(x)^(3*k) ). %F A198957 a(n) = sum(j=0..n/2, binomial(2*j+n,j)*binomial(2*j+n+1,4*j+1)/(n+j+1)). - _Vladimir Kruchinin_, May 28 2014 %F A198957 a(n) ~ sqrt((1 + 2*r*s^3 + 3*r^2*s^4)/(2*Pi*s*(3 + 5*r*s))) / (2*n^(3/2)*r^(n+1/2)), where r = 0.187614989725738719..., s = 1.61178302212918247... are roots of the system of equations r + 4*r^2*s^3 + 5*r^3*s^4 = 1, (1+r*s)*(1+r^2*s^4) = s. - _Vaclav Kotesovec_, May 28 2014 %e A198957 G.f.: A(x) = 1 + x + 2*x^2 + 7*x^3 + 26*x^4 + 102*x^5 + 424*x^6 + 1827*x^7 +... %e A198957 Related expansions: %e A198957 A(x)^4 = 1 + 4*x + 14*x^2 + 56*x^3 + 237*x^4 + 1028*x^5 + 4570*x^6 +... %e A198957 A(x)^5 = 1 + 5*x + 20*x^2 + 85*x^3 + 375*x^4 + 1681*x^5 + 7660*x^6 +... %e A198957 where A(x) = 1 + x*A(x) + x^2*A(x)^4 + x^3*A(x)^5. %e A198957 The logarithm of the g.f. equals the series: %e A198957 log(A(x)) = (1 + x*A(x)^3)*x + (1 + 2^2*x*A(x)^3 + x^2*A(x)^6)*x^2/2 + %e A198957 (1 + 3^2*x*A(x)^3 + 3^2*x^2*A(x)^6 + x^3*A(x)^9)*x^3/3 + %e A198957 (1 + 4^2*x*A(x)^3 + 6^2*x^2*A(x)^6 + 4^2*x^3*A(x)^9 + x^4*A(x)^12)*x^4/4 + %e A198957 (1 + 5^2*x*A(x)^3 + 10^2*x^2*A(x)^6 + 10^2*x^3*A(x)^9 + 5^2*x^4*A(x)^12 + x^5*A(x)^15)*x^5/5 +... %e A198957 more explicitly, %e A198957 log(A(x)) = x + 3*x^2/2 + 16*x^3/3 + 75*x^4/4 + 356*x^5/5 + 1746*x^6/6 + 8660*x^7/7 + 43299*x^8/8 +... %e A198957 Also, g.f. A(x) = G(x*A(x)) where G(x) = A(x/G(x)) (g.f. of A104545) begins: %e A198957 G(x) = 1 + x + x^2 + 3*x^3 + 5*x^4 + 11*x^5 + 25*x^6 + 55*x^7 + 129*x^8 +... %t A198957 CoefficientList[1/x*InverseSeries[Series[2*x^3*(1+x)/(1 - Sqrt[1-4*x^2*(1+x)^2]), {x, 0, 20}], x],x] (* _Vaclav Kotesovec_, May 28 2014 *) %o A198957 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=(1 + x*A)*(1 + x^2*(A+x*O(x^n))^4)); polcoeff(A, n)} %o A198957 (PARI) {a(n)=polcoeff((1/x)*serreverse( 2*x^3*(1+x)/(1 - sqrt(1-4*x^2*(1+x +x^3*O(x^n))^2))), n)} %o A198957 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, sum(j=0, m, binomial(m, j)^2*x^j*(A^3+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)} %o A198957 (PARI) {a(n)=local(A=1+x); for(i=1, n, A=exp(sum(m=1, n, (1-x*A^3)^(2*m+1)*sum(j=0, n, binomial(m+j, j)^2*x^j*(A^3+x*O(x^n))^j)*x^m/m))); polcoeff(A, n, x)} %o A198957 (Maxima) a(n):=sum(binomial(2*j+n,j)*binomial(2*j+n+1,4*j+1)/(n+j+1),j,0,(n)/2); /* _Vladimir Kruchinin_, May 28 2014 */ %o A198957 (PARI) %o A198957 x='x; y='y; Fxy = (1 + x*y)*(1 + x^2*y^4) - y; %o A198957 seq(N) = { %o A198957 my(y0 = 1 + O('x^N), y1=0); %o A198957 for (k = 1, N, %o A198957 y1 = y0 - subst(Fxy, y, y0)/subst(deriv(Fxy, y), y, y0); %o A198957 if (y1 == y0, break()); y0 = y1); %o A198957 Vec(y0); %o A198957 }; %o A198957 seq(27) \\ _Gheorghe Coserea_, Nov 30 2016 %Y A198957 Cf. A198953, A198951, A007863, A036765, A104545. %K A198957 nonn %O A198957 0,3 %A A198957 _Paul D. Hanna_, Nov 01 2011 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE