# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a241299 Showing 1-1 of 1 %I A241299 #40 Jun 30 2024 02:45:00 %S A241299 0,1,1,7,1,1,2,3,6,4,1,3,4,6,1,3,1,3,1,1,3,2,3,5,5,2,2,2,8,1,1,9,1,2, %T A241299 3,4,8,2,4,1,1,2,8,3,2,1,4,2,5,1,6,7,2,2,2,2,2,2,8,4,1,4,8,1,5,8,4,1, %U A241299 4,1,2,1,9,6,6,2,1,1,7,6,1,7,7,2,4,1,8,6,1,7,1,1,3,1,2,6,3,5,1,1,1,2,2,5,4 %N A241299 Initial digit of the decimal expansion of n^(n^n) or n^^3 (in _Don Knuth_'s up-arrow notation). %C A241299 0^^3 = 0 since 0^^k = 1 for even k, 0 for odd k, k >= 0. %C A241299 Conjecture: the distribution of the initial digits obey Zipf's law. %C A241299 The distribution of the first 1000 terms beginning with 1: 302, 196, 124, 91, 72, 46, 71, 53, 45. %H A241299 Robert P. Munafo and Robert G. Wilson v, Table of n, a(n) for n = 0..1000 %H A241299 Cut the Knot.org, Benford's Law and Zipf's Law, A. Bogomolny, Zipf's Law, Benford's Law from Interactive Mathematics Miscellany and Puzzles. %H A241299 Hans Havermann, Next 5 terms. %H A241299 M. E. J. Newman, Power laws, Pareto distributions and Zipf's law. %H A241299 Eric Weisstein's World of Mathematics, Joyce Sequence. %H A241299 Wikipedia, Knuth's up-arrow notation. %H A241299 Wikipedia, Zipf's law. %H A241299 Index entries for sequences related to Benford's law. %F A241299 For n > 0, a(n) = floor(t/10^floor(log_10(t))) where t = n^(n^n). %F A241299 a(n) = A000030(A002488(n)). - _Omar E. Pol_, Jul 04 2019 %e A241299 a(0) = 0, a(1) = 1, a(2) = 1 because 2^(2^2) = 16, a(3) = 7 because 3^(3^3) = 7625597484987 and its initial digit is 7, etc. %t A241299 g[n_] := Quotient[n^p, 10^(Floor[ p*Log10@ n] - (1004 + p))]; f[n_] := Block[{p = n}, Quotient[ Nest[ g@ # &, p, p], 10^(1004 + p)]]; Array[f, 105, 0] %Y A241299 Cf. A000030, A000312, A002488, A066022, A241291, A241292, A241293, A241294, A241295, A241296, A241297, A241298. %K A241299 nonn,base,easy %O A241299 0,4 %A A241299 _Robert Munafo_ and _Robert G. Wilson v_, Apr 18 2014 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE