# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a262078
Showing 1-1 of 1
%I A262078 #17 May 09 2018 09:58:54
%S A262078 1,1,1,3,1,4,10,60,1,5,15,140,280,1260,12600,1,6,21,224,630,3780,
%T A262078 34650,110880,360360,2522520,37837800,1,7,28,336,1050,7392,74844,
%U A262078 276276,1513512,9459450,131171040,428828400,2058376320,9777287520,97772875200,2053230379200
%N A262078 Number T(n,k) of partitions of an n-set with distinct block sizes and maximal block size equal to k; triangle T(n,k), k>=0, k<=n<=k*(k+1)/2, read by columns.
%H A262078 Alois P. Heinz, Columns k = 0..36, flattened
%e A262078 Triangle T(n,k) begins:
%e A262078 : 1;
%e A262078 : 1;
%e A262078 : 1;
%e A262078 : 3, 1;
%e A262078 : 4, 1;
%e A262078 : 10, 5, 1;
%e A262078 : 60, 15, 6, 1;
%e A262078 : 140, 21, 7, 1;
%e A262078 : 280, 224, 28, 8, 1;
%e A262078 : 1260, 630, 336, 36, 9, 1;
%e A262078 : 12600, 3780, 1050, 480, 45, 10, 1;
%p A262078 b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, binomial(n, i)*b(n-i, i-1))))
%p A262078 end:
%p A262078 T:= (n, k)-> b(n, k) -`if`(k=0, 0, b(n, k-1)):
%p A262078 seq(seq(T(n, k), n=k..k*(k+1)/2), k=0..7);
%t A262078 b[n_, i_] := b[n, i] = If[i*(i+1)/2n, 0, Binomial[n, i]*b[n-i, i-1]]]]; T[n_, k_] := b[n, k] - If[k==0, 0, b[n, k-1]]; Table[T[n, k], {k, 0, 7}, {n, k, k*(k+1)/2}] // Flatten (* _Jean-François Alcover_, Dec 18 2016, after _Alois P. Heinz_ *)
%Y A262078 Row sums give A007837.
%Y A262078 Column sums give A262073.
%Y A262078 Cf. A000217, A002024, A262071, A262072 (same read by rows).
%K A262078 nonn,tabf
%O A262078 0,4
%A A262078 _Alois P. Heinz_, Sep 10 2015
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE