# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a262078 Showing 1-1 of 1 %I A262078 #17 May 09 2018 09:58:54 %S A262078 1,1,1,3,1,4,10,60,1,5,15,140,280,1260,12600,1,6,21,224,630,3780, %T A262078 34650,110880,360360,2522520,37837800,1,7,28,336,1050,7392,74844, %U A262078 276276,1513512,9459450,131171040,428828400,2058376320,9777287520,97772875200,2053230379200 %N A262078 Number T(n,k) of partitions of an n-set with distinct block sizes and maximal block size equal to k; triangle T(n,k), k>=0, k<=n<=k*(k+1)/2, read by columns. %H A262078 Alois P. Heinz, Columns k = 0..36, flattened %e A262078 Triangle T(n,k) begins: %e A262078 : 1; %e A262078 : 1; %e A262078 : 1; %e A262078 : 3, 1; %e A262078 : 4, 1; %e A262078 : 10, 5, 1; %e A262078 : 60, 15, 6, 1; %e A262078 : 140, 21, 7, 1; %e A262078 : 280, 224, 28, 8, 1; %e A262078 : 1260, 630, 336, 36, 9, 1; %e A262078 : 12600, 3780, 1050, 480, 45, 10, 1; %p A262078 b:= proc(n, i) option remember; `if`(i*(i+1)/2n, 0, binomial(n, i)*b(n-i, i-1)))) %p A262078 end: %p A262078 T:= (n, k)-> b(n, k) -`if`(k=0, 0, b(n, k-1)): %p A262078 seq(seq(T(n, k), n=k..k*(k+1)/2), k=0..7); %t A262078 b[n_, i_] := b[n, i] = If[i*(i+1)/2n, 0, Binomial[n, i]*b[n-i, i-1]]]]; T[n_, k_] := b[n, k] - If[k==0, 0, b[n, k-1]]; Table[T[n, k], {k, 0, 7}, {n, k, k*(k+1)/2}] // Flatten (* _Jean-François Alcover_, Dec 18 2016, after _Alois P. Heinz_ *) %Y A262078 Row sums give A007837. %Y A262078 Column sums give A262073. %Y A262078 Cf. A000217, A002024, A262071, A262072 (same read by rows). %K A262078 nonn,tabf %O A262078 0,4 %A A262078 _Alois P. Heinz_, Sep 10 2015 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE