# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a281725 Showing 1-1 of 1 %I A281725 #20 Oct 19 2024 15:57:32 %S A281725 1,3,5,6,7,15,10,9,13,34,15,11,24,21,65,21,13,19,25,31,111,28,15,33, %T A281725 58,54,43,175,36,17,25,33,41,49,57,260,45,19,42,37,115,55,96,73,369, %U A281725 55,21,31,82,51,61,142,81,91,505,66,23,51,45,84,201,117,89,150,111,671 %N A281725 Triangular array T(n,k) is the sum of elements in an n X k matrix that will be assigned the same value whether the integers from 1 to n*k are assigned to elements in row-major order or column-major order. %H A281725 Alois P. Heinz, Antidiagonals n = 1..141, flattened %H A281725 Ana Rechtman, 3ème Défi du Calendrier Mathématique, Images des Mathématiques, CNRS, January 2017. %e A281725 For n=2 and k=3, the matrix will be %e A281725 1 2 3 and 1 3 5 %e A281725 4 5 6 2 4 6 %e A281725 and there are 2 identical terms, 1 and 6, whose sum is 7. %e A281725 The triangle begins %e A281725 1; %e A281725 3, 5; %e A281725 6, 7, 15; %e A281725 10, 9, 13, 34; %e A281725 15, 11, 24, 21, 65; %e A281725 21, 13, 19, 25, 31, 111; %e A281725 ... %p A281725 T:= (n, k)-> add(add(`if`(j+k*(i-1)= %p A281725 i+n*(j-1), j+k*(i-1), 0), i=1..n), j=1..k): %p A281725 seq(seq(T(n,k), k=1..n), n=1..20); # _Alois P. Heinz_, Jan 28 2017 %o A281725 (PARI) a(n, k) = {ml = matrix(n, k, i, j, ((i-1)*k+j)); mc = matrix(n, k, i, j, ((j-1)*n+i)); sum(i=1, n, sum(j=1, k, ml[i,j]*(ml[i,j] == mc[i,j])));} %Y A281725 Cf. A281726. %Y A281725 Main diagonal gives A006003. %Y A281725 Column k=1 gives A000217. %Y A281725 T(2n,n) gives A058331 for n>0. %Y A281725 T(2n+1,n+1) gives A081436. %K A281725 nonn,tabl %O A281725 1,2 %A A281725 _Michel Marcus_, Jan 28 2017 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE