# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a295512 Showing 1-1 of 1 %I A295512 #12 Jun 03 2019 01:11:29 %S A295512 4,-6,6,-21,35,-35,21,-10,221,-77,55,-55,77,-221,10,-33,46513,-493, %T A295512 377,-119,187,-1333,559,-559,1333,-187,119,-377,493,-46513,33,-14,143, %U A295512 -209,629,-14527,2881,-1189,533,-161,391,-15229,2449,-2263,3139,-1073,95,-95 %N A295512 The Euclid tree with root 1 encoded by semiprimes, read across levels. %C A295512 The Euclid tree with root 1 is A295515 (sometimes called Calkin-Wilf tree). %C A295512 For a positive rational r we use the Schinzel-Sierpiński encoding r -> [p, q] as described in A295511 and encode r as sgn*p*q where sgn is -1 if r < 1, else +1. %C A295512 Apart from a(1) all terms are squarefree. %D A295512 E. Dijkstra, Selected Writings on Computing, Springer, 1982, p. 232. %H A295512 N. Calkin and H. S. Wilf, Recounting the rationals, Amer. Math. Monthly, 107 (No. 4, 2000), pp. 360-363. %H A295512 Matthew M. Conroy, A sequence related to a conjecture of Schinzel, J. Integ. Seqs. Vol. 4 (2001), #01.1.7. %H A295512 P. D. T. A. Elliott, The multiplicative group of rationals generated by the shifted primes. I., J. Reine Angew. Math. 463 (1995), 169-216. %H A295512 P. D. T. A. Elliott, The multiplicative group of rationals generated by the shifted primes. II. J. Reine Angew. Math. 519 (2000), 59-71. %H A295512 Peter Luschny, The Schinzel-Sierpiński conjecture and the Calkin-Wilf tree. %H A295512 A. Malter, D. Schleicher, D. Zagier, New looks at old number theory, Amer. Math. Monthly, 120(3), 2013, pp. 243-264. %H A295512 A. Schinzel and W. Sierpiński, Sur certaines hypothèses concernant les nombres premiers, Acta Arithmetica 4 (1958), 185-208; erratum 5 (1958) p. 259. %e A295512 The tree starts: %e A295512 4 %e A295512 -6 6 %e A295512 -21 35 -35 21 %e A295512 -10 221 -77 55 -55 77 -221 10 %p A295512 EuclidTree := proc(n) local k, DijkstraFusc; %p A295512 DijkstraFusc := proc(m) option remember; local a, b, n; a := 1; b := 0; n := m; %p A295512 while n > 0 do if type(n, odd) then b := a+b else a := a+b fi; n := iquo(n,2) od; b end: %p A295512 seq(DijkstraFusc(k)/DijkstraFusc(k+1), k=2^(n-1)..2^n-1) end: %p A295512 SchinzelSierpinski := proc(l) local a, b, r, p, q, sgn; %p A295512 a := numer(l); b := denom(l); q := 2; sgn := `if`(a < b, -1, 1); %p A295512 while q < 1000000000 do r := a*(q - 1); if r mod b = 0 then p := r/b + 1; %p A295512 if isprime(p) then return(sgn*p*q) fi fi; q := nextprime(q); od; %p A295512 print("Search limit reached!", a, b) end: %p A295512 Tree := level -> seq(SchinzelSierpinski(l), l=EuclidTree(level)): seq(Tree(n), n=1..6); %Y A295512 Cf. A294442, A295511, A295515. %K A295512 sign,tabf %O A295512 1,1 %A A295512 _Peter Luschny_, Nov 23 2017 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE