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Abstract

Partial multi-label learning (PML), which tackles the problem
of learning multi-label prediction models from instances with
overcomplete noisy annotations, has recently started gaining
attention from the research community. In this paper, we pro-
pose a novel adversarial learning model, PML-GAN, under
a generalized encoder-decoder framework for partial multi-
label learning. The PML-GAN model uses a disambiguation
network to identify irrelevant labels and uses a multi-label
prediction network to map the training instances to their dis-
ambiguated label vectors, while deploying a generative ad-
versarial network as an inverse mapping from label vectors to
data samples in the input feature space. The learning of the
overall model corresponds to a minimax adversarial game,
which enhances the correspondence of input features with the
output labels in a bi-directional mapping. Extensive experi-
ments are conducted on both synthetic and real-world partial
multi-label datasets, while the proposed model demonstrates
the state-of-the-art performance.

Introduction
In partial multi-label learning (PML), each training instance
is assigned multiple candidate labels which are only partially
relevant; that is, some irrelevant noise labels are assigned
together with the ground-truth labels. As it is typically diffi-
cult and costly to precisely annotate instances for multi-label
data (Xie and Huang 2018), the task of PML naturally arises
in many real-world scenarios with crowdsource annotations.
In such a scenario, in order to collect the complete set of
positive labels for each data instance, one can gather all la-
bels provided by multiple annotators to form the candidate
label set, which is usually overcomplete and contains addi-
tional noisy labels beyond all the true labels, leading to the
PML problem. Figure 1 presents such example of an over-
completely annotated training image for object recognition,
where the candidate labels provided by crowdsource anno-
tators cover all the ground truth labels (in black color) and
some irrelevant noise labels (in red color). PML is much
more challenging than standard multi-label learning as the
true labels are hidden among irrelevant labels and the num-
ber of true labels is unknown. The goal of PML is to learn a
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good multi-label prediction model from such a partial label
training set, and hence reduce the annotation cost.

An intuitive strategy of PML is to treat all candidate labels
as relevant ground truth, thus any off-the-shelf multi-label
classification method can be adapted to induce an expected
multi-label predictor (Zhang and Zhou 2014). This strategy,
though simple, cannot work well since taking the noise la-
bels as part of the true labels will mislead the multi-label
training and induce inferior prediction models. The PML
work in (Xie and Huang 2018) assumes that each candi-
date label has a confidence score of being a true label, and
learns the confidence scores and the classifier in an alterna-
tive manner by minimizing a confidence weighted ranking
loss. Although this work yields some reasonable results, the
estimation of label confidence scores is error-prone, espe-
cially when noise labels dominate, which can seriously im-
pair the classifier’s performance. The recent work in (Xie
and Huang 2020) proposes to perform ground-truth label re-
covery and noise label identification simultaneously by ex-
ploring the label correlations and the relationships between
the noise labels and feature representations. Another recent
work in (Fang and Zhang 2019) presents a two-stage PML
method. It estimates the confidence values of the candidate
labels using iterative label propagation and then chooses the
highly confident candidate labels as credible labels to induce
a multi-label prediction model. This work however suffers
from the cumulative errors induced in propagation, which
can impact the label confidence estimation and consequently
impair the prediction.

In this paper, we propose a novel adversarial learning
model, PML-GAN, under a generalized encoder-decoder
framework to tackle the partial multi-label learning problem.
The PML-GAN model comprises four component networks:
a disambiguation network that predicts the probability of
each candidate label being an additive noise for a training in-
stance; a prediction network that predicts the disambiguated
true labels of each instance from its input features; a gen-
eration network that generates samples in the feature space
given latent vectors in the label space; and a discrimination
network that separates the generated samples from the real
data. The prediction network and disambiguation network
together form an encoder that maps data samples in the in-
put feature space to the disambiguated label vectors, while
the generation network and discrimination network form a
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Figure 1: Example of an annotated image under the partial
multi-label learning (PML) setting.

generative adversarial network (GAN) as an inverse decod-
ing mapping from vectors in the multi-label space to sam-
ples in the input feature space. The learning of the overall
model corresponds to a minimax adversarial game, which
enhances the correspondence of input features with the out-
put labels through the bi-directional encoder-decoder map-
ping mechanism, and consequently boosts multi-label pre-
diction performance. To the best of our knowledge, this is
the first work that exploits a generative adversarial model
based bi-directional mapping mechanism for PML. We con-
duct extensive experiments on multiple multi-label datasets
under partial multi-label learning setting. The empirical re-
sults show the proposed PML-GAN yields the state-of-the-
art PML performance.

Related Work
Multi-label learning is a prevalent classification problem in
many real world domains, where each instance can be as-
signed into multiple classes simultaneously. Many multi-
label learning methods developed in the literature exploit la-
bel correlations at different degrees to produce multi-label
classifiers (Zhang and Zhou 2014), including the first or-
der methods (Zhang et al. 2018), second order methods (Li,
Zhao, and Guo 2014), and high-order methods (Burkhardt
and Kramer 2018). Nevertheless, standard multi-label learn-
ing methods all assume each training instance is anno-
tated with a complete set of ground truth labels, which
can be impractical in many domains, where the annota-
tions are obtained through crowdsourcing. With the union
of annotations produced by multiple noisy labelers under
the crowdsourcing setting, the partial multi-label learning
(PML) problem arises naturally in real world scenarios,
where the set of labels assigned to each training instance
not only contain the ground truth labels, but also some addi-
tional irrelevant labels.

PML is more challenging than standard multi-label learn-
ing. The previous PML work in (Xie and Huang 2018) pro-
poses two methods, PML-FP and PML-LC, to estimate the
label confidence values and optimize the relevance ordering
of labels by exploring the structural information in both fea-
ture and label spaces. However, due to the inherent property
of alternative optimization, in these methods, the estimation
error of labeling confidence values can negatively impact
the coupled multi-label predictor. The work in (Sun et al.
2019) denoises the observed label matrix based on low-rank

and sparse matrix decomposition. The recent work in (Xie
and Huang 2020) proposes to learn the multi-label classi-
fier and noisy label identifier by exploiting the label corre-
lations as well as exploring the feature-induced noise model
with the observed noise-corrupted label matrix. The work in
(Xu, Liu, and Geng 2020) attempts to recover the label dis-
tributions by exploiting the topological information from the
feature space and label correlations from the label space, and
then induces a predictive model by fitting the recovered label
distributions. Another work in (Chen et al. 2020) proposes to
tackle multi-view PML problem using graph-based disam-
biguation. In another recent work (Fang and Zhang 2019),
the authors propose to address PML problem using a two-
stage strategy. It first estimates the label confidence value
of each candidate label with iterative label propagation, and
then performs multi-label learning over selected credible la-
bels based on the confidence values by using pairwise la-
bel ranking (PARTICLE-VLS) or maximum a posteriori rea-
soning (PARTICLE-MAP). The work in (Wang et al. 2019)
also presents a two-stage PML method that estimates the la-
bel confidence matrix in the first stage. However, in these
two-stage methods, the confidence label estimation errors
can consequently degrade the multi-label learning perfor-
mance without correction interaction, especially when there
are many noise labels.

Studies on weak learning, partial label learning, and noisy
label learning have some connections with PML, but ad-
dress different problems. Weak label learning tackles the
problem of multi-label learning with incomplete labels (Sun,
Zhang, and Zhou 2010; Wei et al. 2018), where some ground
truth labels are missed out from the annotations. Partial label
learning (PLL) tackles multi-class classification under the
setting where for each training instance there is one ground-
truth label among the given candidate label set (Cour, Sapp,
and Taskar 2011; Liu and Dietterich 2012; Zhang and Yu
2015; Yu and Zhang 2016; Chen, Patel, and Chellappa
2018). PLL methods cannot be directly applied on the more
challenging PML problems, as under PML one has unknown
numbers of ground truth labels among the candidate label set
for each training instance. Noisy label learning (NLL) tack-
les multi-class classification problems where some ground-
truth labels are replaced by noise labels (Thekumparampil
et al. 2018; Lee et al. 2018; Zhang and Sabuncu 2018; Han
et al. 2018; Kaneko, Ushiku, and Harada 2019; Lee et al.
2019). The off-the-shelf NLL methods cannot be directly
applied on the more challenging PML problems due to the
difference of problem settings.

Generative adversarial networks (GANs) (Goodfellow
et al. 2014), which perform minimax adversarial training
over a generation network and a discrimination network, are
one of the most popular generative models since its introduc-
tion. During the past years, a vast range of GAN-based ad-
versarial learning methods have been developed to address
different tasks, including semi-supervised learning (Kumar,
Sattigeri, and Fletcher 2017; Lecouat et al. 2018), unsuper-
vised learning (Jakab et al. 2018), and learning with noisy
labels (Thekumparampil et al. 2018). The proposed work in
this paper however is the first one that exploits generative
adversarial models for partial multi-label learning.
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Figure 2: The proposed PML-GAN model. It has four com-
ponent networks: generator G, disambiguator D̃, predictor
F , and discriminator D.

Proposed Approach
In this section, we present the proposed adversarial partial
multi-label learning model, PML-GAN, under the follow-
ing setting. Assume we have a training set S = (X,Y ) =
{(xi,yi)}Ni=1, where xi ∈ Rd denotes the input feature vec-
tor for the i-th instance, and yi ∈ {0, 1}L is the correspond-
ing annotated label indicator vector. There are multiple 1
values in each yi, which indicate either the ground truth la-
bels or the additional mis-annotated noise labels. We aim to
learn a good multi-label prediction model from this partially
labeled training set.

The proposed PML-GAN model is illustrated in Figure 2,
which comprises four component networks: disambiguation
network D̃, prediction network F , generation network G
and discrimination networkD. The four components coordi-
nate with and enhance each other under an encoder-decoder
learning framework, which forms inverse mappings between
the instance vectors in the input feature space and the con-
tinuous label vectors in the output class label space, aiming
to facilitate the identification of a suitable prediction func-
tion. The prediction network and the disambiguation net-
work also naturally enhance each other from a mutual learn-
ing perspective. Below we present these model components,
the learning objective and the training algorithm in details.

Prediction with Disambiguated Labels
Comparing to standard multi-label learning, the main diffi-
culty of PML is that the annotated labels {yi} in the train-
ing data contain additive noise labels. The main challenge
lies in identifying the ground truth labels z∗i from each an-
notated candidate label vectors yi; that is dropping the ad-
ditional 1s from each candidate label vector yi. We propose
to tackle this challenge by using a disambiguation network
D̃ : Ωx → Ω∆ (Ω· denotes the corresponding domain
space), which predicts the irrelevant labels for a given in-
stance. Hence the true label indicator vector z∗i can be re-
covered as z∗i = ReLU(yi − ∆i) in the ideal case, where
∆i ≥ 0 denotes the output of the disambiguation network
D̃(xi), and ReLU(·) = max(·, 0) denotes the commonly
used rectified linear unit activation function. ReLU is used
here to ensure the disambiguation effort is only counted on
the candidate labels. Then we can learn a prediction network
F : Ωx → Ωz, i.e., a multi-label classifier, to predict the dis-

ambiguated ground truth labels for each instance.
Although the label indicator vectors in the training data

are provided as discrete values, it is difficult for either the
disambiguation network or the prediction network to di-
rectly produce discrete output values. Instead, by using a sig-
moid activation function on the last layer of each network,
D̃(x) and F (x) can predict the probability of each class la-
bel being the additive irrelevant label and the ground truth
label respectively. With the disambiguation network and pre-
diction network, we can perform partial multi-label learning
by minimizing the classification loss on training data S:

min
F,D̃

Lc(X,Y ;F, D̃) =
∑

(xi,yi)∼S

`c(F (xi), zi) (1)

s.t. zi = ReLU(yi −∆i), ∆i = D̃(xi), ∀(xi,yi) ∼ S

where zi denotes the disambiguated label confidence vector
with continuous values in [0, 1], which can be viewed as a
relaxation of a true label indicator vector, while `c(·, ·) de-
notes the cross-entropy loss between the predicted probabil-
ity of each label and its confidence of being a ground-truth
label. We expect that the disambiguation network and the
prediction network can coordinate with each other to mutu-
ally minimize this disambiguated classification loss.

Inverse Mapping with GANs
The prediction network can be viewed as an encoder that
maps data samples in the input feature space to the disam-
biguated label vectors. To enhance the label disambiguation
and hence improve multi-label classification, we propose to
conduct an inverse decoding mapping from label vectors
ẑ ∈ [0, 1]L in the continuous label vector space to samples in
the input feature space. In particular, we propose to deploy
a generative adversarial network (GAN) model to transform
continuous label vectors in the label space into samples in
the input feature space. The GAN model comprises a gen-
eration network G and a discrimination network D. Given a
label vector ẑ sampled from a prior distribution P (ẑ), which
can be viewed as a low-dimensional representation vector,
one can generate a sample x̂ using the generation network,
x = G(ẑ). A two-class discriminator D is used to discrimi-
nate the generated samples from the real samples in S. The
training of the GAN model is a minimax optimization prob-
lem over an adversarial loss function:

min
G

max
D
Ladv(G,D, S) =

[
Exi∼S [logD(xi)]+
Eẑ∼P (ẑ)[log(1−D(G(ẑ)))]

]
(2)

where the discriminatorD tries to maximally distinguish the
generated samplesG(ẑ) from the real data samples in S, and
the generator G tries to generate samples that are similar to
the real data as much as possible such that the discriminator
cannot tell the difference.

In theory, the samples generated by the adversarially
trained generator G can have an identical distribution with
the real data S (Goodfellow et al. 2014). To further ensure
the generator G can provide an inverse mapping function
from low-dimensional vectors in the label space to samples
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Algorithm 1 Minibatch based stochastic gradient descent
training algorithm for PML-GAN

Input: training set S; trade-off parameter β;
k– # of update steps for the discriminator.

for # of training iterations do
Sample a minibatch {(xi,yi)}mi=1 from training set S.
Sample n label vectors {ẑi}ni=1 from a prior P (ẑ).
Update the network parameters ofG, D̃, F by descend-

ing with their stochastic gradients:

∇Θ
G,D̃,F


1
n

∑n
i=1 β[log(1−D(G(ẑi)))]+

1
m

∑m
i=1

[
`c
(
F (xi),ReLU(yi−D̃(xi))

)
+

`g
(
G(ReLU(yi − D̃(xi))),xi

)]


for r=1:k do
Sample n label vectors {ẑi}ni=1 from a prior P (ẑ).
Update the parameters of the discrimination network
by ascending with its stochastic gradient:

∇ΘD β
[ 1
m

m∑
i=1

logD(xi) +
1

n

n∑
i=1

log(1−D(G(ẑ)))
]

end for
end for

in the feature space, we further propose to decode the dis-
ambiguated training label vectors into the training samples
S with G by deploying a generation loss:

Lg(G,S) =
∑

(xi,yi)∼S

`g(G(zi),xi), (3)

with zi = ReLU(yi − D̃(xi)), (4)

where `g(·, ·) measures the generation loss on each training
instance, which can be a least squares function. This genera-
tion loss can enhance the label disambiguation and improve
multi-label learning.

Learning with PML-GANs
By integrating the classification loss in Eq.(1), the adversar-
ial loss in Eq.(2), and the generation loss in Eq.(3) together,
we obtain the following minimax optimization problem for
the proposed PML-GAN model:

min
G,D̃,F

max
D

E(xi,yi)∼S

(
`c(F (xi), zi) + `g(G(zi),xi)

)
+

β
(
Exi∼S [logD(xi)] + Eẑ∼P (ẑ)[log(1−D(G(ẑ)))]

)
(5)

s.t. zi = ReLU(yi − D̃(xi)), ∀(xi,yi) ∼ S

where β is a trade-off hyperparameter that controls the rel-
ative importance of the adversarial loss; the objective func-
tion can be denoted as L(G, D̃, F,D). The learning of the
overall model corresponds to a minimax adversarial game,
which enhances the bi-directional mapping between the fea-
ture and label vector spaces, and consequently boosts multi-
label prediction performance.

Figure 3: Dependence graph of PML-GAN.

We perform training using a minibatch based stochastic
gradient descent algorithm. In each iteration of the training,
the minimization overG, D̃, F and the maximization overD
are conducted alternatively. The overall training algorithm is
presented in Algorithm 1.

Theoretical Results
In the proposed PML-GAN model, given the generator G,
the discriminator D is conditionally independent from the
predictor F and the disambiguator D̃. Between G,F and
D̃, G and F are conditionally independent from each other
given D̃. Their independence relationship can be illustrated
using the undirected dependence graph in Figure 3. Based on
these conditional independence relationships, we have the
following optimality results.

Proposition 1. For any G, D̃, and F , the optimal discrimi-
nator D is given by

D∗
G,D̃,F

(x) = D∗
G(x) = pS(x)/

(
pS(x) + pg(x)

)
(6)

where pS(·) and pg(·) denote the probability distributions of
real and generated data respectively.
Proof. Due to the conditional independence relationship be-
tween D and {F, D̃}, the optimal discriminator D only de-
pends on the generator G. Given fixed G, the optimal dis-
criminator can be derived in the same way as in the standard
GANs (Goodfellow et al. 2014, Proposition 1).
Proposition 2. Assume the model has sufficient capac-
ity. Let C(G, D̃, F ) = maxD L(G, D̃, F,D). Given fixed
D̃, the minimum of C(G, D̃, F ) is lower bounded by
E(xi,yi)∼S H

(
ReLU(yi− D̃(xi))

)
− β log 4, which can be

achieved when F (xi) = ReLU(yi − D̃(xi)), G(F (xi)) =
xi, and pg = pS .

Here H(·) denotes an entropy function. This proposition
suggests that F and G should be inverse mapping functions
for each other in the ideal optimal case.

Experiments
We conducted extensive experiments to validate the empiri-
cal performance of the proposed PML-GAN model. In this
section, we report our experimental setting and results.

Experimental Setting
Datasets. We conducted experiments on twelve multi-
label classification datasets. Three of them have existing
partial multi-label learning settings (mirflickr, music style
and music emotion (Fang and Zhang 2019)). For each of the
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Dataset #Inst. #Feats #Classes avg.#CLs Dataset #Inst. #Feats #Classes avg.#CLs
music emotion 6833 98 11 5.29 music style 6839 98 10 6.04
mirflickr 10433 100 7 3.35 image 2000 294 5 2,3,4
scene 2407 294 6 3,4,5 yeast 2417 103 14 9,10,11,12
enron 1702 1001 15 8,9,10,11,12,13 corel5k 5000 499 15 8,9,10,11,12,13
eurlex dc 8636 100 15 8,9,10,11,12,13 eurlex sm 12679 100 15 8,9,10,11,12,13
delicious 14000 500 15 8,9,10,11,12,13 tmc2007 28596 49060 15 8,9,10,11,12,13

Table 1: Information of the experimental data sets. The number of instances, features and classes are recorded. The “avg.#CLs”
column lists the average number of candidate labels in each PML set.

other nine datasets (Zhang and Zhou 2014), we transformed
it into a PML dataset by randomly adding irrelevant labels
into the candidate label set of each training instance. By
adding different numbers of irrelevant labels, for each
dataset we can create multiple PML variants with different
average numbers of candidate labels. Following the setting
of (Xie and Huang 2018), we also filtered out the rare labels
and kept at most 15 classes in each dataset. The detailed
characteristics of the processed datasets are given in Table 1.

Comparison Methods. We compared our proposed
method with five state-of-the-art PML methods and one
baseline multi-label learning method. We adopted a simple
but effective neural network based multi-label learning
method, ML-RBF (Zhang 2009), as a baseline method,
which performs PML by treating all the candidate labels as
ground-truth labels. Then we used five recently developed
PML methods for comparison, including the PML-LC
and PML-FP methods from (Xie and Huang 2018), the
PARTICLE-VLS and PARTICLE-MAP methods from
(Fang and Zhang 2019), and the PML-NI from (Xie and
Huang 2020).

Implementation. The proposed PML-GAN model has
four component networks, all of which are designed as mul-
tilayer perceptrons with Leaky ReLu activation for the mid-
dle layers. The disambiguator, predictor, and discrimina-
tor are all three-layer networks with sigmoid activation in
the output layer, while the generator is a five layer net-
work with Tanh activation in the output layer. We used the
Adam (Kingma and Ba 2014) optimizer in our implementa-
tion. The mini-batch size, m, is set to 64. The hyperparam-
eters k (the number of steps for discriminator update) and
n (the number of label vectors sampled) in Algorithm 1 are
set to 1 and 210 respectively. The hyperparameter β is cho-
sen from {0.001, 0.01, 0.1, 1, 10} based on the classification
loss value Lc in the training objective function; that is, the β
value that leads to the smallest training Lc loss will be cho-
sen. This is a heuristic parameter selection method we create
specifically for PML.

Comparison Results
We compared the proposed PML-GAN method with the
six comparison methods on the twelve datasets. For each
dataset, we randomly select 80% of the data for training
and use the remaining 20% for testing. We repeat each ex-
periment 10 times with different random partitions of the

datasets. The comparison test results in terms of four com-
monly used evaluation metrics (Hamming loss, ranking loss,
one error and average precision) (Zhang and Zhou 2014)
are reported in Table 2. The results are the means and stan-
dard deviations over the 10 repeated runs. We can see that
the methods specially developed for PML problems all out-
perform the baseline multi-label neural network classifier,
ML-RBF, in most cases. But it is difficult to beat the base-
line competitor on all the datasets with different evaluation
metrics. Among the total 48 cases over 12 datasets and 4
evaluation metrics, PML-NI, PARTICLE-VLS, PARTICLE-
MAP, PML-LC and PML-FP outperform ML-RBF in 39,
42, 45, 35 and 40 cases respectively. By contrast, the pro-
posed PML-GAN method outperforms ML-RBF consis-
tently across all the 48 cases with remarkable performance
gains. Even comparing with all the other five PML methods,
PML-GAN produced the best results in 40 out of the total 48
cases. Moreover, the performance gains yield by PML-GAN
over all the other methods are quite notable in many cases.
For example, in terms of average precision, PML-GAN out-
performs the best alternative comparison method by 4.6%,
4.8%, and 3.4% on eurlex dc, scene and image respectively.
These results clearly demonstrate the effectiveness of the
proposed PML-GAN model.

The results reported in Table 2 and discussed above are
produced on each dataset with a selected average number
of candidate labels. As shown in Table 1, we have multi-
ple PML variants with different numbers of candidate labels
for nine of the datasets in the list. In total this provides us
49 PML datasets. We hence also conducted experiments on
each of these 49 variant datasets, by comparing the proposed
PML-GAN with each of the other methods in terms of the 4
evaluation metrics. In total there are 196 comparison cases
for each pair of methods. For the comparison of “PML-GAN
vs other method” in each case, we conducted pairwise t-test
at significance level of p < 0.05. The win/tie/loss counts
in all cases are reported in Table 3. We can see that over-
all the proposed PML-GAN significantly outperforms PML-
NI, PARTICLE-VLS, PARTICLE-MAP, PML-LC, PML-
FP, and ML-RBF in 80.6%, 75%, 77%, 81.1%, 82.6%, and
90.8% of the cases respectively. This again validates the ef-
ficacy of the proposed method for PML.

Ablation Study
As shown in Eq.(5), the objective of PML-GAN contains
three parts: classification loss, generation loss and adver-
sarial loss. The generation loss and adversarial loss are in-

10572



Data set avg.#C.Ls PML-GAN PML-NI
PARTICLE

-VLS
PARTICLE

-MAP
PML-LC PML-FP ML-RBF

Hamming loss (the smaller, the better)
music emotion 5.29 .200±.004 .212±.003 .212±.004 .215±.004 .236±.003 .245±.004 .779±.004
music style 6.04 .115±.002 .116±.004 .121±.003 .175±.005 .126±.004 .126±.004 .856±.001
mirflickr 3.35 .170±.003 .167±.003 .178±.035 .189±.081 .202±.057 .202±.057 .748±.002
image 3 .202±.006 .210±.009 .234±.065 .269±.096 .264±.072 .267±.063 .754±.003
scene 4 .132±.007 .175±.003 .184±.037 .174±.035 .178±.029 .187±.038 .820±.001
yeast

10

.213±.008 .232±.004 .226±.004 .220±.008 .226±.008 .219±.009 .694±.003
enron .186±.003 .235±.005 .197±.032 .190±.036 .206±.027 .206±.027 .813±.004
corel5k .118±.001 .135±.003 .189±.012 .269±.027 .151±.008 .152±.008 .886±.001
eurlex dc .044±.001 .067±.001 .061±.001 .064±.004 .096±.001 .071±.001 .933±.001
eurlex sm .083±.002 .091±.008 .067±.001 .076±.002 .119±.006 .122±.002 .885±.001
delicious .249±.002 .260±.002 .260±.003 .290±.005 .290±.004 .290±.004 .712±.002
tmc2007 .084±.001 .089±.001 .090±.003 .110±.003 .103±.002 .103±.002 .857±.001
Ranking loss (the smaller, the better)
music emotion 5.29 .242±.007 .251±.007 .263±.008 .240±.007 .267±.009 .275±.010 .365±.010
music style 6.04 .145±.006 .140±.009 .163±.007 .147±.005 .215±.005 .150±.005 .242±.006
mirflickr 3.35 .124±.014 .124±.004 .227±.029 .129±.108 .160±.029 .143±.028 .195±.015
image 3 .191±.010 .217±.008 .239±.077 .250±.085 .291±.134 .217±.120 .251±.019
scene 4 .123±.009 .213±.010 .177±.049 .167±.060 .192±.032 .238±.056 .188±.014
yeast

10

.194±.011 .222±.005 .203±.007 .208±.012 .219±.011 .203±.008 .270±.007
enron .182±.012 .236±.013 .240±.078 .182±.029 .239±.048 .239±.047 .244±.010
corel5k .295±.011 .392±.009 .367±.032 .311±.008 .366±.035 .398±.025 .404±.082
eurlex dc .067±.005 .126±.010 .150±.004 .085±.004 .137±.008 .131±.001 .135±.003
eurlex sm .122±.007 .246±.037 .129±.007 .127±.009 .282±.007 .182±.008 .183±.003
delicious .258±.004 .287±.002 .314±.005 .276±.004 .277±.005 .276±.005 .316±.003
tmc2007 .070±.001 .077±.001 .096±.008 .095±.007 .082±.005 .080±.005 .153±.002
One error (the smaller, the better)
music emotion 5.29 .450±.028 .500±.014 .473±.016 .475±.018 .556±.028 .540±.027 .587±.019
music style 6.04 .347±.016 .355±.016 .374±.005 .399±.019 .409±.013 .408±.013 .385±.006
mirflickr 3.35 .236±.059 .307±.020 .165±.150 .229±.306 .300±.129 .298±.121 .338±.002
image 3 .342±.014 .401±.028 .369±.134 .387±.147 .542±.191 .549±.174 .398±.034
scene 4 .321±.022 .413±.018 .340±.078 .349±.082 .497±.089 .523±.118 .428±.022
yeast

10

.245±.017 .290±.009 .248±.019 .252±.018 .257±.017 .263±.027 .408±.023
enron .307±.035 .498±.024 .411±.101 .351±.040 .494±.039 .498±.038 .495±.019
corel5k .685±.015 .792±.016 .835±.025 .721±.035 .784±.029 .787±.024 .809±.015
eurlex dc .307±.013 .521±.015 .390±.016 .374±.014 .707±.014 .518±.011 .342±.008
eurlex sm .339±.013 .516±.019 .350±.014 .360±.015 .506±.031 .542±.018 .340±.005
delicious .368±.009 .415±.007 .366±.015 .414±.018 .401±.015 .399±.013 .450±.009
tmc2007 .202±.007 .214±.008 .194±.029 .267±.018 .235±.019 .236±.019 .388±.006
Average precision (the larger, the better)
music emotion 5.29 .621±.013 .598±.007 .605±.012 .612±.009 .574±.013 .568±.014 .506±.012
music style 6.04 .732±.010 .729±.012 .715±.009 .709±.009 .702±.008 .703±.008 .646±.010
mirflickr 3.35 .777±.027 .787±.008 .678±.027 .791±.202 .736±.043 .758±.039 .676±.048
image 3 .775±.010 .740±.013 .741±.090 .729±.086 .644±.131 .725±.119 .723±.021
scene 4 .801±.012 .688±.011 .750±.074 .753±.064 .689±.047 .710±.079 .728±.015
yeast

10

.732±.014 .701±.004 .724±.010 .714±.010 .721±.012 .728±.010 .634±.008
enron .665±.019 .580±.009 .595±.099 .661±.047 .556±.041 .575±.041 .560±.009
corel5k .441±.012 .345±.010 .377±.025 .415±.008 .345±.027 .384±.021 .334±.008
eurlex dc .797±.009 .704±.022 .692±.013 .751±.008 .693±.019 .716±.014 .710±.000
eurlex sm .720±.009 .558±.023 .705±.009 .683±.011 .438±.016 .679±.011 .656±.000
delicious .630±.006 .597±.003 .596±.007 .601±.008 .607±.007 .608±.006 .576±.004
tmc2007 .821±.002 .807±.003 .799±.013 .759±.013 .793±.012 .794±.012 .662±.003

Table 2: Comparison results of in terms of Hamming loss, ranking loss, one error and average precision. The best results are
presented in bold font. The average number of candidate labels is presented under the column “avg.#C.Ls”.
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Evaluation Metric PML-GAN vs –
PML-NI PARTICLE-VLS PARTICLE-MAP PML-LC PML-FP ML-RBF

Hamming loss 36/11/2 39/6/4 38/9/2 40/7/2 40/3/6 45/4/0
Ranking loss 38/11/0 38/9/2 38/8/3 38/8/3 40/5/4 44/3/2
One error 44/5/0 33/12/4 39/7/3 41/8/0 40/9/0 43/6/0
Average precision 40/8/1 37/8/4 36/10/3 40/6/3 42/4/3 46/3/0
Total 158/35/3 147/35/14 151/34/11 159/29/8 162/21/13 178/16/2

Table 3: Win/tie/loss counts of pairwise t-test (with p < 0.05 ) between PML-GAN and each comparison method over all
dataset variants with different numbers of candidate labels.

Data set PML-GAN CLS-GEN CLS-GAN CLS-ML PML-GAN CLS-GEN CLS-GAN CLS-ML
Hamming loss (the smaller, the better) Ranking loss (the smaller, the better)
music emotion .200±.004 .203±.003 .202±.004 .207±.004 .242±.007 .249±.007 .244±.007 .250±.010
music style .115±.002 .118±.003 .117±.004 .121±.001 .145±.006 .147±.007 .149±.007 .155±.004
mirflickr .170±.003 .173±.004 .174±.005 .177±.004 .124±.014 .131±.019 .133±.021 .136±.019
image .202±.006 .206±.005 .204±.008 .220±.006 .191±.010 .195±.010 .196±.016 .201±.010
scene .132±.007 .140±.010 .138±.005 .148±.008 .123±.009 .130±.007 .137±.010 .140±.020
yeast .213±.008 .219±.007 .216±.003 .222±.006 .194±.011 .199±.008 .195±.005 .203±.006
enron .186±.003 .273±.015 .277±.014 .281±.012 .182±.012 .185±.009 .188±.009 .189±.009
corel5k .118±.001 .118±.001 .120±.003 .122±.003 .295±.011 .304±.013 .299±.007 .306±.015
eurlex dc .044±.001 .050±.001 .047±.001 .054±.001 .067±.005 .068±.004 .068±.005 .071±.008
eurlex sm .083±.002 .085±.001 .086±.001 .088±.002 .122±.007 .125±.003 .125±.005 .127±.004
delicious .249±.002 .251±.003 .252±.001 .255±.002 .258±.004 .261±.007 .259±.005 .269±.003
tmc2007 .084±.001 .086±.001 .086±.002 .091±.001 .070±.001 .073±.002 .072±.001 .075±.003
Average precision (the larger, the better) One error (the smaller, the better)
music emotion .621±.013 .608±.013 .612±.014 .605±.013 .450±.028 .465±.019 .469±.029 .478±.028
music style .732±.010 .725±.012 .726±.011 .720±.004 .347±.016 .359±.021 .356±.018 .367±.007
mirflickr .777±.027 .765±.037 .761±.036 .754±.036 .336±.059 .384±.084 .399±.067 .417±.086
image .775±.010 .766±.009 .766±.018 .758±.011 .342±.014 .359±.016 .359±.029 .364±.021
scene .801±.012 .793±.009 .783±.013 .780±.021 .321±.022 .330±.017 .349±.020 .350±.027
yeast .732±.014 .723±.012 .730±.008 .715±.009 .245±.017 .262±.025 .247±.012 .264±.018
enron .665±.019 .658±.017 .648±.028 .645±.021 .307±.035 .328±.024 .347±.049 .350±.035
corel5k .441±.012 .431±.015 .439±.009 .428±.017 .685±.015 .705±.023 .690±.018 .707±.020
eurlex dc .797±.009 .790±.009 .792±.009 .779±.015 .307±.013 .310±.015 .312±.015 .315±.021
eurlex sm .720±.009 .713±.005 .713±.008 .711±.005 .339±.013 .351±.009 .350±.011 .356±.010
delicious .630±.006 .627±.009 .626±.005 .620±.002 .369±.009 .375±.015 .381±.012 .386±.003
tmc2007 .821±.002 .817±.003 .818±.004 .815±.004 .202±.007 .205±.004 .206±.007 .210±.007

Table 4: Comparison results of PML-GAN and its three ablation variants.

tegrated to assist the predictor training. To investigate and
validate the contribution of the generation loss and adver-
sarial loss, we conducted an ablation study by comparing
PML-GAN with three of its ablation variants: (1) CLS-GEN,
which drops the adversarial loss; (2) CLS-GAN, which
drops the generation loss; and (3) CLS-ML, which only uses
the classification loss by dropping both the adversarial loss
and generation loss. The comparison results are reported in
Table 4. We can see that comparing to the full model, all
three variants produced inferior results in general. Among
the three variants, both CLS-GEN and CLS-GAN outperform
CLS-ML in most cases. This suggests that both the genera-
tion loss and the adversarial loss are critical terms for the
proposed model. Moreover, even the baseline variant CLS-
ML still produces some reasonable PML results. This sug-

gests the integration of our proposed prediction network and
disambiguation network is also effective.

Conclusion
In this paper, we proposed a novel adversarial model for
PML. The proposed model comprises four component net-
works, which form an encoder-decoder framework to im-
prove noise label disambiguation and boost multi-label
learning performance. The training problem forms a mini-
max adversarial optimization, which is solved using an alter-
native min-max procedure with minibatch stochastic gradi-
ent descent. We conducted extensive experiments on multi-
ple PML datasets. The results show that the proposed model
outperforms all the comparison methods and achieves the
state-of-the-art PML performance.
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A Appendix
A.1 Proof for Proposition 2
Proof. This proposition suggests that F and G should be
inverse mapping functions for each other in the ideal optimal
case. Based on the solution for the optimal discriminatorD∗

in Proposition 1, we have:
Ladv(G,D

∗, S)

= Ex∼pS [logD
∗
G(x)] + Eẑ∼P (ẑ)[log(1−D∗G(G(ẑ)))]

= Ex∼pS [logD
∗
G(x)] + Ex∼pg [log(1−D

∗
G(x))]

= Ex∼pS

[
log

pS(x)

pS(x) + pg(x)

]
+ Ex∼pg

[
log

pg(x)

pS(x) + pg(x)

]
Hence,
C(G, D̃, F ) = max

D
L(G, D̃, F,D)

=


E(xi,yi)∼S `c(F (xi),ReLU(yi − D̃(xi)))+

E(xi,yi)∼S `g(G(ReLU(yi − D̃(xi))),xi)+

β
(
Ex∼pS [log

pS(x)
pS(x)+pg(x)

] + Ex∼pg [log
pg(x)

pS(x)+pg(x)
]
)


Note given fixed D̃, F is conditionally independent from
G and D. Hence the minimization of C(G, D̃, F ) over F
can be independently conducted from the minimization over
G. Let zi = ReLU(yi−D̃(xi)). With the cross-entropy loss
function `c(·, ·), we have:

min
F

C(G, D̃, F )

≡ min
F

E(xi,yi)∼S `c
(
F (xi),ReLU(yi − D̃(xi))

)
≡ min

F
E(xi,yi)∼S

[
−z>i logF (xi)−(1−zi)>log(1−F (xi))

]
≡ min

F
E(xi,yi)∼S H(zi) + KL(zi ‖ F (xi))

≥ E(xi,yi)∼S H(zi) (7)
whereH(·) denotes the entropy over a binomial distribution
vector and KL(·) denotes the KL-divergence between two
sets of binomial distributions. Assume sufficient capacity for
F , in the ideal case the minimum can be reached when the
predictor obtains the same distributions as the zi; that is
F ∗(xi) = zi = ReLU(yi − D̃(xi)), ∀(xi,yi) ∈ S (8)
Next let’s consider the minimization problem over G.

Note G is involved in both the generation loss and adver-
sarial loss. If we could find solutions that lead to minimals
in both losses separately, we can guarantee a minimal in the
united loss. Based on (Goodfellow et al. 2014, Theorem 1),
the adversarial loss part in C(G, D̃, F ) can be rewritten as
βLadv

= β
(
Ex∼pS [log

pS(x)

pS(x) + pg(x)
] + Ex∼pg [log

pg(x)

pS(x) + pg(x)
]
)

= β
(

KL(pS ,
pS + pg

2
)− log 2 + KL(pg,

pS + pg
2

)− log 2
)

= β
(

KL(pS ,
pS + pg

2
) + KL(pg,

pS + pg
2

)− log 4
)

≥ −β log 4 (9)

where the minimal can be achieved when pS = pg which
leads to zero KL-divergence values. The generation loss
part (with least squares loss function) in C(G, D̃, F ) can be
rewritten as

E(xi,yi)∼S

(
`g(G(ReLU(yi − D̃(xi))),xi)

)
= E(xi,yi)∼S ‖G(ReLU(yi − D̃(xi)))− xi‖2

≥ 0 (10)

where the minimal 0 can only be achieved when

G(ReLU(yi − D̃(xi))) = xi, ∀(xi,yi) ∈ S (11)

The optimal condition above can be satisfied simultaneously
together with the condition pg = pS . Together with the
condition in (8), these conditions lead to a lower bound of
C(G, D̃, F ) and the proposition is proved.

A.2 Network Architecture Information for the
PML-GAN Model
The proposed PML-GAN model has four component net-
works, and all of them are designed as multilayer percep-
trons with LeakyReLu activation function for the middle
layers. The disambiguator, predictor, and discriminator are
three-layer networks with sigmoid activation in the output
layer, while the generator is a five layer network with Tanh
activation in the output layer. Batch normalization is also
deployed in the middle three layers of the generation net-
work. The detailed input and output dimension information
for each layer of the networks is given in Table 5.

Generator G
Input Output BN Act.
ẑ 512 × LReLU

512 1024
√

LReLU
1024 256

√
LReLU

256 128
√

LReLU
128 dim × Tanh

Discriminator D
data 512 – LReLU
512 256 – LReLU
256 1 – Sigmoid

Disambiguator D̃
x 512 – LReLU

512 256 – LReLU
256 class num – Sigmoid

Predictor F
x 512 – LReLU

512 256 – LReLU
256 class num – Sigmoid

Table 5: The network architecture of PML-GAN. BN: Batch
normalization; LReLU: Leaky rectified linear unit; Act.: Ac-
tivation function; dim: Feature dimension of training sam-
ples x; class num: the number of class labels.
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