
Amata: An Annealing Mechanism for Adversarial Training Acceleration

Nanyang Ye,1 Qianxiao Li ,2, 5 Xiao-Yun Zhou, 3 Zhanxing Zhu * 4

1 Shanghai Jiao Tong University, Shanghai, China
2 National University of Singapore, Singapore

3 The Hamlyn Centre for Robotic Surgery, Imperial College, London, United Kingdom
4 Peking University, Beijing, China

5 Institute of High Performance Computing, A*STAR, Singapore
ynylincoln@sjtu.edu.cn, qianxiao@nus.edu.sg, xiaoyun.zhou27@gmail.com, zhanxing.zhu@pku.edu.cn.

Abstract

Despite the empirical success in various domains, it has been
revealed that deep neural networks are vulnerable to mali-
ciously perturbed input data that much degrade their perfor-
mance. This is known as adversarial attacks. To counter ad-
versarial attacks, adversarial training formulated as a form
of robust optimization has been demonstrated to be effec-
tive. However, conducting adversarial training brings much
computational overhead compared with standard training. In
order to reduce the computational cost, we propose an anneal-
ing mechanism, Amata, to reduce the overhead associated
with adversarial training. The proposed Amata is provably
convergent, well-motivated from the lens of optimal control
theory and can be combined with existing acceleration meth-
ods to further enhance performance. It is demonstrated that on
standard datasets, Amata can achieve similar or better robust-
ness with around 1/3 to 1/2 the computational time compared
with traditional methods. In addition, Amata can be incorpo-
rated into other adversarial training acceleration algorithms
(e.g. YOPO, Free, Fast, and ATTA), which leads to further
reduction in computational time on large-scale problems.

Introduction
Deep neural networks were found to be vulnerable to ma-
licious perturbations on the original input data. While the
perturbations remain almost imperceptible to humans, they
can lead to wrong predictions over the perturbed exam-
ples (Szegedy et al. 2013; Goodfellow, Shlens, and Szegedy
2014; Akhtar and Mian 2018). These maliciously crafted
examples are known as adversarial examples, which have
caused serious concerns over the reliability and security of
deep learning systems, particularly when deployed in life-
critical scenarios, such as autonomous driving systems and
medical domains.

Several defense mechanisms have been proposed, such
as input reconstruction (Meng and Chen 2017; Song et al.
2018), input encoding (Buckman et al. 2018), and adversar-
ial training (Goodfellow, Shlens, and Szegedy 2014; Tramèr
et al. 2017; He et al. 2017; Madry et al. 2017). Among
these methods, adversarial training is one of the most ef-
fective defense methods so far. It can be posed as a ro-

*Corresponding author. The full appendix is available on Arxiv.
Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

bust optimization problem (Ben-Tal and Nemirovski 1998),
where a min-max optimization problem is solved (Madry
et al. 2017; Kolter and Wong 2017). For example, given a
C-class dataset S = {(x0

i , yi)}ni=1 with x0
i ∈ Rd as a nor-

mal or clean example in the d-dimensional input space and
yi ∈ RC as its associated one-hot label, the objective of
adversarial training is to solve the following min-max opti-
mization problem:

min
θ

1

N

N∑
i=1

max
‖xi−x0

i‖≤ε
�(hθ(xi), yi) (1)

where hθ : Rd → RC is the deep neural network (DNN)
function, � is the loss function and ε controls the maximum
perturbation magnitude. The inner maximization problem is
to find an adversarial example xi, within the ε-ball around
a given normal example x0

i that maximizes the surrogate
loss � for classification error. The outer minimization prob-
lem is to find model parameters that minimizes the loss � on
the adversarial examples {xi}ni=1 that are generated from
the inner maximization. Compared with a rich body of non-
convex optimization algorithms for neural networks (Good-
fellow, Bengio, and Courville 2016; Kingma and Ba 2014;
Pan and Jiang 2015), designing efficient algorithm to solve
the min-max problem to achieve robustness is relatively less
studied.

The inner maximization problem is typically solved by
projected gradient descent (PGD). PGD perturbs a normal
example x0 by iteratively updating it in approximately the
steepest ascent direction for a total of K times. Each ascent
step is modulated by a small step size and a projection step
back onto the ε-ball of x0 to prevent the updated value from
falling outside the ε-ball of x0 (Madry et al. 2017):

xk =
∏(

xk−1 + α · sign(∇x�(hθ(x
k−1), y)

)
(2)

where α is the step size,
∏
(·) is the orthogonal projection

function onto {x′ : ‖x0−x′‖ ≤ ε}, and xk is the adversarial
example at k-th step 1.

A major issue limiting the practical applicability of adver-
sarial training is the huge computational burden associated

1Note that our methodology can also be applied to single step
methods, such as Fast. We take PGD as the first example for clarity.

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

10691

with the inner maximization steps: we need to iteratively
solve the inner maximization problem to find good adversar-
ial examples for DNN to be robust. Recently, to accelerate
adversarial training, a few methods have been proposed. For
example, YOPO estimated the gradient on the input by only
propagating the first layer (Zhang et al. 2019), parallel ad-
versarial training utilized multiple graphics processing units
(GPUs) for acceleration (Bhat and Tsipras 2019) and run-
ning PGD-1 for multiple steps to reuse gradients (Shafahi
et al. 2019).

Orthogonal to these approaches, in this paper we consider
accelerating adversarial training by adjusting the number of
inner maximization steps as training proceeds. This is in line
with an empirical observation made by (Wang et al. 2019),
indicating that we might not need to find ”good” solutions
to the inner maximization at the initial stages of adversar-
ial training to achieve better robustness. Hence, by vary-
ing the extent the inner maximization problem is solved, we
may reduce the amount of wasted computation. This forms
the basis of our proposed Annealing Mechanism for Adver-
sarial Training Acceleration, named as Amata. Compared
with traditional methods, Amata takes 1/3 to 1/2 the time to
achieve comparable or slightly better robustness. Moreover,
the general applicability of annealing procedures allows for
effective combination of Amata with existing acceleration
approaches. On the theoretical side, Amata is shown to con-
verge. Furthermore, as adaptive training algorithms can of-
ten be interpretted as optimal control problems (Li, Tai, and
E 2017, 2019), we also develop a control theoretic view-
point of general adversarial training. Under this framework,
we can motivate the qualitative form of the Amata’s anneal-
ing scheme based on loss landscapes. Furthermore, a new
criterion based on the Pontryagin’s maximum principle can
also be derived to quantify the approximate optimality of
annealing schedules.

In summary, our contributions are as follows:

1. We propose an adversarial training algorithm, Amata,
based on annealing the inner maximization steps to re-
duce computation. The method is shown to be effective on
benchmarks, including MNIST, CIFAR10, Caltech256,
and the large-scale ImageNet dataset.

2. As Amata is largely orthogonal to existing acceleration
methods for adversarial training, it can be easily com-
bined with them to further decrease computation. The
combination of Amata with YOPO (Zhang et al. 2019),
with adversarial training for free (Shafahi et al. 2019),
with fast adversarial training (Wong, Rice, and Kolter
2020), and with adversarial training with transferable ad-
versarial examples (Zheng et al. 2020) is demonstrated.

3. On the theoretical side, we prove the convergence of
Amata. Moreover, we develop a general optimal control
framework for annealed adversarial training, from which
we can use the optimal control to qualitatively and quan-
titatively justify the proposed annealing schedule. This
framework is also potentially useful as a basic formulation
for future work on adaptive adversarial training methods.

Accelerating Adversarial Training by
Annealing

In this section, we first introduce the proposed Amata, which
aims to balance the computational cost and the accuracy of
solving the inner maximization problem. A proof of the con-
vergence of the algorithm can be found in the Appendix.
Moreover, we introduce an optimal control formulation of
general annealed adversarial training, from which one can
elucidate the motivation and working principles of Amata,
both qualitatively and quantitatively.

Proposed Annealing Adversarial Training
Algorithm

Algorithm 1 An instantatiation of Amata for PGD

Input: T : training epochs; Kmin/Kmax: the mini-
mal/maximal number of adversarial perturbations; θ: pa-
rameter of neural network to be adversarially trained; B:
mini-batch; α: step size for adversarial training; η: learn-
ing rate of neural network parameters. τ : constant, maxi-
mum perturbation:ε.
Initialization θ = θ0
for t = 0 to T − 1 do

Compute the annealing number of adversarial perturba-
tions: Kt = Kmin + (Kmax −Kmin) · t

T
Compute adversarial perturbation step size: αt =

τ
Kt

for each mini-batch x0
B do

for k = 1 to Kt do
Compute adversarial perturbations:

xk
B = xk−1

B + αt · sign(∇x�(hθ(x
k
B), y),

xk
B = clip(xk

B,x
0
B − ε,x0

B + ε)

end for
θt+1 = θt − η∇θ�(hθt(x

Kt

B), y)
end for

end for
Collect θT as the parameter of adversarially-trained neu-
ral network.

To set the stage we first summarize the proposed algo-
rithm (Amata) in Algorithm 1. The intuition behind Amata is
that, at the initial stage, the neural network focuses on learn-
ing features, which might not require very accurate adversar-
ial examples. Therefore, we only need a coarse approxima-
tion of the inner maximization problem solutions. With this
consideration, a small number of update steps K with a large
step size α is used for inner maximization at the beginning,
and then gradually increase K and decrease α to improve
the quality of inner maximization solutions. This adaptive
annealing mechanism would reduce the computational cost
in the early iterations while still maintaining reasonable ac-
curacy for the entire optimization. Note that this algorithm
is only an instantiation of this mechanism on PGD and the
mechanism can also be seamlessly incorporated into other
acceleration algorithms. This will be demonstrated later2.

2Amata can be also applied to other algorithms, such as YOPO,

10692

Next, we will show the sketch for proving the conver-
gence of the algorithm with details in the Appendix. We
denote x∗

i (θ) = argmaxxi∈X i�(θ,xi) where �(θ,xi) is
a short hand notation for the classification loss function
�(hθ(xi), yi), and X i is the permitted perturbation range for
xi. Before we prove the convergence of the algorithm, we
have the following assumptions which are commonly used
in literature for studying convergence of deep learning algo-
rithms (Gao et al. 2019; Wang et al. 2019).

Assumption 1. The function �(θ,x) satisfies the gradient
Lipschitz conditions:

supx ‖∇θ�(θ,x)−∇θ�(θ
∗,x)‖2 ≤ Lθθ ‖θ − θ∗‖2

supθ ‖∇θ�(θ,x)−∇θ�(θ,x
∗)‖2 ≤ Lθx ‖x− x∗‖2

supx ‖∇x�(θ,x)−∇x�(θ
∗,x)‖2 ≤ Lxθ ‖θ − θ∗‖2

where Lθθ , Lθx, and Lxθ are positive constants. Assump-
tion 1 was used in (Sinha, Namkoong, and Duchi 2018;
Wang et al. 2019).

Assumption 2. The function �(θ,x) is locally μ-strongly
concave in X = {x :

∥∥x− x0
i

∥∥
∞ ≤ ε} for all i ∈ [n], i.e.,

for any x1 , x2 ∈ Xi:

�(θ,x1) ≤ �(θ,x2)+〈∇x�(θ,x2),x1−x2〉−μ

2
‖x1 − x2‖22

where μ is a positive constant which measures the curva-
ture of the loss function. This assumption was used for an-
alyzing distributional robust optimization problems (Sinha,
Namkoong, and Duchi 2018).

Assumption 3. The variance of the stochastic gradient g(θ)
is bounded by a constant σ2 > 0:

E[‖g(θ)−∇L(θ)‖22] ≤ σ2

where ∇L(θ) = ∇θ

(∑N
i=1 �(θ,x

∗
i)
)

is the full gradient.

The Assumption 3 is commonly used for analyzing
stochastic gradient optimization algorithms.

We denote the objective function in Equation 1 as L(θ),
its gradient by ∇L(θ), the optimality gap between the ini-
tial neural network parameters and the optimal neural net-
work parameters Δ = L(θ0) − minθ L(θ), the maximum
distance between the output adversarial example generated
by Amata and the original example as δ, and T as the num-
ber of iterations. Then, we have the following theorem for
convergence of the algorithm:

Theorem 1 (Convergence of Amata). , If the step size of

outer minimization is ηt = min(1/β,
√

Δ
TLσ2). Then, after

T iterations, we have:

1

T

T−1∑
t=0

E[‖∇L(θt)‖22] ≤ 4σ

√
βΔ

T
+ 5L2

θxδ
2

where σ is the bound for variance between the batch gradi-
ent and the stochastic gradient and β = LθxLxθ/μ + Lθθ

is a constant.

Free, and Fast, we use PGD as an example for clarity.

The detailed notations, assumptions and proof are shown
in the Appendix due to limited space. This theorem proves
that our algorithm can converge under a suitable selection of
learning rate.

The remainder of this section serves to motivate and
justify, both qualitatively and quantitatively, the annealing
method in Amata from an optimal control viewpoint. We
will try to answer this question in the following sections.

How good is the annealing scheduling in terms of adver-
sarial training acceleration?

We start with a general formulation of annealed adversar-
ial training as an optimal control problem.

Optimal Control Formulation of Annealed
Adversarial Training
In essence, the PGD-based adversarial training algorithm
(Madry et al. 2017) is a result of a number of relaxations of
the original min-max problem in Eq. (1), which we will now
describe. For simplicity of presentation, let us consider just
one fixed input-label pair (x0, y), since the N -sample case
is similar. The original min-max adversarial training prob-
lem is given in (1) with N = 1. The first relaxation is to
replace the outer minimization with gradient descent so that
we obtain the iteration

θt+1 = θt − η∇θ max
{x:‖x−x0‖≤ε}

�(hθt(x), y). (3)

Then, the remaining maximization in each outer iteration
step is replaced by an abstract algorithm Au,θ : Rd → Rd

which solves the inner maximization approximately. Here,
we assume that the algorithm depends on the current param-
eters of our neural network θ, as well as hyper-parameters
u which takes values in a closed subset G of an Euclidean
space. No further assumptions are placed on G, which may
be a continuum, a countable set, or even a finite set.

This relaxation leads to the following iterations3

θt+1 = θt − η∇θ�(hθt
(Aθt,ut

), y). (4)

Eq. (4) represents a general formulation of annealed adver-
sarial, of which Algorithm 1 is an example with Aθt,ut

be-
ing the inner PGD loop and ut = {αt,Kt} are the hyper-
parameters we pick at each t step. The function t 	→ ut is an
annealing schedule for the hyper-parameters. How to pick
an optimal schedule can be phrased as an optimal control
problem.

To make analysis simple, we will take a continuum ap-
proximation assuming that the outer loop learning rate η is
small. This allows us to replace (4) by an ordinary differen-
tial equation or gradient flow with the identification s ≈ tη:

θ̇s = −∇θ�(hθs(Aθs,us), y). (5)

Here, the time s is a continuum idealization of the outer loop
iterations on the trainable parameters in the model. We con-
sider two objectives in designing the annealing algorithm:

3Here we assume that the gradient with respect to θ is the partial
derivative with respect to the parameters of the network hθ and θt
in Aθt,ut is held constant. This is the case for the PGD algorithm.
Alternatively, we can also take the total derivative, but this leads to
different algorithms.

10693

on a training interval [T1, T2] in the outer loop, we want to
minimize the loss under adversarial training measured by a
real-valued function Φ(θ) while also minimizing the train-
ing cost associated with each inner algorithm loop under
the hyper-parameter u, which is measured by another real-
valued function R(u). An optimal annealing algorithm can
then be defined as a solution to the following problem:

min
uT1:T2

Φ(θT) +

∫ T2

T1

R(us)ds

subject to: θ̇t = F (θs,us)

and F (θs,us) := −∇θ�(hθs
(Aθs,us

), y),

(6)

where we have defined the shorthand uT1:T2
= {us : s ∈

[T1, T2]}. In this paper, we take Φ to be the DNN’s predic-
tion loss given an adversarial example (adversarial robust-
ness), and set R(us) = γKs, where Ks is the number of
inner PGD steps at outer iteration number s, and γ is the
coefficient for trade-off between adversarial robustness and
training time. This is to account for the fact that when Ks

increases, the cost of the inner loop training increases ac-
cordingly. The integral over s of R is taken so as to account
for the total computational cost corresponding to a choice
of hyper-parameters {us}. The objective function taken as
a sum serves to balance the adversarial robustness and com-
putational cost, with γ as a balancing coefficient.

Problem (6) belongs to the class of Bolza problems in op-
timal control, and its necessary and sufficient conditions for
optimality are well-studied. In this paper, we will use a nec-
essary condition, namely the Pontryagin’s maximum princi-
ple, in order to motivate our annealing algorithm and derive
a criterion to test its approximate optimality. For more back-
ground on the theory of calculus of variations and optimal
control, we refer the reader to (Boltyanskii, Gamkrelidze,
and Pontryagin 1960; Bertsekas et al. 1995).

Theorem 2 (Pontryagin’s Maximum Principle (PMP)). Let
u∗
T1:T2

be a solution to (6). Suppose F (θ,u) is Lipschitz in
θ and measurable in u. Define the Hamiltonian function

H(θ,p,u) = p�F (θ,u)−R(u) (7)

Then, there exists an absolutely continuous co-state process
p∗
T1:T2

such that

θ̇∗
s = F (θ∗

s ,u
∗
s) θ∗

T1
= θT1

(8)

ṗ∗
s = −∇θH(θ∗

s ,p
∗
s,u

∗
s) p∗

T2
= −∇θΦ(θ

∗
T2
) (9)

H(θ∗
s ,p

∗
s,u

∗
s) ≥ H(θ∗

s ,p
∗
s,v) ∀v ∈ G, s ∈ [T1, T2]

(10)

In short, the maximum principle says that a set of optimal
hyper-parameter choices {u∗

s} (in our specific application,
these are the optimal choices of inner-loop hyper-parameters
as the training proceeds) must globally maximize the Hamil-
tonian defined above for each outer iteration. The value of
the Hamiltonian at each layer depends in turn on coupled
ODEs involving the states and co-states. This statement is
especially appealing for our application because unlike first-
order gradient conditions, the PMP holds even when our
hyper-parameters can only take a discrete set of values, or
when there are non-trivial constraints amongst them.

We now show how the optimal control formulation and
the PMP motivates and justifies the proposed Amata both
qualitatively and quantitatively.

Figure 1: (Better viewed in the zoom-in mode) Visualization
of inner maximizations landscape and PGD-40, PGD-2, and
Amata’s trajectories at Epoch 1 (Left) and Epoch 10 (Right).
K is the Amata’s number of steps and the numerics indi-
cate the adversarial loss obtained by different methods (the
higher the better for adversarial perturbations). Applying
standard PGD-2 for acceleration cannot find strong adver-
sarial example at Epoch 10. However, Amata can adaptively
balance the number of steps and the step size to achieve good
trade-off between time costs and robustness as justified be-
fore by theoretic analysis. More details are in the Appendix.

Qualitative Justification of Amata via Landscape
Analysis
We now show that the form of an effective annealing
schedule depends on how the loss landscape with respect
to the data (i.e. landscape for the inner loop maximiza-
tion) changes as training proceeds. Let us first visualize the
change in landscape for actual neural network training using
a similar method as (Shafahi et al. 2019). In Figure 1, we ob-
serve that as the outer training proceeds, the loss landscape
with respect to the data becomes steeper, and thus we require
smaller step sizes and/or more steps in the inner maximiza-
tion to find good quality adversarial examples.

Let us now make this observation more precise using the
maximum principle. In general, it is not possible to solve the
PMP Eq. (8-10) in closed form. However, we can consider
representative loss landscapes qualitatively similar to Fig. 1
where such equations are solvable in order to motivate our
proposed algorithm. To this end, consider a 1D optimization
problem with loss function

�(θ, x) =
θ2

2
− (x− θ)2

θ2 + 1
, (11)

where x plays the role of data and θ plays the role of train-
able parameters. We will assume that the data point x = 0

so that the non-robust loss is l(θ, 0) = θ2

2 + 1
θ2+1 −1, which

has two minima at θ = ±
√√

2− 1. However, the robust
loss is �̃(θ) = maxx∈R l(θ, x) = 1

2θ
2, which has a unique

minimum at θ = 0. The key motivation behind this example
is the fact that the loss landscape for x becomes more steep
(i.e. |d�/dx| increases) as training in θ proceeds towards the
unique minimum of the robust loss at 0, just like in actual

10694

adversarial training in Figure 1. Effectively, this means that
as training proceeds, it becomes more important to ensure
the stability/convergence of the inner loop training. Given a
limited computational budget, one should then allocate more
of them towards the later part of training, hence giving rise
to an annealing schedule that gradually increases the com-
plexity of the inner loop iterations. Indeed, this can be made
precise for this example - if we apply two-loop adversar-
ial training with Kt inner loop steps at step size αt (with
τ = αtKt fixed, c.f. Algorithm 1) to �, we can solve the
PMP explicitly in this case to obtain the optimal schedule
for Kt.

K∗
t =

τ

α∗
t

=
2τ

θ20e
−2t + 1

=
2τ

θ20 + 1
+

(
4θ20τ

(θ20 + 1)
2

)
t+O(t2),

(12)
where the last step is valid for small t. This is a schedule that
gradually increases the number of inner maximization steps
as the outer loop t proceeds, and motivates our annealing
choice in Amata. Note that this example is qualitative, so we
do not adopt an identical schedule in Amata, but a linear ap-
proximation of it (right hand side in (12)) that also increases
in time. It is clear from the derivation that the origin of this
increasing schedule is that the curvature lxx(θ, x) increases
as θ → θ∗ = 0, hence this motivates the Amata algorithm in
view of the numerical observations in Fig 1.

Quantitative Justification of Amata via a Criterion
of Approximate Optimality
Besides qualitative motivations, it is desirable to have a cri-
terion to test the approximate optimality of any chosen an-
nealing schedule. In this subsection, we develop a quantita-
tive criterion for this purpose, based on the PMP. Given any
hyper-parameter choice uT1:T2 over the training interval, let
us define its “distance” from optimality as

C(uT1:T2
) =

1

T2 − T1

∫ T2

T1

max
v∈G

H(θu
s ,p

u
s ,v)

−H(θu
s ,p

u
s ,us)ds (13)

where {θu
s ,p

u
s : s ∈ [T1, T2]} represents the solution of

the Eq. (8) and (9) with us in place of u∗
s . Observe that

C(uT1:T2) ≥ 0 for any uT1:T2 with equality if and only
if uT1:T2 satisfies the PMP for almost every s ∈ [T1, T2].
Hence, C can be used as a measure of deviation from op-
timality. When C is small, our annealing strategy {us} is
close to at least a locally optimal strategy, where as when it
is large, our annealing strategy is far from an optimal one.
For ease of calculation, we can further simplify C by Taylor
expansions, assuming T2 − T1 = η is small, yielding (See
Appendix)

C(ut:t+η) ≈ max
α,K

{‖∇θ�(hθt [Aθt,α,K(x)], y)‖2 − γK
}

− (‖∇θ�(hθt [Aθt,αt,Kt(x)], y)‖2 − γKt

)
(14)

with Aθt,α,K denoting the inner PGD loop starting from
x with K steps and step size α. Criterion (14) is a greedy
version of the general criterion derived from the maximum

principle. It can be used to either evaluate the near-term op-
timality of some choice of hyper-parameters u, or to find an
approximately optimal hyperparameter greedily by solving
C(u, t) = 0 for u, which amounts to maximizing the first
term. In this paper, we use Bayesian optimization4 to per-
form the maximization in (14) to evaluate strategies from
the controllable space G.

Comparison with FOSC Criterion: (Wang et al. 2019)
proposed an empirical criterion to measure the convergence
of inner maximization:

FOSC(x) = ε ‖∇x�(hθ(x), y)‖− 〈x−x0,∇x�(hθ(x), y)〉
(15)

There are some similarities between the proposed crite-
rion and FOSC when the computational cost term R is not
considered. For example, when the stationary saddle point
is achieved, both the proposed criterion and FOSC reach the
minimum. However, the proposed criterion is different from
FOSC in the following aspects: 1) The proposed criterion
is derived from the optimal control theory, whereas FOSC is
concluded from empirical observations. 2) The proposed cri-
terion takes computation costs into consideration, whereas
FOSC only considers the convergence of adversarial train-
ing. 3) The proposed criterion is based on the gradient of
DNN parameters, whereas FOSC is based on the gradient
of the input. Measuring the gradient of DNN parameters is
arguably more suitable for considering robustness-training
time trade-off as the variance of the DNN parameters is
much larger than the input during training.

Evaluation of Amata Using C.
We now use the numerical form of the optimal control cri-
terion (14) to analyze Amata for robustness and computa-
tional efficiency trade-off. We use the LeNet architecture 5

for MNIST classification as an example. We set the γ as 0.04
for this criterion, and show the result in Table 1. From this
Table, we observe that C and performance (robustness, time)
are correlated in the expected way, and that Amata has lower
C values and better performances. Furthermore, C takes into
account both robustness and computational cost as seen in
the first two rows, where a lower C value is associated with
similar robustness but lower time cost. Hence, C can help us
choose a good annealing schedule.

Although computing the exact optimal control strategy for
DNN adversarial training is expensive for real-time tasks,
with the criterion derived from the PMP, we are able to
numerically compare the optimality of different adversarial
training strategies. From this numerical evaluation, we have
demonstrated that the proposed Amata algorithm is close to
an optimal adversarial training strategy, or at least one that
satisfies the maximum principle. We will show that our al-
gorithm can achieve similar or even better adversarial ac-
curacy much faster with empirical experiments on popular
DNN models later in Experiments section.

4Implementations can be found in
https://github.com/hyperopt/hyperopt

5Implementations can be found in
https://github.com/pytorch/examples/blob/master/mnist/main.py

10695

Strategy C Robustness Time
Amata(Setting 1) 0.54 91.47% 697.73s
Amata(Setting 2) 0.68 91.46% 760.16s

PGD-10 7.82 68.07% 307.57s
PGD-20 1.52 85.23% 567.11s
PGD-40 1.20 90.56% 1086.31s

Table 1: Comparison of adversarial training strategies. Am-
ata setting 1: Kmin = 5,Kmax = 40, Amata setting 2:
Kmin = 10,Kmax = 40.

Experiments
To demonstrate the effectiveness of Amata mechanism, ex-
periments are conducted on MNIST(in the appendix), CI-
FAR10, Caltech256 and the large-scale ImageNet dataset.
With less computational cost, the proposed Amata method
trained models achieve comparable or slightly better perfor-
mance than the models trained by other methods, such as
PGD. In our experiment, PyTorch 1.0.0 and a single GTX
1080 Ti GPU were used for MNIST, CIFAR10, and Cal-
tech256 experiment, while PyTorch 1.3.0 and four V100
GPUs were used for the ImageNet experiment. Note that
different from research focus on improving adversarial ac-
curacy, for efficient adversarial training research, it is im-
portant to run algorithms in the same hardware and driver
setting for fair comparison. We evaluate the adversarial
trained networks against PGD and Carlini-Wagner (CW) at-
tack (Carlini and Wagner 2017). In addition, Amata can also
be seamlessly incorporated into existing adversarial train-
ing acceleration algorithms, such as you only propogate
once(YOPO, (Zhang et al. 2019)), adversarial training for
free (Free, (Shafahi et al. 2019)), and fast adversarial train-
ing (Fast, (Wong, Rice, and Kolter 2020)). As an ablation
study, results with other annealing schemes, such as expo-
nential one, are shown in the Appendix. We first evaluate
Amata on standard datasets and then incorporate Amata into
other adversarial training acceleration algorithms.

Evaluation of Amata on Standard Datasets
CIFAR10 Classification For this task, we use the PreAct-
Res-18 network (Madry et al. 2017). PGD, FOSC, FAT, and
Amata are tested. τ is set as 20/255 for Amata. The clean
and robust error of PGD-10 and Amata are shown in Fig-
ure 2 Left. The proposed Amata method takes 3045 sec-
onds to achieve less than 55% robust error while for PGD-
10, it takes 6944 seconds. FOSC takes 8385 seconds to
achieve similar accuracy. During the experiment, FAT can-
not achieve 55% robust error. This is because FAT always
generate adversarial examples near the decision boundaries
and the adversarial loss might be too small to make the ad-
versarial training effective. Furthermore, we run the PGD,
FOSC and Amata experiment for 100 epochs until full con-
vergence, with showing the clean accuracy, PGD-20 attack
accuracy, CW attack accuracy, and the consumed time in Ta-
ble 2. We can see that Amata outperforms PGD-10 with re-
ducing the consumed time to 61.9% and achieves compara-
ble accuracy to FOSC with reducing the consumed time to
54.8%.

0 2000 4000 6000 8000
Training time (Seconds)

20

30

40

50

60

70

E
rr
or

ra
te

(%
)

Amata clean error

Amata robust error

PGD10 clean error

PGD10 robust error

0 200 400 600 800 1000 1200
Training time (seconds)

0

2

4

6

8

10

12

14

E
rr
or

ra
te

(%
)

Amata+YOPO clean error

Amata+YOPO robust error

YOPO clean error

YOPO robust error

Figure 2: (Better viewed in the zoom-in mode) Left: The
clean and robust error of Amata and PGD-10 in the CI-
FAR10 validation for achieving less than 55% robust error.
We use Amata with the setting Kmin = 2 and Kmax = 10.
Right: The clean and robust error of training with YOPO and
Amata+YOPO on MNIST. We use Amata with the setting
Kmin = 2 and Kmax = 5.

Caltech256 Classification Experiment is also conducted
on Caltech256 dataset (Griffin, Holub, and Perona 2007)
with ResNet-18 network. It consists of 30,607 images span-
ning 257 object categories. Object categories are diverse, in-
cluding animals, buildings and musical instruments. We use
the same experiment setting as in (Zhang and Zhu 2019). As
it is already known that FOSC cannot lead to acceleration,
we do not include FOSC in this experiment. For achieving
the adversarial accuracy of 28%, Amata takes 3403 seconds
while PGD-20 takes 4956 seconds. Furthermore, we run the
PGD-20 and Amata training for 21 epochs until full con-
vergence. The accuracies under clean, PGD-5, PGD-20, and
PGD-100 attack data are shown in Table 3. We can see that,
with saving around 30% computational time, the proposed
Amata can achieve similar accuracy to PGD-20 under up to
100 iterations of PGD attacks.

Amata+
The proposed Amata mechanism is largely orthogonal to ex-
isting acceleration approaches to adversarial training accel-
eration, and hence can be readily incorporated into them. We
now demonstrate this for YOPO (Zhang et al. 2019), adver-
sarial training for free (Free) (Shafahi et al. 2019), and fast
adversarial training (Fast) (Wong, Rice, and Kolter 2020).
We name this kind of jointly implemented Amata as Am-
ata+.

Amata+YOPO YOPO’s MNIST classification experi-
ment6 is demonstrated as an example. For Amata incorpo-
ration, we gradually increase the K and decrease the σ in
the codes that is similar to the case of modifying the PGD
algorithm. The clean and robust error of YOPO and Am-
ata+YOPO are shown in Figure 2 Right. We can see that
Amata+YOPO takes 294 seconds to reach the adversarial
accuracy of 94%, which is around the half of the time con-
sumed by YOPO. It is also worth noting that Amata+YOPO
achieves better adversarial accuracy when converged. This

6https://github.com/a1600012888/YOPO-You-Only-
Propagate-Once/tree/82c5b902508224c642c8d0173e61435795c0
ac42/experiments/MNIST/YOPO-5-10

10696

Training methods Clean accuracy PGD-20 Attack CW Attack Time (Seconds)
ERM 94.75% 0.0% 0.23% 2099.58

PGD-2 90.16% 31.70% 13.36% 6913.36
PGD-10 85.27% 47.31% 51.73% 23108.10

FAT(Zhang et al. 2020) 89.30% 41.34% 41.16% 14586.08
FOSC(Wang et al. 2019) 85.29% 47.75% 47.70% 26126.98

Amata(Kmin = 2, Kmax = 10) 85.52% 47.62% 52.94% 14308.96

Table 2: CIFAR10 adversarial training convergence results. We run all algorithms on the same computation platform for fair
comparison.

Caltech256 results.
Training methods Clean accuracy PGD-5 PGD-20 PGD-100

ERM 83.1% 0.0% 0.0% 0.0%
PGD-20 65.7% 29.7% 28.5% 28.5

Amata(Kmin = 10, Kmax = 20) 66.1% 29.6% 28.3% 28.3
ImageNet results.

Training methods Clean accuracy PGD-10 PGD-20 PGD-50
Free 60.57% 32.1% 31.5% 31.3%

Amata(Kmin = 2, Kmax = 4)+Free 59.7% 31.8% 31.2% 31.0

Table 3: Caltech256 and ImageNet results. Amata and Amata+ achieve almost the same robustness under various strengths of
attacks after convergence.

phenomenon corresponds to the finding in FOSC (Wang
et al. 2019) that too strong adversarial example is not needed
at the beginning. From this example, we can see that Amata
can be easily incorporated in other adversarial training ac-
celeration algorithm to provide further acceleration and to
improve adversarial accuracy.

Amata+Free ImageNet is a large-scale image classifica-
tion dataset consisting of 1000 classes and more than one
million images (Russakovsky et al. 2015). Adversarial train-
ing on ImageNet is considered to be challenging due to the
high computation cost (Kannan, Kurakin, and Goodfellow
2018; Xie et al. 2018). Recently, Ali et al.proposed the Free
algorithm for adversarial training acceleration by alterna-
tively running PGD-1 to solve the inner maximization and
the outer minimization. This process is run m = 4 times
for each input data batch, with four V100 GPUs. For Amata
incorporation, similarly, we increase m from 2 to 4 and de-
crease the PGD step size also by two times in the code. In the
experiment, ResNet-50 is used for adversarial training. We
find that it takes Amata+Free 948 minutes to achieve 30%
adversarial accuracy which saves around 1/3 computational
time compared with 1318 minutes by the Free algorithm. We
further run Free and Free+Amata 22 epochs for full conver-
gence and test the obtained models with various iterations of
PGD attacks. The results are shown in Table 3. We can see
that Amata can still help reducing the computational cost al-
most without performance degradation even when combined
with the state-of-the art adversarial training acceleration al-
gorithm on the large-scale dataset.

Amata+Fast We also incorporate Amata into the fast ad-
versarial training algorithm by using a weaker version of
the fast adversarial training algorithm at the initial stage and
then using the original version of the fast adversarial train-
ing algorithm later. The weaker version of the adversarial

training algorithm is constructed by using a fixed non-zero
initialization at the start. With the same setting, Amata+Fast
can achieve 72% PGD-20 accuracy two times faster than fast
adversarial training on CIFAR10. This further shows that
Amata is a mechanism that can be readily incorporated into
many existing algorithms.

Amata+ATTA We find that Amata can be seamlessly
combined with a recently proposed adversarial training
method—adversarial training with transferable adversarial
examples (ATTA). We follow the same setting as in (Zheng
et al. 2020). ATTA achieves efficient adversarial training by
reusing a number of adversarial perturbations calculated in
previous epochs, which is controled by a hyper-parameter
reset in 7. To implement Amata, we reduce reset to be 2 in
the first five epochs to reduce the strength of adversarial ex-
amples. Compared with Amata, Amata+ATTA can achieve
58% PGD-20 accuracy around 1.5 times faster than ATTA.

Conclusion
We proposed a novel annealing mechanism for accelerating
adversarial training that achieves comparable or better ro-
bustness with 1/3 to 1/2 the computational cost over a va-
riety of benchmarks. Moreover, a convergence proof and a
general optimal control formulation of annealed adversar-
ial training is developed to justify its validity and perfor-
mance. Our approach can also be seamlessly incorporated
into existing adversarial training acceleration algorithms to
achieve acceleration and improve performance. As a point
of future work, we will explore adaptive methods for adver-
sarial training based on the optimal control formulation (e.g.
the MSA algorithm (Chernousko and Lyubushin 1982; Li
et al. 2017; Li and Hao 2018)).

7https://github.com/hzzheng93/ATTA

10697

Acknowledgements
Nanyang Ye was supported in part by National Key R&D
Program of China 2017YFB1003000, in part by National
Natural Science Foundation of China under Grant (No.
61672342, 61671478, 61532012, 61822206, 61832013,
61960206002, 62041205), in part by Tencent AI Lab Rhino
Bird Focused Research Program JR202034, in part by the
Science and Technology Innovation Program of Shanghai
(Grant 18XD1401800, 18510761200), in part by Shanghai
Key Laboratory of Scalable Computing and Systems.

Zhanxing Zhu was supported by Beijing Nova Program
(No. 202072) from Beijing Municipal Science & Technol-
ogy Commission, and National Natural Science Foundation
of China (No.61806009 and 61932001), PKU-Baidu Fund-
ing 2019BD005.

References
Akhtar, N.; and Mian, A. 2018. Threat of Adversarial At-
tacks on Deep Learning in Computer Vision: A Survey.
arXiv preprint arXiv:1801.00553 .

Ben-Tal, A.; and Nemirovski, A. 1998. Robust Convex Opti-
mization. Mathematics of Operations Research 23(4): 769–
805.

Bertsekas, D. P.; Bertsekas, D. P.; Bertsekas, D. P.; and Bert-
sekas, D. P. 1995. Dynamic Programming and Optimal Con-
trol, volume 1. Athena scientific Belmont, MA.

Bhat, S.; and Tsipras, D. 2019. Towards Effi-
cient Methods for Training Robust Deep Neural Net-
works. URL https://math.mit.edu/research/highschool/
primes/materials/2018/Bhat.pdf. [Online].

Boltyanskii, V. G.; Gamkrelidze, R. V.; and Pontryagin, L. S.
1960. The Theory of Optimal Processes. The maximum
principle. Technical report, TRW Space Tochnology Labs,
Los Angeles, California.

Buckman, J.; Roy, A.; Raffel, C.; and Goodfellow, I. 2018.
Thermometer Encoding: One Hot Way To Resist Adversar-
ial Examples. In International Conference on Learning Rep-
resentations.

Carlini, N.; and Wagner, D. 2017. Towards Evaluating the
Robustness of Neural Networks. In IEEE Symposium on
Security and Privacy, 39–57.

Chernousko, F. L.; and Lyubushin, A. A. 1982. Method of
Successive Approximations for Solution of Optimal Control
Problems. Optimal Control Applications and Methods 3(2):
101–114. ISSN 0143-2087.

Gao, R.; Cai, T.; Li, H.; Wang, L.; Hsieh, C.; and Lee,
J. D. 2019. Convergence of Adversarial Training in Over-
parametrized Networks. arXiv preprint arXiv:1906.07916
.

Goodfellow, I.; Bengio, Y.; and Courville, A. 2016. Deep
Learning. The MIT Press. ISBN 0262035618.

Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2014. Explain-
ing and Harnessing Adversarial Examples. arXiv preprint
arXiv:1412.6572 .

Griffin, G.; Holub, A.; and Perona, P. 2007. Caltech-256
Object Category Dataset. Technical Report 7694, California
Institute of Technology. URL http://authors.library.caltech.
edu/7694.

He, W.; Wei, J.; Chen, X.; Carlini, N.; and Song, D. 2017.
Adversarial Example Defenses: Ensembles of Weak De-
fenses Are Not Strong. arXiv preprint arXiv:1706.04701
.

Kannan, H.; Kurakin, A.; and Goodfellow, I. J. 2018. Ad-
versarial Logit Pairing. arXiv preprint arXiv:1803.06373 .

Kingma, D. P.; and Ba, J. 2014. Adam: a Method for
Stochastic Optimization. arXiv preprint arXiv:1412.6980 .

Kolter, J. Z.; and Wong, E. 2017. Provable Defenses Against
Adversarial Examples via The Convex Outer Adversarial
Polytope. arXiv preprint arXiv:1711.00851 .

Li, Q.; Chen, L.; Tai, C.; and E, W. 2017. Maximum Prin-
ciple Based Algorithms for Deep Learning. The Journal of
Machine Learning Research 18(1): 5998–6026. ISSN 1532-
4435.

Li, Q.; and Hao, S. 2018. An Optimal Control Approach to
Deep Learning and Applications to Discrete-Weight Neural
Networks. In Proceedings of the 35th International Confer-
ence on Machine Learning, volume 80, 2985–2994. Stock-
holmsmässan, Stockholm Sweden: PMLR.

Li, Q.; Tai, C.; and E, W. 2017. Stochastic Modified Equa-
tions and Adaptive Stochastic Gradient Algorithms. In Pro-
ceedings of the 34th International Conference on Machine
Learning, volume 70, 2101–2110. International Convention
Centre, Sydney, Australia: PMLR.

Li, Q.; Tai, C.; and E, W. 2019. Stochastic Modified Equa-
tions and Dynamics of Stochastic Gradient Algorithms I:
Mathematical Foundations. Journal of Machine Learning
Research 20(40): 1–47. URL http://jmlr.org/papers/v20/17-
526.html.

Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2017. Towards Deep Learning Models Resistant
to Adversarial Attacks. arXiv preprint arXiv:1706.06083 .

Meng, D.; and Chen, H. 2017. MagNet: A Two-Pronged
Defense against Adversarial Examples. In ACM Conference
on Computer and Communications Security.

Pan, H.; and Jiang, H. 2015. Annealed Gradient Descent
for Deep Learning. In Proceedings of the Thirty-First Con-
ference on Uncertainty in Artificial Intelligence, UAI’15,
652–661. Arlington, Virginia, USA: AUAI Press. ISBN
9780996643108.

Russakovsky, O.; Deng, J.; Su, H.; Krause, J.; Satheesh, S.;
Ma, S.; Huang, Z.; Karpathy, A.; Khosla, A.; Bernstein, M.;
Berg, A. C.; and Fei-Fei, L. 2015. ImageNet Large Scale Vi-
sual Recognition Challenge. International Journal of Com-
puter Vision (IJCV) 115(3): 211–252. doi:10.1007/s11263-
015-0816-y.

Shafahi, A.; Najibi, M.; Ghiasi, M. A.; Xu, Z.; Dickerson, J.;
Studer, C.; Davis, L. S.; Taylor, G.; and Goldstein, T. 2019.

10698

Adversarial Training for Free! In Advances in Neural Infor-
mation Processing Systems, volume 32. Curran Associates,
Inc.

Sinha, A.; Namkoong, H.; and Duchi, J. 2018. Certifi-
able Distributional Robustness With Principled Adversarial
Training. In International Conference on Learning Repre-
sentations.

Song, Y.; Kim, T.; Nowozin, S.; Ermon, S.; and Kushman,
N. 2018. PixelDefend: Leveraging Generative Models to
Understand and Defend against Adversarial Examples. In
International Conference on Learning Representations.

Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2013. Intriguing Prop-
erties of Neural Networks. arXiv preprint arXiv:1312.6199
.

Tramèr, F.; Kurakin, A.; Papernot, N.; Boneh, D.; and Mc-
Daniel, P. 2017. Ensemble Adversarial Training: Attacks
and Defenses. arXiv preprint arXiv:1705.07204 .

Wang, Y.; Ma, X.; Bailey, J.; Yi, J.; Zhou, B.; and Gu, Q.
2019. On the Convergence and Robustness of Adversarial
Training. In Proceedings of the 36th International Confer-
ence on Machine Learning, volume 97, 6586–6595. Long
Beach, California, USA: PMLR.

Wong, E.; Rice, L.; and Kolter, J. Z. 2020. Fast Is Better
Than Free: Revisiting Adversarial Training. In International
Conference on Learning Representations.

Xie, C.; Wu, Y.; van der Maaten, L.; Yuille, A. L.; and He,
K. 2018. Feature Denoising for Improving Adversarial Ro-
bustness. arXiv preprint arXiv:1812.03411 .

Zhang, D.; Zhang, T.; Lu, Y.; Zhu, Z.; and Dong, B. 2019.
You Only Propagate Once: Accelerating Adversarial Train-
ing via Maximal Principle. In Advances in Neural Informa-
tion Processing Systems, volume 32. Curran Associates, Inc.

Zhang, J.; Xu, X.; Han, B.; Niu, G.; Cui, L.; Sugiyama,
M.; and Kankanhalli, M. 2020. Attacks Which Do Not Kill
Training Make Adversarial Learning Stronger. In Proceed-
ings of Machine Learning Research, volume 119, 11278–
11287. PMLR.

Zhang, T.; and Zhu, Z. 2019. Interpreting Adversarially
Trained Convolutional Neural Networks. In Proceedings
of the 36th International Conference on Machine Learning,
volume 97, 7502–7511. PMLR.

Zheng, H.; Zhang, Z.; Gu, J.; Lee, H.; and Prakash, A. 2020.
Efficient Adversarial Training with Transferable Adversarial
Examples. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR).

10699

