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Abstract

Therapeutic peptides represent a unique class of pharmaceu-
tical agents crucial for the treatment of human diseases. Re-
cently, deep generative models have exhibited remarkable
potential for generating therapeutic peptides, but they only
utilize sequence or structure information alone, which hin-
ders the performance in generation. In this study, we pro-
pose a Multi-Modal Contrastive Diffusion model (MMCD),
fusing both sequence and structure modalities in a diffusion
framework to co-generate novel peptide sequences and struc-
tures. Specifically, MMCD constructs the sequence-modal
and structure-modal diffusion models, respectively, and de-
vises a multi-modal contrastive learning strategy with inter-
contrastive and intra-contrastive in each diffusion timestep,
aiming to capture the consistency between two modalities
and boost model performance. The inter-contrastive aligns se-
quences and structures of peptides by maximizing the agree-
ment of their embeddings, while the intra-contrastive differ-
entiates therapeutic and non-therapeutic peptides by max-
imizing the disagreement of their sequence/structure em-
beddings simultaneously. The extensive experiments demon-
strate that MMCD performs better than other state-of-the-
art deep generative methods in generating therapeutic pep-
tides across various metrics, including antimicrobial/anti-
cancer score, diversity, and peptide-docking.

Introduction
Therapeutic peptides, such as antimicrobial and anticancer
peptides, are a unique class of pharmaceutical agents that
comprise short chains of amino acids, exhibiting significant
potential in treating complex human diseases (Jakubczyk
et al. 2020). Traditionally, therapeutic peptides are discov-
ered through a comprehensive screening of sequence spaces
using phage/yeast display technologies (Muttenthaler et al.
2021) or computational tools trained for scoring desired
properties (Lee et al. 2017; Lee, Wong, and Ferguson 2018).
However, the combinatorial space of possible peptides is
vast and only a small solution satisfies therapeutic require-
ments; thus, such screening methods based on brute force
can be time-consuming and costly.
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Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

In recent years, deep generative models (DGMs) have
demonstrated success in generating images (Liu and Chilton
2022), texts (Iqbal and Qureshi 2022), proteins (Wu et al.
2021), and also gained popularity in peptides. DGMs ex-
plored a more expansive chemical space that affords the
creation of structurally novel peptides, by training neu-
ral networks to approximate the underlying distribution of
observed or known ones (Wan, Kontogiorgos, and Fuente
2022). For example, autoregression-based methods depicted
peptide sequences as sentences composed of residue tokens,
so that the problem can be solved by predicting residue ar-
rangement via recurrent neural networks (RNN) (Müller,
Hiss, and Schneider 2018; Capecchi et al. 2021). Variational
autoencoder (VAE)-based methods generated new peptide
sequences by sampling from the latent space learned through
an encoder-decoder architecture, with or without therapeu-
tic properties as conditional constraints (Ghorbani et al.
2022; Szymczak et al. 2023b). Generative adversarial net-
work (GAN)-based methods trained the generator and dis-
criminator using known data, which compete against each
other to generate new peptides (Tucs et al. 2020; Oort et al.
2021; Lin, Lin, and Lane 2022). Nowadays, diffusion mod-
els (Yang et al. 2023) are prevalent in the generation of pro-
tein sequences and structures, owing to their superior capa-
bility in fitting distributions compared to prior techniques
(Shi et al. 2023; Wu et al. 2022). Likewise, these advanced
diffusion models can be extended to peptide generation and
are expected to deliver favorable outcomes.

Despite the commendable progress of efforts above, they
focused on generating either sequences (i.e., residue ar-
rangements) or structures (i.e., spatial coordinates of back-
bone atoms), ignoring that models fusing information from
both modalities may outperform their uni-modal counter-
parts (Huang et al. 2021). However, how to effectively in-
tegrate the multi-modal information and capture their con-
sistency in peptide generation is a major challenge. Addi-
tionally, compared with generation tasks for images, texts,
and proteins that involve millions of labeled samples, public
datasets for therapeutic peptides typically contain only thou-
sands of sequence or structure profiles, induced by the high
cost of in vitro screening. This limited amount of available
data may result in overfitting (Webster et al. 2019), which
confines generated outcomes within a restricted distribution,
consequently compromising the model’s generalization abil-
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ity. How to fully leverage existing peptide data, such as ther-
apeutic and non-therapeutic peptides, to enhance the gener-
ation performance could be regarded as another challenge.

To address these challenges, we propose a Multi-Modal
Contrastive Diffusion model for therapeutic peptide genera-
tion, named MMCD. Specifically, we build a multi-modal
framework that integrates sequence-modal and structure-
modal diffusion models for co-generating residue arrange-
ments and backbone coordinates of peptides. To ensure con-
sistency between the two modalities during the generation
process, we bring in an inter-modal contrastive learning
(Inter-CL) strategy. Inter-CL aligns sequences and struc-
tures, by maximizing the agreement between their embed-
dings derived from the same peptides at each diffusion
timestep. Meanwhile, to avoid the issue of inferior per-
formance caused by limited therapeutic peptide data, we
incorporate substantial known non-therapeutic peptides as
data augmentations to devise an intra-modal CL (Intra-
CL). Intra-CL differentiates therapeutic and non-therapeutic
peptides by maximizing the disagreement of their se-
quence/structure embeddings at each diffusion timestep,
driving the model to precisely fit the distribution of thera-
peutic peptides. Overall, the main contributions of this work
are described as follows:

• We propose a multi-modal diffusion model that inte-
grates both sequence and structure information to co-
generate residue arrangements and backbone coordinates
of therapeutic peptides, whereas previous works focused
only on a single modality.

• We design the inter-intra CL strategy at each diffusion
timestep, which aims to maximize the agreement be-
tween sequence and structure embeddings for aligning
multi-modal information, and maximize the disagree-
ment between therapeutic and non-therapeutic peptides
for boosting model generalization.

• Extensive experiments conducted on peptide datasets
demonstrate that MMCD surpasses the current state-of-
the-art baselines in generating therapeutic peptides, par-
ticularly in terms of antimicrobial/anticancer score, di-
versity, and pathogen-docking.

Related Works
Diffusion Model for Protein Generation
Diffusion models (Song and Ermon 2019; Trippe et al.
2023) are devoted to learning the noise that adequately de-
stroys the source data and iteratively remove noise from
the prior distribution to generate new samples, which have
emerged as cutting-edge methods for numerous generation
tasks, especially in proteins (Wu et al. 2022; Cao et al.
2023). For example, Liu et al. (2023) proposed a textual
conditionally guided diffusion model for sequence genera-
tion. Hoogeboom et al. (2022) introduced ProtDiff with an
E(3) equivariant graph neural network to learn a diverse dis-
tribution over backbone coordinates of structures. Luo et al.
(2022) considered both the position and orientation of anti-
body residues, achieving an equivariant diffusion model for
sequence-structure co-generation. Despite their success, the

fusion of both sequence and structure modalities in diffu-
sion models has not been comprehensively investigated, and
their potential for peptide generation remains unexplored.
To fill this gap, we implement a peptide-oriented diffu-
sion model capable of sequence-structure co-generation and
multi-modal data fusion.

Contrastive Learning
Being popular in self-supervised learning, contrastive learn-
ing (CL) allows models to learn the knowledge behind data
without explicit labels (Xia et al. 2022; Zhu et al. 2023). It
aims to bring an anchor (i.e., data sample) closer to a posi-
tive/similar instance and away from many negative/dissimi-
lar instances, by optimizing their mutual information in the
embedding space. Strategies to yield the positive and neg-
ative pairs often dominate the model performance (Zhang
et al. 2022). For example, Yuan et al. (2021) proposed a
multi-modal CL to align text and image data, which encour-
ages the agreement of corresponding text-image pairs (posi-
tive) to be greater than those of all non-corresponding pairs
(negative). Wu, Luu, and Dong (2022) designed a CL frame-
work that makes full use of semantic relations among text
samples via efficient positive and negative sampling strate-
gies, to mitigate data sparsity for short text modeling. Zhang
et al. (2023b) augmented the protein structures using differ-
ent conformers, and maximized the agreement/disagreement
between the learned embeddings of same/different proteins,
aiming to learn more discriminative representations. How-
ever, these CL strategies have yet to be extended to peptide-
related studies. Therefore, we devise the novel CL strategy
in peptide generation, which serves as an auxiliary objective
to enforce sequence-structure alignment and boost model
performance.

Methodology
In this section, we formulate the peptide co-generation prob-
lem for sequence and structure. Subsequently, we elabo-
rately enumerate the components of our method MMCD,
including the diffusion model for peptide generation and the
multi-modal contrastive learning strategy. The overview of
MMCD is illustrated in Figure 1.

Problem Formulation
A peptide with N residues (amino acids) can be repre-
sented as a sequence-structure tuple, denoted as X =
(S,C). S = [si]

N
i=1 stands for the sequence with si ∈

{ACDEFGHIKLMNPQRSTVWY } as the type of
the i-th residue, and C = [ci]

N
i=1 stands for the structure

with ci ∈ R3∗4 as Cartesian coordinates of the i-th residue
(involving four backbone atoms N-Cα-C-O). Our goal is to
model the joint distribution of X based on the known pep-
tide data, so that sequences (i.e., residue types) and struc-
tures (i.e., residue coordinates) of new peptides can be co-
generated by sampling the distribution.

Diffusion Model for Peptide Generation
The diffusion model defines the Markov chains of processes,
in which latent variables are encoded by a forward diffu-
sion process and decoded by a reverse generative process
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Figure 1: Overview of the MMCD. MMCD consists of a diffusion model for the peptide sequence-structure co-generation and
multi-modal contrastive learning (CL). The diffusion model involves a forward process (q(·|·)) for adding noise and a reverse
process (p(·|·)) for denoising at each timestep t. The reverse process utilizes a transformer encoder (or EGNN) to extract
embeddings from sequences S (or structures C), and a sequence (or structure)-based MLP to map embeddings to the marginal
distribution (or Gaussian) noise. The multi-modal CL includes an Inter-CL and an Intra-CL, which aims to align sequence and
structure embeddings, and differentiate therapeutic and non-therapeutic peptide embeddings.

(Sohl-Dickstein et al. 2015). Let X0 = (S0, C0) denotes
the ground-truth peptide and Xt = (St, Ct) for t = 1, ..., T
to be the latent variable at timestep t. The peptide gener-
ation can be modeled as an evolving thermodynamic sys-
tem, where the forward process q(Xt|Xt−1) gradually in-
jects small noise to the data X0 until reaching a random
noise distribution at timestep T , and the reverse process
pθ(X

t−1|Xt) with learnable parameters θ learns to denoise
the latent variable Xt towards the data distribution (Luo
et al. 2022).

Diffusion for Peptide Sequence. Following Anand and
Achim (2022), we treat residue types as categorical data and
apply discrete diffusion to sequences, where each residue
type is characterized using one-hot encoding with 20 types.
For the forward process, we add noise to residue types using
the transition matrices with the marginal distribution (Austin
et al. 2021; Vignac et al. 2023) (see details in Appendix A).
For the reverse process, the diffusion trajectory is parame-
terized by the probability q(St−1 | St, S0) and a network
p̂θ is defined to predict the probability of S0 (Austin et al.

2021), that is:

pθ
(
St−1 | St

)
=

∏
1≤i≤N

q(st−1
i | St, Ŝ0) · p̂θ(Ŝ0 | St) (1)

where sti denotes the one-hot feature for the i-th residue in
the sequence S at timestep t, and Ŝ0 is the predicted proba-
bility of S0. In this work, we design the p̂θ as follows:

p̂θ

(
Ŝ0 | St

)
=

∏
1≤i≤N

Softmax
(
ŝ0i | Fs

(
ht
i

))
(2)

where ht
i is the input feature of residue i with the diffusion

noise at time t (the initialization of ht
i is provided in Ap-

pendix A). Fs is a hybrid neural network to predict the noise
of residue types from the marginal distribution, and then the
noise would be removed to compute the probability of ŝ0i .
Softmax is applied over all residue types. Here, we imple-
ment Fs with a transformer encoder and an MLP. The for-
mer learns contextual embeddings of residues from the se-
quence, while the latter maps these embeddings to the noises
of residue types. The learned sequence embedding (defined
as S) involves downstream contrastive learning strategies.
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Diffusion for Peptide Structure. As the coordinates of
atoms are continuous variables in the 3D space, the forward
process can be defined by adding Gaussian noise to atom
coordinates (Ho, Jain, and Abbeel 2020) (see details in Ap-
pendix A). Following Trippe et al. (2023), the reverse pro-
cess can be defined as:

pθ(c
t−1
i | Ct) = N (ct−1

i | µθ(C
t, t), βtI) (3)

µθ

(
Ct, t

)
=

1√
αt

(
cti −

βt

√
1− αt

ϵθ
(
Ct, t

))
(4)

where ci refers to coordinates of the i-th residue in the
structure C; β is the noise rate, formally αt = 1 − βt,
αt =

∏t
τ=1 (1− βτ ); the network ϵθ is used to gradually

recover the structural data by predicting the Gaussian noise.
In this work, we design the ϵθ as follows:

ϵθ(C
t, t) = Fc

(
rti , h

t
i

)
(5)

where ri represents the coordinates of residue i, hi is the
residue feature, and Fc is a hybrid neural network for pre-
dicting Gaussian noises at timestep t. Similar to sequence
diffusion, we implement Fc with an equivariant graph neu-
ral network (EGNN) (Satorras, Hoogeboom, and Welling
2021) and an MLP. The former learns spatial embeddings
of residues from the structure (formalized as a 3D graph),
while the latter maps these embeddings to Gaussian noises.
The learned structure embedding (defined as C) also involves
downstream contrastive learning strategies.

Diffusion Objective. Following previous work (Anand
and Achim 2022), we decompose the objective of the pep-
tide diffusion process into sequence loss and structure loss.
For the sequence loss Lt

S , we aim to minimize the cross-
entropy (CE) loss between the actual and predicted residue
types at timestep t:

Lt
S =

1

N

∑
1≤i≤N

CE
(
s0i , p̂θ(ŝ

0
i |St)

)
(6)

For the structure loss Lt
C , the objective is to calculate the

mean squared error (MSE) between the predicted noise ϵθ
and standard Gaussian noise ϵ at timestep t:

Lt
C =

1

N

∑
1≤i≤N

∥∥ϵi − ϵθ(C
t, t)
∥∥2 (7)

Multi-Modal Contrastive Learning Strategy
When multiple modal data (e.g., sequence and structure) co-
exist, it becomes imperative to capture their consistency to
reduce the heterogeneous differences between modalities,
allowing them to be better fused in generation tasks. Mutual
information (MI) is a straightforward solution to measure
the non-linear dependency (consistency) between variables
(Liu et al. 2023); thus, maximizing MI between modalities
can force them to align and share more crucial information.
Along this line, we bring in contrastive learning (CL) to
align sequences and structures by maximizing their MI in
the embedding space. Specifically, we devise CL strategies
for each diffusion timestep t, as follows:

Inter-CL. For a peptide, we define its sequence as the an-
chor, its structure as the positive instance, and the structures
of other peptides in a mini-batch as the negative instances.
Then, we maximize the MI of positive pair (anchor and posi-
tive instance) while minimizing the MI of negative pairs (an-
chor and negative instances), based on embeddings learned
from the networks p̂θ and ϵθ. Further, we establish a ’dual’
contrast where the structure acts as an anchor and sequences
are instances. The objective is to minimize the following
InfoNCE-based (Chen et al. 2020) loss function:

Lt
inter = −1

2

[
log

E
(
St
i , Ct

i

)∑M
j=1 E

(
St
i , Ct

j

) + log
E
(
Ct
i ,St

i

)∑M
j=1 E

(
Ct
i ,St

j

)]
(8)

where Si/Ci is the sequence/structure embeddings of i-th
peptide in the mini-batch, E(·, ·) is the cosine similarity
function with the temperature coefficient to measure the MI
score between two variables, M is the size of a mini-batch.

In addition, the used diffusion model can only remem-
ber confined generation patterns if therapeutic peptide data
for training is limited, which may lead to inferior general-
ization towards novel peptides. To alleviate this issue, we
introduce contrastive learning to boost the generative capac-
ity of networks p̂θ and ϵθ by enriching the supervised sig-
nals. However, it is unwise to construct positive instances by
performing data augmentations on therapeutic peptides, as
even minor perturbations may lead to significant functional
changes (Yadav, Kumar, and Singh 2022). Hence, our fo-
cus lies on employing effective strategies for selecting neg-
ative instances. In this regard, we collect non-therapeutic
peptides from public databases to treat them as negative in-
stances, and maximize the disagreement between embed-
dings of therapeutic and non-therapeutic peptides. In detail,
we devise an Intra-CL strategy for each diffusion timestep t,
as follows:

Intra-CL. In a mini-batch, we define the sequence of a
therapeutic peptide i as the anchor, and the sequence of an-
other therapeutic peptide j as the positive instance, while the
sequences of non-therapeutic peptides k are regarded as neg-
ative instances. Similar to Inter-CL, we then maximize/mini-
mize the MI of positive/negative pairs. And we also establish
a structure-oriented contrast by using structures of therapeu-
tic and non-therapeutic peptides to construct the anchor, pos-
itive, and negative instances. The objective is to minimize
the following loss function (Zheng et al. 2021):

Lt
intra = − 1

M

M∑
j=1,j ̸=i

1yi=yj

(
log

E
(
St
i ,St

j

)∑M
k=1 1yi ̸=yk

E (St
i ,St

k)

+ log
E
(
Ct
i , Ct

j

)∑M
k=1 1yi ̸=yk

E (Ct
i , Ct

k)

)
(9)

where yi represents the class of peptide i (i.e., therapeutic or
non-therapeutic). 1yi=yj

and 1yi ̸=yk
stand for the indicator

functions, where the output is 1 if yi = yj (peptides i and j
belong to the same class) or yi ̸= yk (the types of peptides
i and k are different); otherwise the output is 0. The indica-
tor function filters therapeutic and non-therapeutic peptides
from the data for creating positive and negative pairs.
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Methods AMP ACP

Similarity↓ Instability↓ Antimicrobial↑ Similarity↓ Instability↓ Anticancer↑
LSTM-RNN 39.6164 45.0862 0.8550 36.9302 47.0669 0.7336
AMPGAN∗ 38.3080 51.5236 0.8617 - - -
HydrAMP∗ 31.0662 59.6340 0.8145 - - -
WAE-PSO∗ - - - 41.2524 42.5061 0.7443

DiffAB 28.9849 43.3607 0.8024 31.4220 36.0610 0.6669
SimDiff 25.5385 41.1629 0.8560 28.8245 33.0405 0.7222
MMCD 24.4107 39.9649 0.8810 27.4685 31.7381 0.7604

’*’ represents that the method relies on domain-specific biological knowledge. ’-’ represents that the method is un-
suitable for the current task. For example, AMPGAN and HydrAMP are only designed for the AMP generation.

Table 1: Results for the sequence generation

Methods AMP ACP

Ramachandran↑ RMSD↓ Docking↑ Ramachandran↑ RMSD↓
APPTEST 69.6576 2.7918 1362 67.9826 2.8055

FoldingDiff 72.4681 2.5118 1574 72.0531 2.6033
ProtDiff 71.3078 2.5544 1533 69.7589 2.4960
DiffAB 72.9647 2.3844 1608 71.3225 2.5513
SimDiff 76.1378 2.1004 1682 76.6164 2.4118
MMCD 80.4661 1.8278 1728 78.2157 2.0847

Table 2: Results for the structure generation.

The reason behind the design of Intra-CL is intuitive.
First, the non-therapeutic class naturally implies opposite in-
formation against the therapeutic class, and hence it makes
the model more discriminative. Second, the fashion to max-
imize the disagreement between classes (1) can induce bi-
ases in the embedding distribution of therapeutic peptides,
identifying more potential generation space, and (2) can ex-
plicitly reinforce embedding-class correspondences during
diffusion, maintaining high generation fidelity (Zhu et al.
2022). Further analysis is detailed in the ablation study.

Model Training
The ultimate objective function is the sum of the diffusion
process for sequence and structure generation, along with
the CL tasks for Intra-CL and Inter-CL:

Ltotal = Et∼Uniform(1...T)
[
α
(
Lt

S + Lt
C

)
+ (1− α)

(
Lt

intra + Lt
inter

)]
(10)

where α represents a hyperparameter to balance the contri-
butions of different tasks. The Uniform(1...T) shows the uni-
form distribution for the diffusion timesteps. The implemen-
tation details of MMCD and the sampling process of peptide
generation can be found in Appendix A.

Experiments
Experimental Setups
Datasets. Following previous studies (Thi Phan et al.
2022; Zhang et al. 2023a), we collected therapeutic pep-
tide data from public databases, containing two biologi-
cal types, i.e., antimicrobial peptides (AMP) and anticancer
peptides (ACP). Among these collected peptides, a portion
of them only have 1D sequence information, without 3D

structure information. Then, we applied Rosetta-based com-
putational tools (Chaudhury, Lyskov, and Gray 2010) to pre-
dict the missing structures based on their sequences. Finally,
we compiled two datasets, one containing 20,129 antimi-
crobial peptides and the other containing 4,381 anticancer
peptides. In addition, we paired an equal number of labeled
non-therapeutic peptides (collected from public databases)
with each of the two datasets, exclusively for the contrastive
learning task.

Baselines. We compared our method with the follow-
ing advanced methods for peptide generation at sequence
and structure levels. For the sequence generation, the
autoregression-based method LSTM-RNN (Müller, Hiss,
and Schneider 2018), the GAN-based method AMPGAN
(Oort et al. 2021), and the VAE-based methods including
WAE-PSO (Yang et al. 2022) and HydrAMP (Szymczak
et al. 2023a) are listed as baselines. For the structure gener-
ation, we took APPTEST (Timmons and Hewage 2021) as a
baseline, which combines the neural network and simulated
annealing algorithm for structure prediction. Moreover, we
extended diffusion-based methods for protein generation to
peptides. The diffusion-based methods for structure genera-
tion (e.g., FoldingDiff (Wu et al. 2022) and ProtDiff (Trippe
et al. 2023)) and the sequence-structure co-design (e.g., Dif-
fAB(Luo et al. 2022) and SimDiff(Zhang et al. 2023b)), are
considered for the comparison separately in the sequence
and structure generation.

Evaluation Protocol. Here, we required each model (ours
and baselines) to generate 1,000 new peptides, and then
evaluated the quality of generated peptides with the follow-
ing metrics. For the sequence, similarity score is used to
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Figure 2: (a) The sample ratio under different sequence lengths in the AMP dataset, where the red line is the average ratio. (b)
The similarity and RMSD scores of MMCD and baselines across different sequence lengths.

quantify how closely the generated sequences match exist-
ing ones, with a lower score indicating higher novelty; insta-
bility score (Müller et al. 2017) indicates the degree of pep-
tide instability; antimicrobial/anticancer score evaluates
the probability of peptides having therapeutic properties.
For the structure, Ramachandran score (Hollingsworth and
Karplus 2010) accesses the reliability of peptide structures;
RMSD score measures the structural similarity between
generated and existing peptides, with a lower score indi-
cating higher authenticity; docking score (Flórez-Castillo
et al. 2020) evaluates the binding degree of antimicro-
bial peptides to bacterial membrane proteins (PDB ID:
6MI7). We only reported the average metrics over all gen-
erated peptides for each method in the experimental re-
sults. Detailed information about the datasets, baselines,
metrics, and implementations can be found in Appendix
B. Our code, data, and appendix are available on GitHub
(https://github.com/wyky481l/MMCD)

Experimental Results
Performance Comparison. In the results of sequence
generation under two datasets (as shown in Table 1), MMCD
exhibited lower similarity and instability scores than all
baselines, suggesting its good generalization ability in gen-
erating diverse and stable peptides. Meanwhile, MMCD sur-
passed all baselines with higher antimicrobial and anticancer
scores across AMP and ACP datasets, highlighting its strong
potential for generating therapeutic peptides. Beyond that,
we noticed that diffusion-based baselines (e.g., SimDiff,
DiffAB) exhibit higher stability and diversity but lower ther-
apeutic scores compared to baselines that incorporate bio-
logical knowledge (e.g., AMPGAN, HydrAMP, WAE-PSO,
details in Appendix B). By contrast, MMCD introduced bio-
logical knowledge into the diffusion model by designing the
contrastive learning of therapeutic and non-therapeutic pep-
tides, thereby delivering optimality across various metrics.

For the results of structure generation (as shown in Ta-
ble 2), MMCD also outperformed all the baselines and ex-
ceeded the best baselines (DiffAB and SimDiff) by 23.3%
and 12.9% in RMSD scores, 10.2% and 5.6% in Ramachan-
dran scores, and 7.4% and 2.7% in docking scores for AMP
dataset. The higher Ramachandran score and lower RMSD
score of MMCD underlined the reliability of our generated

peptide structures. Especially in peptide docking, we found
that MMCD shows the best docking score compared with
baselines, which indicates great binding interactions with
the target protein. Overall, MMCD is superior to all base-
lines in both sequence and structure generation of peptides,
and its impressive generative ability holds great promise to
yield high-quality therapeutic peptides.

Performance on Different Sequence Lengths. In our
dataset, sequence lengths of different peptides exhibited sub-
stantial variation, with the number of residues ranging from
5 to 50 (Figure 2-a). We required models to generate 20
new peptides (sequences or structures) at each sequence
length. Note that two methods, AMPGAN and HydrAMP,
were excluded from the comparison because they cannot
generate peptides with fixed lengths. From the generated re-
sults on the AMP dataset (Figure 2-b), MMCD exceeded
the baselines in terms of similarity and RMSD scores at
each sequence length. With the increasing sequence lengths,
there is a general trend of increased similarity and RMSD
scores across all methods. One possible reason for this trend
is that designing longer peptides becomes more complex,
given the more prominent search space involved. Addition-
ally, the scarcity of long-length peptides poses challenges in
accurately estimating the similarity between generated and
known peptides. In summary, these observations supported
that MMCD excels at generating diverse peptides across dif-
ferent lengths, especially shorter ones.

Ablation Study
To investigate the necessity of each module in MMCD, we
conducted several comparisons between MMCD with its
variants: (1) MMCD (w/o Inter-CL) that removes the Inter-
CL task, (2) MMCD (w/o Intra-CL) that removes the Intra-
CL task, and (3) MMCD (w/o Inter-CL & Intra-CL) that re-
moves both Inter-CL and Intra-CL tasks. The comparisons
were operated on both AMP and ACP datasets, and the re-
sults are shown in Table 3 and Appendix Table 1. When the
Inter-CL was removed (w/o Inter-CL), we observed a de-
cline in all metrics for peptide sequence and structure gen-
eration, implying the importance of aligning two modalities
via CL. The variant (w/o Intra-CL) results signified that us-
ing the CL to differentiate therapeutic and non-therapeutic
peptides contributes to the generation. As expected, the per-
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Methods AMP ACP

Similarity↓ Instability↓ Antimicrobial↑ Similarity↓ Instability↓ Anticancer↑
MMCD (w/o InterCL & IntraCL) 27.4794 42.5359 0.8013 31.2820 34.6888 0.6996

MMCD (w/o IntraCL) 26.6889 41.2631 0.8584 28.9782 33.0268 0.7513
MMCD (w/o InterCL) 24.9079 41.7646 0.8494 28.0143 33.9816 0.7352

MMCD 24.4107 39.9649 0.8810 27.4685 31.7381 0.7604

Table 3: Ablation study on the sequence-level generation task.

MMCD (w/o InterCL) on AMP MMCD on AMP

MMCD (w/o IntraCL) on AMP and non-AMP MMCD on AMP and non-AMP

Sequence
Structure
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(b)
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Figure 3: (a) The t-SNE for structure and sequence em-
beddings of therapeutic peptides (AMP data) obtained from
MMCD (w/o Inter-CL) and MMCD. (b) The t-SNE for em-
beddings (including structures and sequences) of therapeutic
(AMP) and non-therapeutic (non-AMP) peptides obtained
from MMCD (w/o Intra-CL) and MMCD.

formance of MMCD dropped significantly after removing
both Inter-CL and Intra-CL (w/o Inter-CL & Intra-CL).

To better understand the strengths of Inter-CL and Intra-
CL, we performed the t-SNE (Van der Maaten and Hin-
ton 2008) visualization using the learned embeddings of
peptides on the AMP dataset. As illustrated in Figure 3-
a, Inter-CL effectively promoted the alignment of sequence
and structure embeddings, facilitating the shared crucial in-
formation (dashed circle) to be captured during diffusion.
The t-SNE of Intra-CL (Figure 3-b) also revealed that it bet-
ter distinguished therapeutic peptides from non-therapeutic
ones in the embedding distribution. And the resulting dis-
tribution bias may identify more potential generation space,
thus leading to higher quality and diversity of therapeutic
peptides generated by MMCD. Overall, MMCD with all the
modules fulfilled superior performance, and removing any
modules will diminish its generation power.

Peptide-docking Analysis
To test the validity of generated peptide structures, we con-
ducted a molecular-docking simulation. Here, a peptide was
randomly selected from the AMP dataset as the reference,

and the methods (Figure 4) were employed to generate cor-
responding structures based on the sequence of the reference
peptide (see details in Appendix C). The lipopolysaccharide
on the outer membrane of bacteria (Li, Orlando, and Liao
2019) was selected as the target protein for molecular dock-
ing. Then, we extracted the residues within a 5Å proxim-
ity between peptides (i.e., the reference and generated struc-
tures) and the active pocket of target protein in docking com-
plexes, to visualize their binding interactions (Miller et al.
2021). Of these docking results, all methods yielded a new
structure capable of binding to the target protein, and our
method exhibited the highest docking scores and displayed
binding residues most similar to the reference structure. This
prominent result underscored the reliability and therapeutic
potential of our method for peptide generation.

Reference
Docking

MMCD SimDiff

DiffAB
Docking score = 1754 

RMSD = 1.76
Docking score = 1726 

RMSD = 2.04
Docking score = 1690 

RMSD = 2.32
Docking score = 1597 

FoldingDiff

RMSD = 2.45
Docking score = 1582

ProtDiff

RMSD = 2.51
Docking score = 1551 

Figure 4: Docking analysis (interactive visualization be-
tween target protein and peptides) of the reference and gen-
erated structures by MMCD and baselines. Thick lines rep-
resent the residues of peptides, and the thin lines show the
binding residues for protein-peptide complexes.

Conclusion
In this work, we propose a multi-modal contrastive dif-
fusion model for the co-generation of peptide sequences
and structures, named MMCD. MMCD is dedicated to
leveraging a multi-modal contrastive learning strategy to
capture consensus-related and difference-related informa-
tion behind the sequences/structures and therapeutic/non-
therapeutic peptides, enhancing the diffusion model to gen-
erate high-quality therapeutic peptides. The experimental
results unequivocally demonstrate the capability of our
method in co-generating peptide sequence and structure,
surpassing state-of-the-art baseline methods with advanta-
geous performance.
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