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Abstract

Spatiotemporal social behavior analysis is a technique that
studies the social behavior patterns of objects and estimates
their risks based on their trajectories. In social public sce-
narios such as train stations, hidden following behavior has
become one of the most challenging issues due to its prob-
ability of evolving into violent events, which is more than
25%. In recent years, research on hidden following detec-
tion (HFD) has focused on differences in time series between
hidden followers and normal pedestrians under two tempo-
ral characteristics: gaze and spatial distance. However, the
time-domain representation for time series is irreversible and
usually causes the loss of critical information. In this paper,
we deeply study the expression efficiency of time/frequency
domain features of time series, by exploring the recovery
mechanism of features to source time series, we establish a
fidelity estimation method for feature expression and a se-
lection model for frequency-domain features based on the
signal-to-distortion ratio (SDR). Experimental results demon-
strate the feature fidelity of time series and HFD perfor-
mance are positively correlated, and the fidelity of frequency-
domain features and HFD performance are significantly bet-
ter than the time-domain features. On both real and simulated
datasets, the accuracy of the proposed method is increased
by 3%, and the gaze-only module is improved by 10%. Re-
lated research has explored new methods for optimal feature
selection based on fidelity, new patterns for efficient feature
expression of hidden following behavior, and the mechanism
of multimodal collaborative identification.

Introduction
Many achievements have been made in modeling abnor-
mal behaviors with obvious visual features (Liu et al. 2022;
Ionescu et al. 2019). As a prelude to many criminal crimes,
hidden following is a behavior of secretly tracking and mon-
itoring behind the target. Hidden follower detection (HFD)
seeks to identify the hidden follower in all pedestrians from
the surveillance video. However, methods based on com-
puter vision (Li, Zhang, and Diao 2020; Jiang et al. 2020;
Duan et al. 2020), end-to-end learning (Zhou et al. 2019), or
sensors (Wang et al. 2017) are helpless for this task because
there are no obvious posture characteristics; Then mainly
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studies the relative position of two trajectories (Andersson
et al. 2008; Siqueira et al. 2011) and temporal-spatial trajec-
tory (Kjærgaard et al. 2013; Li et al. 2013; Xie, Ren, and Liu
2020; Jiang et al. 2018), nevertheless, the following behav-
ior is ubiquitous, making it difficult to distinguish whether
the pedestrians behind with similar trajectories are due to
coincidence or hidden following intention.

The study of “hidden" behavior has seen new light in re-
cent works (Xu et al. 2022, 2021). They consider behavior
patterns can reflect human intentions: first found there are
significant pattern differences in gaze-spatial behavior be-
tween hidden followers and normal pedestrians. In the time
domain, they extract the gaze state series and distance series
from the surveillance video and generate gaze-spacing-flow
features to represent the gaze-spatial low of walking. Then, a
hidden follower detection framework embedded with gaze-
spacing-flow (HFDF-GS) is proposed to improve the accu-
racy of HFD. However, the time domain representation of
time series often leads to information loss, which is mainly
attributed to 1) Irreversibility: time-domain features are irre-
versible, for example, we cannot reconstruct from the gaze
frequency to the gazing state series. This one-direction fea-
ture extraction will inevitably lose some original informa-
tion; 2) One-sidedness: the subjective time-domain features
such as gaze frequency only describe the hidden following
behavior in limited aspects.

Nevertheless, early research has proved the vulnerabil-
ity of time-domain parameters (S.B. and Rao 2016). Sig-
nal changes not only with time but also with frequency
and phase, etc. Any movement signal in frequency do-
main can be decomposed into different sine waves, which
makes it reflect the essence of things or phenomena from
an objective view (Yadav and Rai 2020): 1) Better repre-
sentation: many studies have demonstrated the frequency-
domain features can characterize more accurate and compre-
hensive original information (Van Segbroeck, Tsiartas, and
Narayanan 2013), such as Mel-frequency cepstrum coeffi-
cient (MFCC) (Lai et al. 2022), wavelet feature (Lee et al.
2022), spectral entropy (Yu et al. 2022), and Constant-Q
Cepstral Coefficients (CQCC) (Bhattacharjee et al. 2020),
etc; 2) Reversibility: reversible frequency-domain features
can be lossily reconstructed, which maximizes the preserva-
tion of original information.

In this paper, in order to prove the information loss of
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time-domain features, we define fidelity using signal-to-
distortion ratio (SDR) (Boeddeker et al. 2021) to estimate
the expression efficiency of time/frequency features and pro-
vide a universal selection method for frequency-domain fea-
tures. Based on frequency-domain analysis, we then pro-
pose a decision-fusion hidden follower detection framework
based on reversible time-frequency transform (HFDF-TF).
HFDF-TF detects the gaze direction and trajectory for all
pedestrians in the surveillance to generate the gaze state se-
ries and distance series (Xu et al. 2022), and then our frame-
work acts on it to mine the frequency-domain features that
distinguish hidden followers from location followers. The
contributions of this paper are as follows:

• We demonstrate there is information loss in time-domain
features by exploring the recovery of features to the
original time series. We establish a fidelity estimation
method for feature expression and a selection model for
frequency-domain features based on SDR.

• We explore the expression mechanism of human behav-
ior in frequency domain, there are also significant differ-
ences in gaze-spacing patterns between the hidden fol-
lower and normal pedestrians.

• In HFDF-TF, we first redefine the gaze state in gaze state
series; then introduce the decision-fusion training to fully
integrate the characteristics of both gaze features and
spacing features. Compared to the baselines, HFDF-TF
achieves a considerable improvement.

Definitions and Preliminaries
Xu et al. (2022) defines two kinds of following pedestrians:
Position follower: pedestrians with following characteristics
in temporal-spatial position and Hidden follower: position
followers with real hidden following intention.

Definition 1 (Position follower) Given two moving pedes-
trians F = {f1, · · ·fk, · · · } and T = {t1, · · · tk, · · · },
where fk = (ufk, vfk) and tk = (utk, vtk) are 2D loca-
tions at the timestamp k. Given a distance threshold τ , if 1):
∆(k) = ∥fk − tk∥<τ ; 2): (tk − fk) · (fk+1 − fk)>0 (the
angle of F and T in moving direction is less than 90◦); and
3): (tk+1 − tk) · (fk+1 − fk)>0 (T is in front of F in F ′s
moving direction). In a time interval, if F follows T more
than ϵ (default=50%) frames and the distance is always less
than τ , we say F follows T in this time interval, and F is
defined as a position follower.

Definition 2 (Hidden follower) If a pedestrian F is walk-
ing with the intention to “know the real-time position of T "
and to “not be found by T ". We say F hidden follows T ,
and F is defined as a hidden follower H.

We call who are not hidden followers H as normal pedes-
trians H , there are generally two types: acquaintances (H1)
and strangers (H2). H may be the position followers or not.

Gaze-Spacing Flow. Xu et al. (2022) define the gaze-
spacing pattern to represent behavioral differences between
the hidden follower F and the target T :

• Gaze pattern: H need to gaze at T frequency to prevent
being lost, nor too frequently to avoid being found.

• Spacing pattern: H should not be too far away from T to
prevent being lost, nor too close to avoid being found.

In the time domain, Xu et al. (2022) represents the spac-
ing pattern of the distance series using the spacing flow fea-
tures: distance range and average distance; and represents
the gaze pattern of the gaze state series using the gaze flow
features: gaze frequency and gaze density.

Gaze State Series and Distance Series. In HFDF-GS (Xu
et al. 2022), the gaze state series only uses a coarse-grained
representation (1 or 0) of threshold dichotomy to determine
gaze or not, which is not enough to describe complex gaze
behavior. In this paper, we introduce a dynamic score to rep-
resent the gaze degree at timestep i.

For the “short-time analysis" in the frequency domain,
given a gaze state series and a distance series with L frames
for a video, the frame rate is fps, we first divide the series
into multiple overlapping segments through a sliding win-
dow (the overlap between two frames is to maintain smooth
transition): we set the window length as w(s), each move-
ment of the window (frameshift) is inc(s), so the overlap is
overlap = w − inc. Then, the number of segments N is:

N =
L− w

inc
+ 1. (1)

Each segment contains w × fps frames (timestamps) of
the gaze state or distance information. For each segment, the
gaze state series is described by: G = {g1, g2 · · · gw×fps},
where −1 ≤ gi ≤ 1 that means the degree of F gaze at T
who in front in timestamp i. Similarly, the distance series is
recorded as D = {d1, d2 · · · dw×fps}, where di denotes the
following distance in timestamp i. Obviously, the segmenta-
tion of time series can also preserve temporal variability.

Frequency-Domain Features. To analyze the universality
of frequency-domain features for hidden following behavior,
we choose a classical feature and a complex feature:

Mel-Frequency Cepstral Coefficient (MFCC) (Murty and
Yegnanarayana 2006; Brown et al. 2020): MFCC is the
most common and representative feature (Lee et al. 2019).
The time-frequency transform is based on the Short-Time
Fourier Transform (STFT) (Lu et al. 2009).

Constant-Q Cepstral Coefficients (CQCC) (Todisco et al.
2016; Bhattacharjee et al. 2020): CQCC has a better time-
frequency resolution, but has high time and computa-
tional complexity. The time-frequency transform is based on
constant-Q transform (CQT) (Shah et al. 2023).

Considering the CQCC is not conducive to the timeli-
ness of HFD, the subsequent frequency-domain analysis is
mainly based on the most representative MFCC feature.

Expression Efficiency of Features
In this section, we will evaluate the expression efficiency of
time/frequency domain features from two aspects: fidelity
and mode differentiation, while proving there is greater in-
formation loss in time-domain features.

Fidelity. The signal-to-distortion ratio (SDR) (Boeddeker
et al. 2021) when recovering the initial time series can im-
ply the information loss rate, the smaller the SDR, the more
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Feature Time domain Frequency domain
Gaze Spacing Gaze Spacing

Fidelity 52% 60% 73% 77%

Table 1: The fidelity of time/frequency features.

information the feature saves. We further define fidelity to
represent the degree to which features retain information:

fidelity = 1− SDR = 1−

∥∥∥L − L̂
∥∥∥2

∥L∥2
(2)

Fidelity for Time/Frequency Domain Features. For the
time-domain features, we try to reconstruct using an auto-
regressive model: Transformer, we keep the network struc-
ture, set L̂ as the outputting reconstructed series, and intro-
duce the SDR as the loss function. 70% of the real dataset
for training and 30% for testing, finally obtaining the aver-
age fidelity of the test set. For frequency-domain features,
we obtain the optimal 4D gaze/spacing MFCCs, and the ini-
tial time series is rebuilt by its inverse operation. As depicted
in Table 1, the fidelity of time-domain features is much
lower than frequency-domain features, which proves time-
domain features may lose more critical information, while
frequency-domain features have better expression efficiency
for time series. However, the significant fidelity difference
in the time-frequency domain in the table may also be due
to the technical limitations of time-domain recovery.

Fidelity for Feature Selection in Frequency Domain. To
explore the impact of the fidelity of frequency-domain fea-
tures on the recognition performance of hidden followers,
we obtain the fidelity of MFCCs under different dimension,
w(s), and overlap(s). The line graph is shown in Fig. 1, both
in gaze-spacing pattern, we find HFD performance is posi-
tively correlated with feature fidelity, although there will be
a slight disturbance in F1 score when the fidelity of the two
features is very similar. We can say when the feature fidelity
increases by more than 0.5%, the HFD performance is also
likely to show positive growth. So the optimal frequency-
domain feature can be chosen based on fidelity without te-
dious training. This method is widely applicable to other re-
versible frequency-domain features or tasks.

(a) Gaze MFCCs (b) Spacing MFCCs

Figure 1: Relationships between the fidelity of various
gaze/spacing MFCCs and HFD performance (F1 score).

Control
group

Real-HFD Sim-HFD
Gaze Spacing Gaze Spacing

LL 8.42E-03 1.51E-10 6.30E-04 2.74E-10
LHT 0.076 1.25E-04 0.032 1.76E-06
LHF 1.21E-39 8.52E-23 5.65E-50 2.85E-38
HFHF 8.82E-03 5.50E-08 2.64E-10 4.53E-15
HFHF 0.250 0.497 0.311 0.428
HFHF 0.437 0.372 0.496 0.410
HFHT 1.15E-21 5.44E-29 3.44E-47 7.31E-55

Table 2: Mode differentiation in control groups: p-value.

Mode Differentiation of Source Information and Fea-
tures. On both real and simulated datasets, by performing
K-S tests (Bickel 1969) on the k-means clustering modes,
we set up some control groups to compare the pattern differ-
ences of time-frequency features or source series (Table 2).
In this section, we only analyze the mode differences be-
tween initial time series L and time/frequency domain fea-
tures: gaze state series and gaze flow of HT (H in time do-
main), distance series and spacing flow of HT , gaze state
series and gaze MFCCs of HF (H in frequency domain),
distance series and spacing MFCCs of HF . The pattern dif-
ferences between L and the MFCCs (LHF ) are more sig-
nificant from the gaze-spacing flow (LHT ), this indicates
frequency-domain features have strong expressive power for
time series. Moreover, our gaze-only module (HFDF-GF,
see Table 3) is greatly enhanced due to the significant differ-
ence in gaze pattern (0.076 in LHT vs 1.21E-39 in LHF ).

Gaze-Spacing Pattern in Frequency Domain
Based on the above analysis, we make and verify the follow-
ing assumption:

Assumption 1 (Gaze-Spacing pattern) In frequency do-
main, the gaze-spacing pattern between the hidden followers
and the normal pedestrians is significantly different.

MFCC Clustering Modes. For all hidden following pairs
and normal walking pairs in real dataset, we extracted the d-
dimensional MFCCs and then conducted the k-means clus-
tering analysis, they are clustered into four modes: A, B, C,
D. Fig. 2 shows the comparison of MFCC mode distribu-
tion with the radar chart. It indicates the gaze pattern of H
is more likely concentrated in mode C, and the spacing pat-
tern of H is more likely distributed in mode A and B; yet
the clustering modes of H is disorderly and different to H.

Mode Differentiation. From the three control groups in
Table 2: HFHF , HFHF and HFHF (H in frequency do-
main). As for HF and HF , there are significant differences
in spacing pattern (p≪ 0.05), but relatively not significant in
gaze pattern on Real-HFD (p=8.82E-03), which also leads to
our spacing-only module (HFDF-SF) being better than the
gaze-only module (HFDF-GF) (see Table 3). Besides, there
are significant differences in gaze-spacing pattern between
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(a) Gaze modes

(b) Spacing modes

Figure 2: The MFCC clustering modes of gaze-spacing pat-
tern (radar chart). (a) and (b) showed the mode distribution
of gaze and spacing MFCCs respectively. Each radar chart
displays the mode distribution of one video, the first and sec-
ond line is the hidden following and normal walking pairs.

HF and HT (p≪ 0.05). It proves that frequency-domain
features are completely different from the time domain.

Power Spectrum and Spectrogram. At the micro level,
we acquired the power spectrum (Kugler 2022) of each seg-
ment in G and D. When the hidden following occurs, com-
pared to normal walking, it shows a significant increase in
high-frequency components (see Fig. 3(a)(b)).

At the global level, the spectrogram (Decorsière et al.
2015) represents the time variation of the frequency struc-
ture. As shown in Fig. 4, for both gaze and spacing pattern,
the whole moving process of H is relatively concentrated
in low frequency (Fig. 4(b)(d)). Fig. 4(d) shows disordered
power changes in spacing pattern, it implies the random
walking speed of H because there is no special intention.
Fig. 4(b) have high-frequency aggregation that may be due
to the H always habitually staring at a certain place (no need
to hide). On the contrary, the higher power of H changes
frequently but not intensively (Fig. 4(a)(c)), it unveils the
law of hidden following behavior: 1) Can’t gaze frequently,
whereas can’t ignore; 2) Not too close nor too far.

HFDF Based on Time-Frequency Transform
The decision-fusion hidden follower detection framework
based on time-frequency transform (HFDF-TF) is designed
to detect the hidden follower in the surveillance: specify a
target pedestrian T , HFDF-TF will predict the probability
P that each pedestrian hidden following T . If P>0.6, the
pedestrian is recognized as a hidden follower. Fig. 5 shows
the overall architecture of HFDF-TF.

(a) Gaze structure (b) Spacing structure

Figure 3: Power spectrum of the gaze-spacing pattern when
hidden following occurs. (a) and (b) depicted the frequency
(power) structure of the gaze and spacing patterns of the hid-
den following pair and the normal walking pair respectively.

Trajectory Tracking
We first use the TraDeS (Wu et al. 2021) model (online
multi-target tracker) to track the pixel coordinates of all
pedestrians in the surveillance video and also convert the
pixel coordinates into real ground coordinates by perspec-
tive transformation. The distance series of each pedestrian
pair is calculated by their relative real ground distance.

Gaze State Series Extraction
The gaze state of the follower to the target needs to be deter-
mined by gaze direction.

Gaze Direction Detection First, the HFDF-FT combines
DensePose model (Güler, Neverova, and Kokkinos 2018)
with the TraDeS tracking results for more accurate head-box
tracking. Then, the Gaze360 model (Kellnhofer et al. 2019)
outputs the 2D gaze direction for each pedestrian.

Gaze State Series The gaze state series G consists of the
gaze state of each frame. Note that we introduce “gaze de-
gree (score)" to indicate the gaze state instead of using a
simple 1 or 0 to denote gaze or not (1 when the gaze angle
is less than 60, otherwise it is 0) (Xu et al. 2022). For i-th
frame in the video, the gaze state gi (gi ∈ G) from F to T
is calculated by the ground coordinates of F : (ufi, vfi) and
T : (uti, vti) and the 2D gaze directions of F : (gdx, gdy).

∆ui = ufi − uti, ∆vi = vfi − vti, (3)

α = arccos
(gdx, gdy ) · (∆ui,∆vi)

|(gdx, gdy )| · |(∆ui,∆vi)|
, (4)

gi = 1− 2 ∗ angle (α) /180, (5)

where angle (α) ∈ [0, 180], and −1 ≤ gi ≤ 1 represents the
degree of F gaze at T in timestamp i. The closer the gaze
angle is to 0, the F is more likely to gaze at T .

Frequency-Domain Features Extraction
After segmentation by Eq. 1, the distance series and gaze
state series are divided into N segments. We extracted the d-
dimensional MFCC of each gaze segment and spacing seg-
ment, and finally obtained the (N×d) MFCC feature matrix
as the gaze feature and the spacing feature, and input them
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(a) Gaze spectrogram of hidden following pair (b) Gaze spectrogram of normal walking pair

(c) Space spectrogram of hidden following pair (d) Space spectrogram of normal walking pair

Figure 4: Spectrograms of the gaze-spacing pattern in hidden following and normal walking pair (x label: Time, y label: Hz).

Figure 5: Architecture of the proposed HFDF-TF. HFDF-TF first detects the trajectory and gaze direction of each pedestrian in
the surveillance video to acquire the distance series and gaze state series, then transforms them to frequency domain to obtain
the spacing MFCCs and gaze MFCCs, they were each sent to a TSC model and outputs the probability of “being a hidden
follower", respectively. Finally, the final output of HFDF-TF comes from the decision fusion of the two TSC models.

into two independent TWIESN (Tanisaro and Heidemann
2016) models for decision fusion training, respectively. Sim-
ilarly, obtain the (N × d

′
) CQCC feature matrix.

Decision Fusion Training
We apply DS evidence theory (DS inference) (Martin,
Zhang, and Liu 2010) as the decision fusion strategy (see
Fig. 5). Regard the two TWIESN classifiers as m1 and m2,
we defined the following identification domain:

Ψ = {θ1, θ2} , (6)

where θ1 and θ2 represents the proposition of: F is a hidden
follower and F is not a hidden follower, respectively. θ1 and
θ2 output the prediction probability of m1 and m2, respec-
tively, which is recorded as: m1 : {m1 (θ1) ,m1 (θ2)} and
m2 : {m2 (θ1) ,m2 (θ2)}. The final decision of proposition

θ1 is calculated as follows.

P (θ1) =
m1 (θ1)m2 (θ1)

K
, (7)

where K =
2∑

i=1

m1 (θi)m2 (θi) is the conflict coefficient.

Experiments and Results
Datasets
Real-HFD. The Real-HFD includes 20 pedestrians with a to-
tal video length of 160 minutes. Each video lasts one minute,
in which the number of pedestrians varies from 5 to 12.
In the hidden following videos, each contains 1 or 2 hid-
den following pairs, and others are normal pedestrians. The
non-hidden following videos contain 4 to 6 pairs of acquain-
tances. If each sample refers to one behavior of a pedestrian
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Ground truth label Baseline: HFDF-GS Ours: HFDF-TF

Figure 6: Visual comparison results. The HFDF-GS identifies pedestrians with similar trajectories as hidden followers.

in a 1-minute video, Real-HFD includes 160 samples of hid-
den followers (H), 280 samples of acquaintances (H1) and
370 samples of strangers (H2). More details can be found in
(Xu et al. 2021, 2022).
Sim-HFD. Due to the hidden following data in the real world
is rare for training. Xu et al. (2022) established a simula-
tion model to simulate the gaze behavior and movement be-
havior of four types of pedestrians: 1) The motion of (H)
is adjusted according to the principle of following (T ) and
not being detected. 2) The motion of (H1) is similar to that
of (T ). 3) The motion of (H2) is basically independent of
(T ). After performing the simulation model 40 times, once
putting 31 pedestrians into the scene: 1×T , 10×H, 10×H1,
and 10 ×H2, there are 1200 series of spacing and gaze be-
haviors of normal pedestrians and hidden followers in the
end. We trained with 4-fold cross-validation, of which the
ratio of the training set and test set in both datasets is 7:3.

Experimental Setup
We evaluate the HFDF-TF model from the four aspects:

• How is the HFDF-TF model performance?
• How does the model perform with only gaze MFCCs or

spacing MFCCs?
• Is the model applicable to different frequency-domain

features?
• Will multimodal feature collaboration further improve

HFD performance?

Comparison methods. In this paper, we compare HFDF-TF
with the traditional following detection method based on tra-
jectory (Li et al. 2013), the hidden follower detection model
HFDF (Xu et al. 2021), and the SOTA HFD model HFDF-
GS (Xu et al. 2022).
Parameter settings. The optimal gaze and spacing MFCC
parameters in Fig. 1 are: gaze MFCCs with dimension = 4,
w = 10s, overlap = 2s and spacing MFCCs with dimension
= 4, w = 8s, overlap = 1s.
Evaluate metrics. Precision, Recall, F1 score, Accuracy and
AUC.

The Performance of HFDF-TF
On real-HFD and Sim-HFD, we evaluate the performance of
the proposed HFDF-TF with other HFD methods.
Results. Table 3 reveals the performance comparison results
on five evaluated metrics. Both on Real-HFD and Sim-HFD,
the HFD performance of HFDF-TF is significantly better
than the traditional trajectory-based method and the SOTA
baseline method. Compared to HFDF-GS, on Sim-HFD, the
proposed HFDF-TF is improved 2% to 3% in four evaluate
metrics, and improved 3% to 4% on Sim-HFD. Besides, see
Fig. 6 for the visual comparison results between HFDF-TF
and HFDF-GS.

In order to test the effects of the gaze module, spacing
module, and decision fusion strategy separately, the corre-
sponding ablation model is defined as 1) HFDF-GF (gaze-
only HFDF-TF), 2) HFDF-SF (spacing-only HFDF-TF),
and 3) HFDF-ND (HFDF-TF without decision fusion, which
based on the feature concatenation and only one TWIESN
network). The ablation results are also displayed in Table 3.
Compared to HFDF-G, HFDF-GF meets great improvement
in gaze features, an increase of about 9% to 10%; Compared
to HFDF-G, the improvement of HFDF-GF in spacing fea-
tures is about 2% to 3%. Nevertheless, why does the spacing
pattern in the frequency domain increase far less than the
gaze pattern? The reasons are as follows:
(1) Explanation from the behavior mode. Relatively speak-
ing, trajectory tracking is more accurate than the gaze angle.
On the other hand, the distance law is a strong constraint,
yet whether to gaze is a weak constraint: the target suddenly
turns back is a small probability event, and the follower does
not need to strictly control his gaze direction.
(2) Explanation from benefits of time-frequency transform.
The more accurate the time-domain parameters express the
behavior, the smaller the additional benefits we can get in the
frequency domain. It is obvious that the time-domain gaze
parameters in HFDF-GS are not enough to express the fol-
lowing behavior (F1 score: 71.5%).

The comparison between HFDF-ND and HFDF-TF in Ta-
ble 3 shows that simple feature concatenation will destroy
the unique frequency structure of gaze mode and spacing
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Dataset Model PrecisionRecall F1 AccuracyAUC

Real-HFD

Trajectory 57.1 97.5 72.7 62.5 65.1
HFDF 87.6 86.2 86.9 86.2 87.3

HFDF-G 71.6 71.4 71.5 71.4 71.2
HFDF-S 91.4 90.9 91.2 90.9 90.8

HFDF-GS 92.0 91.4 91.7 91.4 91.6
HFDF-GF 81.8 80.4 80.6 80.4 80.4
HFDF-SF 94.0 93.8 93.9 93.8 93.7
HFDF-ND 92.4 91.8 92.6 91.8 91.7
HFDF-TF 94.6 94.4 94.5 94.4 94.4

Sim-HFD

Trajectory 61.0 100.0 75.8 78.7 79.4
HFDF 86.3 87.9 87.1 87.1 87.0

HFDF-G 86.3 87.9 87.1 87.1 87.0
HFDF-S 87.2 88.4 87.8 87.7 87.3

HFDF-GS 91.9 90.6 91.4 91.2 91.4
HFDF-GF 88.3 89.5 88.6 88.4 88.4
HFDF-SF 94.8 94.5 94.6 94.6 94.3
HFDF-ND 93.9 94.7 93.4 94.8 94.8
HFDF-TF 95.5 95.0 95.2 95.1 95.0

Table 3: Comparison of five evaluate metrics for each model
on Real-HFD and Sim-HFD. HFDF-G and HFDF-S repre-
sent the gaze-only and the spacing-only model in HFDF-GS.

Feature Model Time PrecisionRecall F1 AccuracyAUC

MFCC
HFDF-GF0.75s 81.8 80.4 80.6 80.4 80.4
HFDF-SF 0.73s 94.0 93.8 93.9 93.8 93.7
HFDF-TF 1.22s 94.6 94.4 94.5 94.4 94.4

CQCC
HFDF-GF1.39s 83.2 81.9 82.1 81.9 82.3
HFDF-SF 1.33s 95.2 94.6 94.9 94.6 94.6
HFDF-TF 2.36s 96.1 95.4 94.9 95.4 95.2

Table 4: Comparison of five evaluate metrics between
MFCCs and CQCCs on Real-HFD, and the comparison of
each iteration time during training.

mode in the frequency domain, so the performance will not
increase but decrease. Therefore, decision fusion training is
essential for our task. So far, we are convinced that the anal-
ysis of hidden following behavior in the frequency domain
has made a significant contribution to HFD.

Different Frequency-Domain Features
On Real-HFD, we compared the performance of MFCCs
and CQCCs on HFDF-GF and HFDF-SF, respectively.
Results. Table 4 shows the comparison between MFCCs
and CQCCs on Real-HFD. Although CQCCs outperform
MFCCs in all three models, it can be seen from the com-
parison of each iteration time that, the time complexity of
CQCCs is almost twice that of MFCCs, which greatly lim-
its the practical application of CQCCs. Yet the extraction
process of MFCC involves many other typical frequency-
domain features, such as FFT, spectrum, Fbank features, etc.
In cases where all metrics are small differences, MFCCs

Model PrecisionRecall F1 Accuracy

(Gmfcc + Gflow, Smfcc) 92.4 90.9 91.3 90.9
(Gmfcc + Sflow, Smfcc) 92.4 90.9 91.3 90.9
(Gmfcc, Smfcc + Gflow) 91.1 90.9 90.8 90.9
(Gmfcc, Smfcc + Sflow) 89.3 88.6 88.2 88.6

(Gmfcc + Gflow, Smfcc + Sflow) 92.1 91.6 92.0 91.6
HFDF-TF: (Gmfcc, Smfcc) 94.6 94.4 94.5 94.4

TF decision 96.0 95.5 95.3 95.5

Table 5: Performance of multimodal feature collaboration.
Where (Gmfcc + Gflow, Smfcc + Sflow) is a decision fu-
sion model for gaze features (gaze MFCCs concatenate with
gaze flow) and spacing features (spacing MFCCs concate-
nate with the spacing flow). “+" denotes the concatenation
along specific dimensions, if there is no “+", it means no fea-
ture concatenation. TF decision is a decision fusion model
for HFDF-GS and HFDF-TF.

may be a better feature selection.

The Performance of Multimodal Collaboration

On Real-HFD, we also explored the performance of collabo-
rating time-frequency features. Moreover, we conducted de-
cision fusion training on the HFDF-GS and HFDF-TF to in-
tegrate time-frequency domain information fully, the model
is recorded as TF decision model.
Results. The gaze-spacing flow (Xu et al. 2022) combines
with the gaze MFCCs and spacing MFCCs, respectively, or
simultaneously (see Table 5). But compared to HFDF-TF,
it doesn’t seem to meet expectations. The decision fusion
model of HFDF-GS and HFDF-TF achieved the best HFD.

Conclusions

Our paper seeks to open the minds of hidden follower detec-
tion (HFD) for a new research agenda. By studying the fi-
delity of source information recovery of time/frequency do-
main features, we found the frequency-domain features have
better expression efficiency for time series, and establish a
selection model for frequency-domain features based on the
fidelity. Furthermore, by analyzing the motion of hidden fol-
lowing behavior in frequency domain, we propose a decision
fusion hidden follower detection framework based on time-
frequency transform (HFDF-TF) to achieve a more efficient
HFD. The F1 score on Real-HFD is improved by 2.8%, and
the gaze-only module is improved by 10.1%, the multimodal
collaboration performance is improved by 3.6%.
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