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Some problems and results in elementary number theory.
By P. ERDOS in Aberdeen (Scotland).

Throughout this paper ¢,, ¢,, . . . denote absolute constants, p,, p., ... are
primes, P, P,, ... is the sequence of all primes, letters u, x, v, n, a, b, etc.
denote positive integers.

Denote by u, -~ 1< u,< ... the sequence of integers of the form x*--y~.
CHowLA and BAMBAH remarked that w, ;—u; < c,u;'. It has been conjectured
that u.,,—u,— o(u;*). In other words for any #>0 an sufficiently large n
there always is an integer of the form x*--)* in the interval (n,n--en").
This conjencture is still unproved. This is rather surprising since the proof
of BamBaH and CHOwLA is immediate. It suffices to put w,-— x*--y* where

X<mn=x4+1)? yYaya—xt=(y+1).
TurAN (in a letter) observed that it is easy to prove that
e, log u
(1) Uiy —U; >y log loga,-
for inifinitely many /. He asked whether | can improve (1).
In fact | can show that for infinitely many /

log u;
2 Ui\ — Ui > Oy,
) ' * (log log u)'
In fact I prove a somewhat more general theorem. Let p, < p,< ... be
a sequence of primes satisfying
=
> 5 =fe)— o as x—o,
Pi<.T P

in other words ;)— — oc. Denote by v, <, <... the integers which either

are not divisible by p, or are divisible by p’. Then we prove
Theorem 1. For infinitely many i we have
IOg_ i

ty— > fogei) "~ 5
(3) i1 [ c,e Iog Iog o
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Before proving Theorem 1 we show that Theorem 1 implies (2). If the
p. are the primes=3(mod 4), then as is well known the u’s are included
among the /s, also it is well known that

> i_ 1 x i
ruligods P 2 log log x+0O(1).

Thus from e > 1--2,
eflloge) > ¢ (log log )+,
or (3) implies (2).

It seems rather difficult to prove a stronger result than Theorem 1. In
fact if w,, w,, ... denote the integers not divisible by any p,, the w's are
clearly included among the ’s; but nevertheless I cannot prove any stronger
result than (3) for the w's.

Before proving Theorem 1 we state a few well known results on primes
which we will need. Let dencte by D;(y) the number of integers less
than y which are not divisible by p,, p., ..., pi. It is well known fand follows
from BRUN's method ')] that there exist two absolute constants ¢, and c. so that

_ - 1
(4) Di(y) a;c.}y’,!r]’._:(l— E]'
Now [with exp z=¢]

o 1 |-}

. [;] (1—— ;]_,] = exp (‘_\_ ) ;35 > ¢,

W= =y pi =g frE Py
since
(6) )_‘-' — log log x - 0.1).
=P
Thus from (4) and (5)
1 ' &
) D <ay IL[1—5) [e=%)
Now we prove Theorem 1. Since l;’—- — o, there exist infinitely many
k satisfying p. < %*. Put
!:{ng’—- ‘ i = C1nk£""'[f"'",

where ¢,, is sufficiently small and will be determined later. Denote by a,, a., ..., a.
the integers not excending ¢ which are either not divisible by p,, (1=i=1)
or are divisible by p-. First we prove that for sufficiently large &

(8) z<l.

1) See for example P. Erpos, On the easier Waring problem for powers of primes.
L Proc. Cambridge Phil. Soc. 33 (1937), 6—12.
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First we show that for sufficiently Iar;ge k
9) k< t< k(log k)*.

Obviously ¢ = & since f(p.) — =, t < k(log k)* follows immediately from
(6). - To prove (8) write a;— b;d; where d;, is not divisible by any of
D1y Pay oo, prand b, is entirely composed of the p;, 1 =i = [ and all the exponents
of its prime factors are greater than 1. We split the «&'s into two classes. In
the first class are the a's with b, =1t and in the second class the a’s with
by <t Clearly b; is divisible by a square not less than b;"(b; — pi™ ... pi*™". . )
and the largest square dividing b; is pi“ .. .pi" ... which is clearly = b,
Thus the integers of the first class are divisible by a square = #'s. Therefore
by (9) the number of the a’s of the first class is not greater than

(10) _ 2: f—f\, < < Kia(log k)* < —f} .
The number of integers ot the second class clearly equals
(i | 3 olg).

0= a i

We have by (9) and p: < p- <k

( b ] = 2""“’){}-’

Thus by (7)
t t 4 ( 1]
Dil g | <y 1=
Thus
' t 7, 1 t : k
(12) DI( ] Cf,E;IZ:!_ (\]—"EJ‘*:CUEE')‘(PU..—C“]C”E:.
Now
vl _~1 51

(13) — S ETE e <.

Thus flom (10), (12) and (13) the: number of integers of the second class.
is less than

(14) CrCriCruk <

for sufficiently small ¢,,. Thus (10) and (14) imply (8).
Let now O < x < (p,p,---p)* satisfy the following congruences:

=0 (mod (p,p,---p1)*)
X'E“ o — p-'_+f (nlOd p?—f)’ f-- ]’ 2' '..,Zl

Since by (8) z <, all the p's are less than p;.
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Now we show that none of the integers
x+u, O<u=t
are 's. If u is not one of the a's then there exists a p;, 1 =i =1 so that
p. u, p? ¥ u. But then clearly p:|(x-+u), p’ ¥ (x-~u), i.e, x-+u is not a r. If
u—a; then p.;|(x+u), pi.. ¥(x-+-u) i e x—+uis not a r. Define now
= X< X <.
Thus
(15) i — ;> = ¢, kel
Further from p,. < &*
t; = X< (Ppa--- i) < pif < kY,

hence
(16) k

Thus from (15) and (16)

Sé log ¢;
“ " log log r; °

. lOg oF
Pr—is oy, 5 &
(17) Jj+l = O w IUg log r; o

From (16) &* > log +;. Thus from (6)
(18) f(log ) —f(pi) = f(K)—1(pr) = f(K*)—F (k) < css.
Hence finally from (17) and (18)
o1 — 13 > € ef og'r,) OB
log log r;
which proves Theorem 1.
It is not difficult to show that Theorem 1 remains true if we do not
assume that the p’s are primes but only assume that (p;, p)—1.
As stated before it seems hard to improve Theorem 1. In only succeedzd
in doing this if we assume that '

(19) v%gm

where ¢ runs through the primes which are not p’s. In this case Theorem 1
gives
Pigt— 0 2> €y |0g ¥is
Piar — 1
lOg i
If we only want to prove (2) we do not need BRUN’s method. We can
use instead LANDAU’s well known result that the number of integers = { of

and | can prove lim

the form «*-+-* is O In fact LANDAU showed that it is

)
(log &)= 1"
A—— t__ 0 _t_ .
~ (log t)'- (logt)'« °
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Let us now assume that _\_% < oc. Perhaps the most interesting case

is if the ’s are the squarefree numbers. Here the p’s are not primes but the
squares of primes. Denote by s, < s, < ... the sequence of squarefree numbres.
Our above method gives that for infinitely many i

7 log s
20 Sip—si S (4o 2,
(=0} ‘ (11 ())6 log log s
I do not know if (20) has been published before, but it was certainly known
to several mathematicians e. g. BATEMAN, CHOwWLA and Mirsky. The curious
thing is that it seems to be extremely hard to replace ;—;

by any larger con-

stant, in fact it seems possible that for i > i,

s g e :"_Iz lo_g__s‘- B
(21) Siii—8 < (1-+¢) A
The strongest result in the direction of (21) is due to RoTH®) and states
that
4
&2 Sipi—8i < S?""’(log s)® e

When | heard of RoTH’s result I thought of trying to prove that for
every «
(23) D (811 —S)* = Cux+0(%).

LR R

‘The proof of (23) seems very difficult; it would of course imply
Sin—58i — 0(si). In can prove (23) only if « < A where A is a certain constant
between 2 ane 3. Here I only sketch the proof for e — 2.

Denote by gi(x) the number of s: < x satisfying s...—s; —1.

Lemma 1. For fixed t as x — ~

gi1(x) = g x—+o(x).
In other words the density of the s, with s,.,—s; —¢ exists.
Lemma 1 is known. ®)

Lemma 2. There exists an absolute constant c,. so that

NV e X
— &) < en moeyE
Put §;.y—s;=r>1{. We show that there are at least ;—6 integers 2 satis-
fying s, < 2 < s;,; which are divisible by the square of a prime P > f_;%go_t To

®) K. F. Rotu, On the gaps between squarefree numbers, Journal London Math. Soc.
Vol. 26 (1951), 263—268.

%) L. Mirsky, Arithmetical pattern problems relating to divisibility by r-th powers.
Proc. London Math. Soc. 50 (1949), 407—508. — See Theorem 4, p. 507.
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L

show this we observe that the number of integers ;< y < s;y which are

divisible by the square P” of a prime Pg% is at most
e T 2] tlog t r 7
w3 (|5 zp )<t e—%
(24) P_?I'ogf P _ L 4 8 8
= 00
since M — < -]----|-- ] 4—]—|—----; 3 and by the results of TCHEBICHEFF
~— p* 4 23 34 4
for £ >1
[:‘ og ) : _ff_
<5

Since by assumption all the r—1 mtegers z satisfying s < 2 < sy are divi-
sable by squares, we obtain from (24) that for r > 16 there are at least

) T B i 2 tlogt _
r—1 —38'716 integers z divisible by a P~ with P > T [For r = 16,
1< 186, f—Il—%Of 1 thus all the r—1 integers are divisible by P* with P > fllg(g)f |
Hence our assertion is proved. Thus there are at least

N
(25) 6, —, (Sira—5)

Sje1— 8] =t

integers not exceeding x which are divisible by the square of a prime

tlogt
B> "Ton
X X

(26) N =3 P N
Tog! P t (log t)

1ine

[since P, > ¢, klogk]. Thus from (25) and (26)

But the number of these integers is less than

(27) D (si—s) < 166,
-*'.'I+;1 “_-":“ v

or the number of /’s with s,y = X, s,i—8; > is less than

B
{ (log t)?

X

106 log i

which proves Lemma 2.

From Lemma 2 we have by a simple computation that for every >0
there exist an r so that
S Ea—sp=3 3 a—sP< 32 3 g9<

j.=|| ¥ 2-+'
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Further from Lemma 1

(29) B (si1—8) — x Mg o).
Mgyt =1

0 g R
Hipy—¥ -

From (28) and (29) we obtain by a simple argument that

S (s—sP—=0@), X rs <

®iaq =1
and finally that

—
=4

which proves (23) for «-—2.

Lemma 1 can be generalized as follows: Let a,<a,< ... be any
sequence of integers. Denote by b, < b, < -.. the set of integers not divisible
by any of the a’s. Assume that the density of the &’s exists. [This is certainly

D (sa—s) =x " 23+ 0(x)
=]

the case if :!_ < ~.] Then the density of integers satisfying b,.,,—b; — ¢

also exists. We do not discuss the proof, but only remark that it follows
almost immediately from the following theorem of DAvexpPOrT and myself *):
Denote by ¢, the density of the integers not divisible by a,, a., ..., @, and
by ¢ the density of the integers not divisible by a,, ., .... Then ¢ lim ¢,.

AR A
By the theorem of DavenporT and myself it is easy to see that if the
density of the b's exists and is positive, then to every # there exist a ¢. so that

N (b —b) < ex.

—
el

+1 'l'. y

On the other hand no stronger result can hold in general even if

N~ Define the a's for example as the integers in the intervals

—_— 1

22 {1 ] en X,

, then ~ but
d;

Jim 1 N By — By = ox,

EE SL S L Y

’ ; <
[ do not know whether this can happen if _':_ = and (a;, @) 1.

(Recieved May 4, 1951.)

WL Davesvowr and P Erods, On sequences of integers. Acta arithmetica 2 (1936).
147—151. — See also: H. Davexeowr and P. Erpos, On sequences of positive integers.
J. Indian Math. Soc. 15, Part A (1951), 19—24,
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