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Some problems and results in elementary number theory .

By P . ERDÖS in Aberdeen (Scotland) .

Throughout this paper c, c, . . . denote absolute constants, p„ p,, . . . are
primes, P, P,, . . . is the sequence of all primes, letters 11, x, y, n, a, b,: etc .
denote positive integers .

Denote by II I = I < u, < . . . the sequence of integers of the form X2 -I-y= .

CHOWLA and BAMBAH remarked that u;_, -u ; < c, ui ' . It has been conjectured
that 11;,,-u;= o(u ; 1) . In other words for any f > 0 an sufficiently large n
there always is an integer of the form x° y2 in the interval
This conjencture is still unproved . This is rather surprising since the proof
of BAMBAH and CHOWLA is immediate . It suffices to put u ; - x' --j-y2 where

X 2 < u;yj r (X+ 1)2, y2 < u ;T,-x2 `=(y-- 1)' .

TURÁN (in a letter) observed that it is easy to prove that

(I)

	

n;_t - 11 ; > C,
log u ;-

log log a
for inifinitely many i . He asked Whether I can improve (1) .

In fact I can show that for infinitely many i

log u ;
(2)

	

-n, > C,

	

-	-.(log log u ;)'-

In fact I prove a somewhat more general theorem . Let p: < p, < . . . be
a sequence of primes satisfying

1 f(x) x as x x,
`~ Pi

in other words

	

1 - "C . Denote by u, < r ., < . . . the integers Which either

are not divisible by p ; or are divisible by p' . Then we prove

Theorem 1 . For infinitely many i we have

(3)

	

> c}e ( , 0s ,, )

	

log ri
log log
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Before proving Theorem I we show that Theorem I -implies (2) . If the
p: are the primes	3 (mod 4), then as is well known the u's are included
among the 's, also it is well known that

l
j 3(mod4) p

Thus from e' 1 -1 z,

eit~>s

	

> c-, (log log
or (3) implies (2) .

It seems rather difficult to prove a stronger result than Theorem 1 . In
fact if iv„ iv	denote the integers not divisible by any pi, tile Ws are
clearly included among the c's ; but nevertheless I cannot prove any stronger
result than (3) for the Ws .

Before proving Theorem 1 we state a few well known results on primes
which we will need . Let denote by D; (y) the number of integers less
than y which are not divisible by PI,P2, . . ., p ; . It is well known [and follows
from BRUN'S method 1 )] that there exist two absolute constants c, ; and c ; so that

(4)

	

D, (y) < c„ y Il ( 1- 1--) .

Now [with exp z = e

(5)

	

Il

	

+ 1- ~-~ =

	

/1 (1 -	I = - exp

	

c,.,

since

(6)

	

log log x + 0 .,1) .
P

	

b

Thus from (4) and (5)

(7 )

	

D, (y) < c ., Y

	

i
P-,

Now we prove Theorem 1 . Since F- A
k satisfying p,, < k' . Put

log log x O(1) .

1

, t

	

c,0 ke' (U , 4),

where c1 „ is sufficiently small and will be determined later. Denote by a 1 , a :>, . . ., a-
the integers not excending t which are either not divisible by p;, (1 =i 1)
or are divisible by p° . First we prove that for sufficiently large k
(8)

	

z < l:

1 ) See for example P . ERDÖS, On the easier Waring problem for powers of primes .
1 . Proc . Cambridge Phil. Soc. 33 (1937), 6-12 .

_ -

	

, there exist infinitely many



First we show that for sufficiently large k
(9)

	

k < t < k(log k) 2 .

Obviously t > k since t < k(log k) 2 folloWs immediately from
(6) . To prove (8) write a,1 bid, where d; is not divisible by any of
p,, p . > , . . . , p, and b, is entirely composed of the p;, I < i -~ I and all the exponents
of its prime factors are greater than 1 . We split the a's into two classes . In
the first class are the a's with b ; = t'2 and in the second class the a's with
b; < t' Clearly b ; is divisible b a square not less than b ., b	 2 a, ''3 ' -1

	

)
Y

	

( .i

	

p1

	

. . . P ,, .
and the largest square dividing b, is p "' . . . p,' which is clearly-b,' .
Thus the integers of the first class are divisible by a square Therefore
by (9) the number of the a's of the first class is not greater than

(10)

	

~	 t. < t'' < k % , (log k)2 <
k

The number of integers of the second class clearly equals

r, :

	

D, '6 l

We have by (9) and p, < pr. < k 2

t'
> P",

Thus by (7)

D,( )<c, tb,

	

b., -?
Thus

< C<,t Ij( I -	) < c„ t e-f(,'h)_ c,1c„ kb. , ;-,

	

p;

	

b,

	

b; .

Now
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i <

Thus from (10), (12) and (13) the number of integers of the second
is less than

(14)

	

c,,,c„c,,k < 4
for sufficiently small c,,, . Thus (10) and (14) imply (8) .

Let now 0 < x < (p, p	p,;) 2 satisfy the following congruences
x -0 (mod (p,p= . .p

	

p)5)

x=a;- p,+ ; (modp r ;),

	

i-- - 1, 2, . . . z .

Since by (8) z < 1, all the p's are less than p;, .

class .
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Thus
(15)
Further from p ;; ` k2

Now we show that none of the integers
x d- u, 0 < u = t

are r's . If a is not one of the a's then there exists a p;, I

	

i

	

I so that
p; a, p ;' ,{' u . But then clearly p ;. (x-}- u), p ;' ,~ (x-)- u), i. e, x -u is not a

	

If
u	a; then p;_ ; (x=, u), p . ,' (X ii) i . e . x=u is not a ± . Define now

r ; -x`x--t

, *i_,- ''i > t -

	

c,,,ker(,,;.) .

X K (pip , . .p;;) 2
hence

(16)

Thus from (15) and (16)

(17)

	

c,,e/(' )

	

log r .i	

log log
From (16) k2 > log r, . Thus from (6)

(18)

	

f(log'~;)-f(pk-) -f(k')-f(p') -f(k2)-f(k) - c,,-,-
Hence finally from (17) and (18)

> c1 el O c'9	 1og	
log log ' i

which proves Theorem 1 .
It is not difficult to show that Theorem I remains true if we do not

assume that the p's are primes but only assume that (p;, p i) -- l .
As stated before it seems hard to improve Theorem 1 . In only succeeded

in doing this if we assume that

( 1 9)

	

~1q
where q runs through the primes which are not p's . In this case Theorem I
gives

r'r-i - r • ; > C,,; log r •+',

and I can prove lim ' '

	

_ ".log r •
If we only want to prove (2) we do not need BRUN'S method . We can

use instead LANDAU'S well known result that the number of integers - t of

the form a'- -' is OI

	

t -) . In fact LANDAU showed that it is(log t)' ,

A
t

	

t
(log t)'

	

(log t) , -

log r i
loglogg
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Let us now assume that

	

1 - < c . p
;

	

Perhaps the most interesting case.~
is if the ,'s are the squarefree numbers. Here the p's are not primes but the
squares of primes . Denote by s, < s_ < . . . the sequence of squarefree numbres .
Our above method gives that for infinitely many i

Z :3

	

log S ;	
(20)

	

s;_,-s; > (1 -r-o(1))  6	 -	
log log s ;

I do not know if (20) has been published before, but it was certainly known
to several mathematicians e . g. BATEMAN, CHOWLA and MIRSKY. The curious

thing is that it seems to be extremely hard to replace ,6 by any larger con-

stant, in fact it seems possible that for i > i„

(21)

	

s;-, -s; ` (1 -{- -)	
log s ;

6 log log s ;
The strongest result in the direction of (21) is due to ROTH 2) and states

that

(22)

	

s;,, -s,: < s; ''(log s;)',,
+F

When I heard of ROTH's result I thought of trying to prove that for
every rt

(23)

	

~, (s,:~] -SAY - = C«x ~ o(x) .

The proof of (23) seems very difficult ; it would of course imply
s;+,-s; - o (s ). In can prove (23) only if a < A where A is a certain constant
between 2 ane 3. Here I only sketch the proof for a =_= 2 .

Denote by gt(x) the number of s ; < x satisfying s;-,-s;--t .

Lemma 1 . For fixed t as x

gt (x) = A x -; o (x) .
In other words the density of the s; with s1-1-s ; - - t exists .
Lemma I is known .')

Lemma 2. There exists an absolute constant c„ so that

g, (x)

	

c, ; t, (100, )' .

Put s;-, -s; = r > t . We show that there are at least 16 integers z satis-

fying s ; < z < s ;,, which are divisible by the square of a prime P > t-100t . To

2) K . F. ROTH, On the gaps between squarefree numbers, Journal London Math . Soc .
VOl. 26 (1951), 263-268 .

3) L. MIRSKY, Arithmetical pattern problems relating to divisibility by r-th powers .
Proc. London Math. Soc. 50 (1949), 497-508 . - See Theorem 4, p . 507.
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show this we observe that the number of integers s, < y < s ;+ , which

divisible by the square p2 of a prime P-t
iog t

is at most

(24)

(26)

~~ + r
+ <flog ,l, P]

1 ~ r

P = ikJ

P. Erdös

[since P,; > c,,k log k] . Thus from (25) and (26)

(27)

	

(s;+, -s) < 16 c,,	t (log t)2

or the number of i's with s;-, ~ x, s;+, -s;; > t is less than

16 c 1 ,	t (log t) ,
which proves Lemma 2 .

From Lemma 2 we have by a simple computation that for every r > 0
there exist an r so that

L (s' T , -s.)== s S (s;+1-S;)r < -2

	

,
g,( x) <

(28)

1

	

(t log t

	

3

	

r

	

7
+~~ 100) ` 4 r+ 8

	

8

`, x

	

x
< c1

	

.,
P - - t jo g t P

	

t (log t) -

2- -
<clix0

	

<Ex.

are

since ~ l
P

., < 1 4 + 2
1
.3 13

1
.4 T

	

3 and by the results of TCHEBICHEFF

for t > 1
t log t

	

t
~, 100 < 8

	

8
Since by assumption all the r-1 integers z satisfying s; < z < s,:_, are divi-
sable by squares, we obtain from (24) that for r > 16 there are at least

100,r -1 -
8

r >
1l6

integers z divisible by a P- with P > t 100 1 . [For r - 16,

t < 16 t log
t < I thus all the r-1 integers are divisible by P - with P > t log t ]

100

	

100
Hence our assertion is proved . Thus there are at least

1
(25)

	

(Sit,-s)

integers not exceeding x which are divisible by the square of a prime
P > t

loge . But the number of these integers is less than



(29)

2", 2'( 1

Further from

and finally that
C

(S, ,-s,) = -XI:

	

-o (x)

which proves (23) for (e

	

2.

Lemma I can be generalized as follows : Let a, a., < . . . be any
sequence of integers . Denote by b, b) ; . . . the set of integers not divisible
by any of the a's . Assume that the density of the b's exists . [This is certainly

the case if "',' l 1 .] Then the density of integers satisfying b;-,-b;= t

- a

a;

k
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Lemma I

1' (S; , - S;)"- -- x

	

't2 ; , -
1 -0 (.X ) .

n

From (28) and (29) we obtain by a simple argument that
r

also exists. We do not discuss - the proof, but only remark that it follows
almost immediately from the following theorem of DAVENPORT and myself') :
Denote by c,, the density of the integers not divisible by a„ a,, . . ., a,;, and
by c the density of the integers not divisible by a, a„ . . . . Then c-- lim c,; .

By the theorem of DAVENPORT and myself it is easy to see that if the
density of the b's exists and is positive, then to every < there exist a c, so that

On the other hand no stronger result can

N' 1

	

Define the a's for example as the integers in the intervals

i I , then ` I

	

~ hilt

lim -I-- ~

hold in general even if

1
I do not know whether this can happen if 'S a

	

and (a;, a ;)- 1 .
- :

(Recieved Mar 4, 1951 .)

1 H . Davenport and P . ERDÖS, On sequences atintegers. Acta arithmetica 2 (1936),
147-151. --- See also : H . DAVENPORT and P. ERDÖS, o n sequences Of positive integers .
J. Indian Math . Sac . 15, Part A (1951), 19-24 .
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