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Chapter 

6 
Nonparametric Methods 
CHAPTER VI; SECTION A:  INTRODUCTION TO NONPARAMETRIC METHODS 

Purposes of Nonparametric Methods: 

Nonparametric methods are uniquely useful for testing nominal (categorical) and ordinal 
(ordered) scaled data--situations where parametric tests are not generally available.  An 
important second use is when an underlying assumption for a parametric method has been 
violated.  In this case, the interval/ratio scale data can be easily transformed into ordinal scale 
data and the counterpart nonparametric method can be used. 

Inferential and Descriptive Statistics: The nonparametric methods described in this chapter 
are used for both inferential and descriptive statistics.  Inferential statistics use data to draw 
inferences (i.e., derive conclusions) or to make predictions.  In this chapter, nonparametric 
inferential statistical methods are used to draw conclusions about one or more populations from 
which the data samples have been taken.  Descriptive statistics aren’t used to make 
predictions but to describe the data.  This is often best done using graphical methods. 

Examples: An analyst or engineer might be interested to assess the evidence regarding: 
1.   The difference between the mean/median accident rates of several marked and 
unmarked crosswalks (when parametric Student’s t test is invalid because sample 
distributions are not normal). 
2.   The differences between the absolute average errors between two types of models for 
forecasting traffic flow (when analysis of variance is invalid because distribution of errors 
is not normal). 
3.   The relationship between the airport site evaluation ordinal rankings of two sets of 
judges, i.e., citizens and airport professionals.  
4.   The differences between neighborhood districts in their use of a regional mall for 
purposes of planning transit routes.  
5.   The comparison of accidents before and during roadway construction to investigate if 
factors such as roadway grade, day of week, weather, etc. have an impact on the 
differences.  
6.   The association between ordinal variables, e.g., area type and speed limit, to 
eliminate intercorrelated dependent variables for estimating models that predict the 
number of utility  

pole accidents.  
7.   The relative goodness of fit of possible predictive models to the observed data for 
expected accident rates for rail-highway crossings.  
8.  The relative goodness of fit of hypothetical probability distributions, e.g., lognormal 
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and Weibull, to actual air quality data with the intent of using the distributions to predict 
the number of days with observed ozone and carbon monoxide concentrations exceeds 
National Ambient Air Quality Standards.  

 

Basic Assumptions/Requirements; Nonparametric Vs. Parametric Methods: 

Nonparametric methods are contrasted to those that are parametric.  A generally accepted 
description of a parametric method is one that makes specific assumptions with regard to one 
or more of the population parameters that characterize the underlying distribution(s) for which 
the test is employed.  In other words, it a test that assumes the population distribution has a 
particular form (e.g., a normal distribution) and involves hypotheses about population 
parameters.  Nonparametric tests do not make these kinds of assumptions about the 
underlying distribution(s) (but some assumptions are made and must be understood). 

Nonparametric methods use approximate solutions to exact problems, while parametric 
methods use exact solutions to approximate problems.  
 W.J. Conover 

Remember the overarching purpose for employing a statistical test is to provide a means for 
measuring the amount of subjectivity that goes into a researcher’s conclusions.  This is done 
by setting up a theoretical model for an experiment.  Laws of probability are applied to this 
model to determine what the chances (probabilities) are for the various outcomes of the 
experiment assuming chance alone determines the outcome of the experiment.  Thus, the 
researcher has an objective basis to decide if the actual outcome from his or her experiment 
were the results of the treatments applied or if they could have occurred just as easily by 
chance alone, i.e., with no treatment at all. 

When the researcher has described an appropriate theoretical model for the experiment (often 
not a trivial task), the next task is to find the probabilities associated with the model.  Many 
reasonable models have been developed for which no probability solutions have ever been found.  
To overcome this, statisticians often change a model slightly in order to be able to solve the 
probabilities with the hope that the change doesn’t render the model unrealistic. These changes 
are usually “slight” to try to minimize the impacts, if possible.  Thus, statisticians can obtain 
exact solutions for these “approximate problems.”  This body of statistics is called parametric 
statistics and includes such well-known tests as the “t test” (using the t distribution) and the F 
test (using the F distribution) as well as others. 

Nonparametric testing takes a different approach, which involves making few, if any, changes in 
the model itself.  Because the exact probabilities can’t be determined for the model, simpler, 
less sophisticated methods are used to find the probabilities--or at least a good approximation 
of the probabilities.  Thus, nonparametric methods use approximate solutions to exact 
problems, while parametric methods use exact solutions to approximate problems. 

Statisticians disagree about which methods are parametric and which are nonparametric.  Such 
disagreements are beyond the scope of this discussion.  Perhaps one of the easiest definitions 
to understand, as well as being fairly broad, is one proposed by W.J. Conover (1999, p.118). 

Definition:  A statistical method is nonparametric if it satisfies at least one of the 
following criteria: 
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 1.  The method may be used on data with a nominal scale of measurement. 
 2.  The method may be used on data with an ordinal scale of measurement. 
 3.  The method may be used on data with an interval or ratio scale of 

measurement, where the distribution function of the random variable producing 
the data are unspecified (or specified except for an infinite number of unknown 
parameters). 

Herein lies a primary usefulness of nonparametric tests: for testing nominal and ordinal scale 
data.  There is debate about using nonparametric tests on interval and ratio scale data.  There 
is general agreement among researchers that if there is no reason to believe that one or more of 
the assumptions of a parametric test has been violated, then the appropriate parametric test 
should be used to evaluate the data.  However, if one or more of the assumptions have been 
violated, then some (but not all) statisticians advocate transforming the data into a format that is 
compatible with the appropriate nonparametric test.  This is based on the understanding that 
parametric tests generally provide a more powerful test of an alternative hypothesis than their 
nonparametric counterparts; but if one or more of the underlying parametric test assumptions is 
violated, the power advantage may be negated. 

The researcher should not spend too much time worrying about which test to use for a specific 
experiment.  In almost all cases, both tests applied to the same data will lead to identical or 
similar conclusions.  If conflicting results occur, the researcher would be well advised to 
conduct additional experiments to arrive at a conclusion, rather than simply pick one or the 
other method as being “correct.” 

Examples of Nonparametric Methods: 

Environment 
Chock, David P. and Paul S. Sluchak. (1986). Estimating Extreme Values of Air Quality Data 
Using Different Fitted Distributions.  Atmospheric Environment, V.20, N.5, pp. 989-993. 
Pergamon Press Ltd.  (Kolmogorov-Smirnov Type Goodness of Fit (GOF) Tests and Chi-
Square GOF Test) 

Safety 
Ardeshir, Faghri, Demetsky Michael J. (1987). Comparison of Formulae for Predicting Rail-
Highway Crossing Hazards. Transportation Research Record #1114 pp. 152-155. National 
Academy of Sciences.  (Chi-Square Goodness of Fit Test) 
 
Davis, Gary A. and Yihong Gao. (1993). Statistical Methods to Support Induced Exposure 
Analyses of Traffic Accident Data. Transportation Research Record #1401 pp. 43-49. National 
Academy of Sciences.  (Chi-Square Test for Independence) 
 
Gibby, A. Reed, Janice Stites, Glen S. Thurgood, and Thomas C. Ferrara. (1994). Evaluation of 
Marked and Unmarked Crosswalks at Intersections in California. Federal Highway 
Administration, FHWA/CA/TO-94-1 and California Department of Transportation (Caltrans) 
CPWS 94-02, 66 pages.  (Mann-Whitney Test for Two Independent Samples) 
 
Hall, J. W. and V. M. Lorenz.(1989). Characteristics of Construction-Zone Accidents. 
Transportation Research Record #1230 pp. 20-27. National Academy of Sciences.  (Chi-Square 
Test for Independence) 
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Kullback, S. and John C. Keegel. (1985). Red Turn Arrow: An Information-Theoretic Evaluation. 
Journal of Transportation Engineering, V.111, N.4, July, pp. 441-452. American Society of Civil 
Engineers.  (Inappropriate use of Chi-Square Test for Independence) 
 
Zegeer, Charles V., and Martin R. Parker Jr. (1984). Effect of Traffic and Roadway Features on 
Utility Pole Accidents. Transportation Research Record #970 pp. 65-76. National Academy of 
Sciences.  (Kendall’s Tau Measure of Association for Ordinal Data) 

Traffic 
Smith, Brian L. and Michael J. Demetsky. (1997). Traffic Flow Forecasting: Comparison of 
Modeling Approaches. Journal of Transportation Engineering, V.123, N.4, July/August, pp. 261-
266. American Society of Civil Engineering.  (Wilcoxon Matched-Pairs Signed-Ranks Test for 
Two Dependent Samples) 

Transit 
Ross, Thomas J. and Eugene M. Wilson. (1977). Activity Based Transit Routing. Transportation 
Engineering Journal, V.103, N.TE5, September, pp. 565-573. American Society of Civil 
Engineers.  (Chi-Square Test for Independence) 

Planning 
Jarvis, John J., V. Ed Unger, Charles C. Schimpeler, and Joseph C. Corradino. (1976). Multiple 
Criteria Theory and Airport Site Evaluation. Journal of Urban Planning and Development Division, 
V.102, N.UP1, August, pp. 187-197.  American Society of Civil Engineers.  (Kendall’s Tau 
Measure of Association for Ordinal Data) 
 

 

Nonparametric References: 

• W. J. Conover.  “Practical Nonparametric Statistics.”  Third Edition, John Wiley & Sons, New York, 
1999. 

• W. J. Conover.  “Practical Nonparametric Statistics.”  Second Edition, John Wiley & Sons, New York, 
1980. 

• Richard A. Johnson.  “Miller & Freund’s Probability and Statistics For Engineers.”  Prentice Hall, 
Englewood Cliffs, New Jersey, 1994. 

• Douglas C. Montgomery.  “Design and Analysis of Experiments.”  Fourth Edition, John Wiley & Sons, 
New York, 1997. 

• David J. Sheskin.  “Handbook of Parametric and Nonparametric Statistical Procedures.”  CRC Press, 
New York, 1997. 
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CHAPTER VI; SECTION B: GRAPHICAL METHODS 

Purpose of Graphical Methods: 

Graphical methods can be thought of as a way to obtain a “first look” at a group of data.  It does 
not provide a definitive interpretation of the data, but can lead to an intuitive “feel” for the data.  
However, this “first look” can be deceiving because the human mind wants to classify everything 
it views based on something it already knows.  This can lead to an erroneous first impression 
that can be hard for a researcher to dismiss; even as evidence mounts that it may be wrong.  
This is human nature at work, wanting to be consistent.  It is important for a researcher to be 
aware of this need for consistency, which can cloud objectivity. 

The parable of the three blind men encountering an elephant for the first time effectively 
illustrates this human tendency to make a judgement based on past experience and then to 
“stop looking” for more clues.  In the parable, the three blind men approached the elephant 
together.  The first man touches the elephant’s trunk and thoroughly investigates it.  He backs 
away and declares “the elephant is exactly like a hollow log, only alive and more flexible.”  The 
second man touches one of the elephant’s massive feet and explores it in many places.  He 
backs away and declares, “the elephant is very much like a large tree growing from the ground, 
only its bark is warm to the touch.”  The last man grasps the elephant’s tail and immediately 
declares “the elephant is simply a snake that hangs from something, probably a tree.” 

All of the information gathered by the three blind men is important and pooled might provide a 
“good” model of an elephant.  Graphical methods should be thought of as a single blind 
investigation.  The data viewed is not wrong, but a conclusion drawn solely from them can be 
wrong.  Keep in mind that the purpose of graphical methods is simply to get a first look at the 
data without drawing conclusions.  It can, however, lead to hypotheses that guide further 
investigation. 

Examples: An analyst or engineer might be interested in exploring data to: 
1.   See if potential relationships, either linear or curvilinear, exist between a variable of 
interest whose values may depend on several other variables.  
2.   See if interactions (relationships) may exist between a variable and two other 
variables.  

Scatter Plots, Pairwise Scatter Plots, and Brush and Spin 

Scatter plots are the workhorses of graphical methods.  In two dimensions, the data points are 
simply plotted by specifying two variables to form the axes.  This technique is often used to 
develop a first impression about the relationship between two variables.  For example, the 
variables in the two scatter plots below appear to have quite different relationships. 

As a first look, X1 appears to have a linear relationship with Y1 while X2 appears to have a non-
linear relationship.  Hypothesizing such apparent relationships are useful in selecting a 
preliminary model type and relationship.  Many statistical software packages make it easy for 
the user to study such relationships among all the variables in the data.  This method is 
typically called “pairwise” scatter plots but other terms are also used.  The three variables 
explored in the previous scatter plots are used again to plot the pairwise scatter plots shown 
below. 
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As a first look, X1 appears to have a linear relationship with Y1 while X2 appears to have a non-
linear relationship.  Hypothesizing such apparent relationships are useful in selecting a 
preliminary model type and relationship.  Many statistical software packages make it easy for 
the user to study such relationships among all the variables in the data.  This method is 
typically called “pairwise” scatter plots but other terms are also used.  The three variables 
explored in the previous scatter plots are used again to plot the pairwise scatter plots shown 
below. 

Figure 17: Scatter Plots of Y1 vs. X1, and Y1 vs. X2 

 

By using pairwise scatter plots, the relationships among all the variables may be explored with 
a single plot.  However, as the number of variables increases, using a single plot reduces the 
individual plots too small to be useful.  In this case, the variables can be plotted in subsets. 
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Figure 18: Pair-wise Scatter Plots for Y1, X2, and X2 

The scatter plots described so far are two-dimensional.  Three-dimensional methods are also 
available and are often used in exploring three variables from the data.  The data displayed in 
this fashion form as a “point cloud” using three axes.  The more powerful statistical software 
packages allow these point clouds to be rotated or spun around any axis.  This gives hints as 
to any interactions between two variables as it affects a third variable.  Another feature often 
available is a brush technique, which allows the user to select specific points to examine.  
These points then become bigger or of a different color than the remainder of the data, which 
allows the user to see their spatial relationship within the point cloud.  Usually a pairwise 
scatter plot is simultaneously displayed on the same screen and the selected points are also 
highlighted in each of these scatter plots.  This allows the user to study individual points or 
clusters of points.  Examples that are useful to explore are outliers and clusters of points that 
are seemingly isolated from the rest of the data points. 

Three Dimensional Graphics: Contours and Response Surfaces 

Three-dimensional graphics allow the user to investigate three variables simultaneously.  Two 
plots that are often used are the contour plot and the surface plot.  Examples using the three 
variables explored previously in the scatter plots are shown below.  The contour plot shows the 
isobars of Y1 for the range of values of X1 and X2 contained within the plot.  The surface plot fits 
a “wire mesh” through the X1, X2, and Y1 coordinates to give the user a perspective of the 
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surface created by the data.  In both of these graphs the values between the data values are 
interpolated.  The user is cautioned that these interpolations are not validated and a “smooth” 
transition from one point to the next may not be a true representation of the data.  Like all 
graphical methods, these should be used only to obtain a first look at the data, and when 
appropriate, aid in developing preliminary hypotheses--along with other available information--for 
modeling the data. 

Figure 19: Contour and Surface Plots for Variables Y1, X1, and X2 
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CHAPTER VI; SECTION C: DESCRIPTIVE TECHNIQUES 

Purpose of Descriptive Techniques: 

One way to better understand what descriptive statistics are is to first describe inferential 
statistics.  If the data being investigated are a sample that is representative of a larger 
population, important conclusions about that population can often be inferred from analysis of 
the sample.  This is usually called inferential statistics, although sometimes it may be called 
interpretative statistics.  Because such inferences cannot be absolutely certain, probability is 
used in stating conclusions.  This is an inductive process and is used in the sections of this 
chapter that follow this one. 

Descriptive techniques are discussed in this section and are another important first step in 
exploring data.  The purpose of these techniques is to describe and analyze a sample without 
drawing any conclusions or inferences about a larger group from which it may have been drawn.  
This is a deductive process and is quite useful in developing an understanding of the data.  
Occasionally this is all that is needed, but often it is a preliminary step toward modeling the 
data.   

Examples: An analyst or engineer might be interested in exploring data to: 
1.   Quantitatively assess its dispersion, i.e., to determine whether ifs values are bunched 
tightly about some central value or not. 
2.   Quantitatively assess all the values of the data, perhaps to qualitatively examine a 
suspicion that the data may have some distribution of values that is similar to something 
the investigator has seen before. 
3.   Quantitatively compare two or more sets of data in order to qualitatively examine 
what potential similarities or significant differences might be present. 

Basic Descriptive Statistics of Data:  Mean, Median, and Quartiles 

Almost all general statistical reference books and textbooks thoroughly describe these types of 
descriptive statistics, one such reference is Johnson (1994).  Briefly the mean is typically the 
arithmetic mean, which is simply the average of all the numbers in the data sample.  The 
median is the middle value when all the values in a data variable are ranked in order such that 
ties are ranked one above the other rather than together.  The median is also the second 
quartile of the data variable.  Quartiles are the dividing points that separate the data variable 
values into four equal parts.  The first or lower quartile has 1/4 or 25% of the ranked data 
variable values below its value.  The third or upper quartile has 3/4 or 75% of the values below it.  
Some references reverse the first and third labels, so the upper and lower labels create less 
confusion. 

Frequency Distributions, Variance, Standard Deviation, Histograms, and Boxplots 

The variance and standard deviation are quantitative measures of dispersion, i.e., the spread of 
a distribution.  Histograms and Boxplots are graphical ways to view the dispersion.  A 
frequency distribution is simply a table that divides a set of observed data values into a suitable 
number of classes or categories, indicating the number of items belonging in each class.  This 
provides a useful summary of the location, shape and spread of the data values.  Consider the 
data used in the previous examples, which are provided in the following table. 
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Table 4: Observed Data Values 

Y1 X1 X2 
5 25 25 
6 28 28 
7 36 36 
8 41 41 
9 44 44 
10 53 43 
11 54 39 
12 61 35 
13 66 26 
14 72 21 

 
In order to create a frequency distribution for a variable, appropriate classes must be selected 
for it.  Using both X1 and X2 as examples, classes of 0 to 10, 11 to 20, etc. are chosen and a 
frequency table constructed as shown below. 
 

 Table 5: Frequency Distribution of Observed Data 

Class Limits X1 X2 
0 - 10 0 0 
11-20 0 0 
21-30 2 4 
31-40 1 3 
41-50 2 3 
51-60 2 0 
61-70 2 0 
71-80 1 0 
Totals 10 10 

 
Variance 

 
252.00 

 
67.73 

Standard 
Deviation 

 
15.87 

 
8.23 

 

The variance and standard deviation are also shown in the table along with the frequency 
distribution.  These are measures of the spread of the data about the mean.  If all the values are 
bunched close to the mean, then the spread is “small.”  Likewise, the spread is large if all the 
values are scattered widely about their mean. A measure of the spread of data is useful to 
supplement the mean in describing the data.  If a set of numbers x1, x2, ... , xn has a mean xbar, 
the differences x1- xbar, x2- xbar,..., xn- xbar are called the deviations from the mean.  Because the 
sum of these deviations is always zero, an alternative approach is to square each deviation. The 
sample variance, s2, is essentially the average of the squared deviations from the mean. 
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By dividing the sum of squares by its degrees of freedom, n-1, an unbiased estimate of the 
population variance is obtained. Notice that s2 has the wrong units, i.e., not the same units as 
the variable itself.  To correct this, the standard deviation is defined as the square root of the 
variance, which has the same units as the data. Unlike the variance estimate, the estimated 
standard deviation is biased, where the bias becomes larger as sample sized become smaller.  

While these quantitative descriptive statistics are useful, it is often valuable to provide graphical 
representations of them.  The frequency distributions can be shown graphically using frequency 
histograms as shown below for X1 and X2. 

Figure 20: Frequency Histograms of X1 and X2 

 

As can be seen from these two frequency histograms, X2 has a much smaller spread (standard 
deviation = 8.23) than does X1 (standard deviation = 15.87).  Another plot, the boxplot, also 
shows the quartiles of the frequency.  These are shown in Figure 21 for X1 and X2. 

Different statistical software packages typically depict Boxplots in different ways, but the one 
shown here is typical.  Boxplots are particularly effective when several are placed side-by-side 
for comparison.  The shaded area indicates the middle half of the data.  The center line inside 
this shaded area is drawn at the median value.  The upper edge of the shaded area is the value 
of the upper quartile and the lower edge is the value of the lower quartile.  Lines extend from the 
shaded areas to the maximum and minimum values of the data indicated by horizontal lines. 
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Figure 21: Boxplots of X1 and X2 
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CHAPTER VI; SECTION D:   RANKING AND COUNTING METHODS FOR 

DETERMINING DIFFERENCES AMONG MEDIANS AND MEANS 

Purposes of Ranking and Counting Methods: 

The primary purpose of ranking and counting methods is hypothesis testing for ordinal scale 
data and for interval and ratio scale data without reliance on distribution assumptions.  Data 
may be nonnumeric or numeric.  If the data are nonnumeric but ranked as in ordinal-type data 
(e.g., low, medium, high), the methods in this section are often the most powerful ones 
available (Conover, 1999).  These methods are valid for continuous and discrete populations as 
well as mixtures of the two.   

The hypotheses tested using these methods all involve medians.  While at first glance this may 
seem to be of limited usefulness, it is surprisingly versatile.  When the distributions of the 
random variables tested are assumed to be symmetric, the mean and the median are equal so 
these hypotheses also test means.  Usually the data, or statistics extracted from the data, are 
ranked from least to greatest.  Data may have many ties.  Two observations are said to be tied 
if they have the same value. 

Early results in nonparametric statistics required the assumption of a continuous random 
variable in order for the tests based on ranks to be valid.  Research results reported by Conover 
(1999) and others have shown that the continuity assumption is not necessary.  It can be 
replaced by the trivial assumption that P(X = x) < 1 for each x.  It is unlikely that any sample 
will be taken from a population with only a single member.  Since this assumption is trivial, it is 
not listed for each test in this section, but it is what allows these tests to be valid for all types of 
populations: continuous, discrete, or mixtures of the two. 

Examples: An analyst or engineer might be interested to assess the evidence regarding 
the difference between the mean/median values of: 
1.   Accident rates of several marked and unmarked crosswalks (when parametric 
Student’s t test is invalid because sample distributions are not normal). 
2.   The differences between the absolute average errors between two types of models for 
forecasting traffic flow (when analysis of variance is invalid because distribution of errors 
is not normal). 
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Ranking and Counting Methodology for Hypotheses About Medians 

 

 

Chapter VI, Section D:
Ranking and Counting

Methods

Hypotheses About
Population Means/Medians

Single Independent Sample
Wilcoxon Signed-Ranks Test

Independent Samples Dependent Samples

Two Independent Samples
Mann-Whitney Test

Several Independent Samples
Kruskal-Wallis One-Way Analysis

of Variance by Ranks Test

Two Dependent Samples
Wilcoxon Matched-Pairs

Signed-Ranks Test

Several Dependent Samples
Friedman Two-Way Analysis of

Variance By Ranks Test
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Ranking and Counting Methodology for Hypotheses About Medians (and 
Means): 

Are the samples independent or dependent? 

Data collection is usually called sampling in statistical terms.  Sampling is the process of 
selecting some part of a population to observe so as to estimate something of interest about 
the whole population.  A population is the statistical term referring to the entire aggregate of 
individuals, items, measurements, things, numbers, etc. from which samples are drawn.  Two 
samples are said to be mutually independent if each sample is comprised of different subjects.  
Dependent samples usually have the same subjects as in a comparative study, e.g., a before 
and after study or how a subject responds to two different situations (called treatments). 

Hypotheses About Population Medians for Independent Samples 

Wilcoxon Signed-Ranks Test - Hypothesis About Population Medians (Means) for a 
Single Independent Sample 

This rank test was devised by F. Wilcoxon in 1945.  It is designed to test whether a particular 
sample came from a population with a specified median.  This test is similar to but more 
powerful than the classic sign test, which is not presented here.  The classic sign test is the 
oldest of all nonparametric tests, dating back to 1710, when it was used by J. Arbuthnott to 
compare the number of males born in London to the number of females born there.  The sign 
test is simpler to use than the more powerful nonparametric tests and is popular for that reason.  
With today’s computer software packages, however, this is no longer a factor. 

ASSUMPTIONS OF WILCOXON SIGNED-RANKS TEST FOR SINGLE INDEPENDENT 
SAMPLE 

1) The sample is a random sample. 

2) The measurement scale is at least interval. 

3) The underlying population distribution is symmetrical.  A distribution of a random variable X 
is symmetrical about a line having a value of x = c if the probability of the variable being on 
one side of the line is equal to the probability of it being on the other side of the line, for all 
values of the random variable.  Even when the analyst may not know the exact distribution 
of a random variable, it is often reasonable to assume that the distribution is symmetric.  
This assumption is not as rigid as assuming that the distribution is normal.  If the 
distribution is symmetric, the mean coincides with the median because both are located 
exactly in the middle of the distribution, at the line of symmetry.  Therefore, the benefit of 
adding this symmetry assumption is that inferences concerning the median are also valid 
statements for the mean.  The liability of adding this assumption is that the required scale 
of measurement is increased from ordinal to interval. 

INPUTS FOR WILCOXON SIGNED-RANKS TEST FOR SINGLE INDEPENDENT SAMPLE 

The data consist of a single random sample X1, X2, ... , Xn of size n that has a median m. 
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HYPOTHESES OF WILCOXON SIGNED-RANKS TEST FOR SINGLE INDEPENDENT SAMPLE 

Wilcoxon Signed-Ranks Test is used to test whether a single random sample of size n, X1, X2, 
... , Xn comes from a population in which the median value is some known value m. 

A.  Two-sided test 

Ho:  The median of X equals m.  
Ha:  The median of X is not m. 

B.  Upper-sided test 

Ho:  The median of X is ≤ m.  
Ha:  The median of X is > m. 

C. Lower-sided test 

Ho:  The median of X is ≥ m.  
Ha:  The median of X is < m. 

Note that the mean may be substituted for the median in these hypotheses because of the 
assumption of symmetry of the distribution of X. 

TEST STATISTIC |Di | OF WILCOXON SIGNED-RANKS TEST FOR SINGLE INDEPENDENT 
SAMPLE 

The ranking for this test is not done on the observations themselves, but on the absolute values 
of the differences between the observations and the value of the median to be tested. 

niXXD imediani ,,2,1      K=−=  

All differences of zero are omitted.  Let the number of pairs remaining be denoted by n’, n’ < n.  
Ranks from 1 to n’ are assigned to the n’ differences.  The smallest absolute difference |Di | is 
ranked 1, the second smallest |Di | is ranked 2, and so forth.  The largest absolute difference is 
ranked n’.  If groups of absolute differences are equal to each other, assign a rank to each equal 
to the average of the ranks they would have otherwise been assigned.  For example, if four 
absolute differences are equal and would hold ranks 8, 9, 10, and 11, each is assigned the rank 
of 9.5, which is the average of 8, 9, 10, and 11. 

Although the absolute difference is used to obtain the rankings, the sign of Di is still used in the 
test statistic.  Ri, called the signed rank, is defined as follows: 

Ri = the rank assigned to |Di | if Di  is positive. 

Ri = the negative of the rank assigned to |Di | if Di  is negative. 
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The test statistic T+ is the sum of the positive signed ranks when there are no ties and n’ < 50.  
Lower quantiles of the exact distribution of T+ are given in Table C-8. Under the null hypothesis 
that the Di s have mean 0. 

∑=+ )( positiveisDwhereRT ii  

Based on the relationship that the sum of the absolute differences is equal to n’ (n’ + 1) divided 
by 2, the upper quantiles ωp are found by the relationship 
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If there are many ties, or if n’ > 50, the normal approximation test statistic T is used which uses 
all of the signed ranks, with their + and - signs.  Quantiles of the approximate distribution of T 
are given in a Normal Distribution Table. 
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INTREPRETATION OF OUTPUT (DECISION RULE) OF WILCOXON SIGNED-RANKS TEST 
FOR SINGLE INDEPENDENT SAMPLE 

For the two-sided test, reject the null hypothesis Ho at level α if T+ (or T) is less than its α/2 
quantile or greater than its 1 - α/2 quantile from Table C-8 for T+ (or the normal distribution, see 
Table C-1 for T).  Otherwise, accept Ho (meaning the median (or mean) of X equals m).   

For the upper-tailed test, reject the null hypothesis Ho at level α if T+ (or T) is greater than its α 
quantile from Table C-8 for T+ (or the Normal Table C-1 for T).  Otherwise, accept Ho (meaning 
the median (or mean) of X is less than or equal to m).  The p-value, approximated from the 
normal distribution, can be found by 
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For the lower-tailed test, reject the null hypothesis Ho at level α if T+ (or T) is less than its α 
quantile from Table C-8 for T+ (or the Normal Table C-1 for T).  Otherwise, accept Ho (meaning 
the median (or mean) of X is greater than or equal to m).  The p-value, approximated from the 
normal distribution, can be found by 
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The two-tailed p-value is twice the smaller of the one-tailed p-values calculated above. 

Computational Example:  (Adapted from Conover (1999, p. 356-357)) Thirty observations on 
the random variable X are measured in order to test the hypothesis that E (X), the mean of X, is 
no smaller than 30 (lower-tailed test). 

Ho:  E (X) (the mean) ≥ m.  
Ha: E (X) (the mean) < m. 

The observations, the differences, Di  = (Xi - m), and the ranks of the absolute differences |Di | 
are listed below.  The thirty observations were ordered first for convenience. 

Table 6: Ranking Statistics on 30 Observations of X 

Xi Di  = (Xi - 30) Rank of  |Di |  Xi Di  = (Xi - 30) Rank of  |Di | 
23.8 -6.2 17  35.9 +5.9 15* 
26.0 -4.0 11  36.1 +6.1 16* 
26.9 -3.1 8  36.4 +6.4 18* 
27.4 -2.6 6  36.6 +6.6 19* 
28.0 -2.0 5  37.2 +7.2 20* 
30.3 +0.3* 1  37.3 +7.3 21* 
30.7 +0.7* 2  37.9 +7.9 22* 
31.2 +1.2* 3  38.2 +8.2 23* 
31.3 +1.3* 4  39.6 +9.6 24* 
32.8 +2.8* 7  40.6 +10.6 25* 
33.2 +3.2* 9  41.1 +11.1 26* 
33.9 +3.9* 10  42.3 +12.3 27* 
34.3 +4.3* 12  42.8 +12.8 28* 
34.9 +4.9* 13  44.0 +14.0 29* 
35.0 +5.0* 14  45.8 +15.8 30* 

 

There are no ties in the data nor is the sample size greater than 50.  Therefore, from Table C-8, 
Quantiles of Wilcoxon Signed Ranks Test Statistic, for n’ = 30, the 0.05 quantile is 152. The 
critical region of size ≤ 0.05 corresponds to values of the test statistic less than 152.  The test 
statistic T+ = 418.  This is the sum of all the Ranks, which have positive differences, as noted in 
the table by asterisks.  Since T+ is not within the critical region, Ho is accepted, and the analyst 
concludes that the mean of X is greater than 30. 

The approximate p-value is calculated by the following equation.  Recall that the summation of 
the squares of a set of numbers from 1 to N is equal to [N (N+1) (2N + 1) / 6]. 
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The normal distribution table shows that the p-value is greater than 0.999 when the mean is no 
smaller than 30, i.e., there is a probability greater than 99.9% that the mean is greater than or 
equal to 30. 

Mann-Whitney Test - Hypothesis About Population Means for Two Independent 
Samples 

The Mann-Whitney test, sometimes referred to as the Mann-Whitney U test, is also called the 
Wilcoxon test.  There are actually two versions of the test that were independently developed by 
Mann and Whitney in 1947 and Wilcoxon in 1949.  They employ different equations and use 
different tables, but yield comparable results.  One typical situation for using this test is when 
the researcher wants to test if two samples have been drawn from different populations.  
Another typical situation is when one sample was drawn, randomly divided into two sub-
samples, and then each sub-sample receives a different treatment.   

The Mann-Whitney test is often used instead of the t-test for two independent samples when 
the assumptions for the t-test may be violated, either the normality assumption or the 
homogeneity of variance assumption.  If a distribution function is not a normal distribution 
function, the probability theory is usually not available when the test statistic is based on actual 
data.  By contrast, the probability theory based on ranks, as used here, is relatively simple.  
Additionally, according to Conover (1999), comparisons of the relative efficiency between the 
Mann-Whitney test and the two-sample t-test is never too bad while the reverse is not true. 
Thus the Mann-Whitney test is the safer test to use. 

One can intuitively understand the statistics involved in this test.  First combine the two 
samples into a single sample and order them.  Then rank the combined sample without regard 
to which sample each value came from.  A test statistic could be the sum of the ranks 
assigned to one of the samples.  If the sum is too small or too great, this gives an indication 
that the values from its population tend to smaller or larger than the values from the other 
sample.  Therefore, the null hypothesis that there is no difference between the two populations 
can be rejected, if the ranks of one sample tend to be larger than the ranks of the other sample. 

ASSUMPTIONS OF MANN-WHITNEY TEST FOR TWO INDEPENDENT SAMPLES 

1) Each sample is a random sample from the population it represents. 

2) The two samples are independent of each other. 

3) If there is a difference in the two population distribution functions F (x) and G (y), it is a 
difference in the location of the distributions.  In other words, if F (x) is not identical with G 
(y), then F (x) is identical with G (y + c), where c is some constant. 

4) The measurement scale is at least ordinal. 
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INPUTS FOR MANN-WHITNEY TEST FOR TWO INDEPENDENT SAMPLES 

Let X1, X2, . . . , Xn represent a random sample of size n from population 1 and let Y1, Y2, . . . , 
Ym represent a random sample of size m from population 2.  Let n + m = N.  Assign ranks 1 to 
N to all the observations from smallest to largest, without regard from which population they 
came from.  Let R (Xi) and R (Yj) represent the ranks assigned to Xi and Yj for all i and j.  If 
several values are tied, assign each the average of the ranks that would have been assigned to 
them had there been no ties. 

HYPOTHESES OF MANN-WHITNEY TEST FOR TWO INDEPENDENT SAMPLES 

The Mann-Whitney test is unbiased and consistent when the four listed assumptions are met.  
The inclusion of assumption 3 allows the hypotheses to be stated in terms of the means.  The 
expected value E (X) is the mean. 

A.  Two-sided test 

Ho:  E (X) = E (Y) 
Ha:  E (X) ≠ E (Y) 

B.  Upper-sided test 

Ho:  E (X) ≥ E (Y) 
Ha:  E (X) < E (Y) 

C. Lower-sided test 

Ho:  E (X) ≤ E (Y) 
Ha:  E (X) > E (Y) 

The hypotheses shown here are for testing means.  Different hypotheses are also discussed in 
most texts (e.g., Conover (1999) and Sheskin (1997)) that test to see if the two samples come 
from identical distributions.  This does not require assumption 3.  Elsewhere in this chapter, the 
Kolmogorov-Smirnov type goodness-of-fit tests are described which also test if two (or more) 
samples are drawn from the same distribution.  For this reason, the identical distribution 
hypotheses of the Mann-Whitney test are not discussed here. 

TEST STATISTIC FOR MANN-WHITNEY TEST FOR TWO INDEPENDENT SAMPLES 

The test statistic T can be used when there are no ties or few ties.  It is simply the sum of the 
ranks assigned to the sample from population one. 

 

If there are many ties, the test statistic T1 is obtained which simply subtracts the mean from T 
and divides by the standard deviation 
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where ΣRi
2 is the sum of the squares of all N of the ranks or average ranks actually used in both 

samples. 

Lower quantiles ωp-1 of the exact distribution of T are given for n and m values of 20 or less in 
Table C-6. Upper quantiles ωp are found by the relationship 

 

Perhaps more convenient is the use T’ which can be used with the lower quartiles in Table C-6 
whenever an upper-tail test is desired. 

 

When there are many ties in the data, T1 is used which is approximately a standard normal 
random variable.  Therefore, the quantiles for T1 are found in Table C-1, which is the standard 
normal table. 

When n or m is greater than 20 (and there are still no ties), the approximate quantiles are found 
by the normal approximation given by 

        

for quantiles when n or m is greater than 20, where zp is the pth quantile of a standard normal 
random variable obtained from Table C-1. 

INTREPRETATION OF OUTPUT (DECISION RULE) OF MANN-WHITNEY TEST FOR TWO 
INDEPENDENT SAMPLES 

For the two-sided test, reject the null hypothesis Ho at level α if T (or T1) is less than its α/2 
quantile or greater than its 1 - α/2 quantile from Table C-6 for T (or from the Standard Normal 
Table C-1for T1).  Otherwise, accept Ho if T (or T1) is between, or equal to one of, the quantiles 
indicating the means of the two samples are equal. 

For the upper-tailed test, large values of T indicate that H1 is true.  Reject the null hypothesis Ho 
at level α if T (or T1) is greater than its α quantile from Table C-6 for T (or from the Standard 
Normal Table C-1 for T1).  It may be easier to find T’ = n (N+1) - T and reject Ho if T’ is less than 
its α from Table C-6. Otherwise, accept Ho if T (or T1) is less than or equal to its α quantile 
indicating the mean of population 1 is less than or equal to the mean of population 2. 

For the lower-tailed test, small values of T indicate that H1 is true.  Reject the null hypothesis Ho 
at level α if T (or T1) is less than its α quantile from Table C-6 for T (or from the Standard Normal 
Table C-1 for T1).  Otherwise, accept Ho if T (or T1) is greater than or equal to its α quantile 

pp mnn −−++= 1)1( ωω

12
)1(

2
)1( +

+
+

≅
Nnm

z
Nn

ppω

TNnT −+= )1('

)1(4
)1(

)1(

2
1

2
2

1

1

−
−

−
−

−
−

=
−

=

∑
= N

Nnm
R

NN
nm

N
nT

deviationstd
meanT

T

i

N

i



 

 Volume II: page 255 

indicating the mean of population 1 is greater than or equal to the mean of population 2.  If the n 
or m is larger than 20, use 

When n or m is greater than 20 (and no ties), the quantiles used in the above decisions are 
obtained directly from the equation given previously for this condition. 

Computational Example:  (Adapted from Conover (1999, p. 278-279)) Nine pieces of flint were 
collected for a simple experiment, four from region A and five from region B.  Hardness was 
judged by rubbing two pieces of flint together and observing how each was damaged.  The one 
having the least damage was judged harder.  Using this method all nine pieces of flint were 
tested against each other, allowing them to be rank ordered from softest (rank 1) to hardest 
(rank 9). 

Table 7: Hardness of Flint Samples from Regions A and B 

Region Rank 
A 1 
A 2 
A 3 
B 4 
A 5 
B 6 
B 7 
B 8 
B 9 

 

The hypothesis to be tested is 

Ho:  E (X) = E (Y) or the flints from regions A and B have the same means 
Ha:  E (X) ≠ E (Y) or the flints do not have the same mean 

The Mann-Whitney two-sided test is used with n = 4 and m = 5.  The test statistic T is 
calculated by 

T = sum of the ranks of flints from region A 

T = 1 + 2 + 3 + 5 = 11 

The two-sided critical region of approximate size α = 0.05 corresponds to values of T less than 
12 and greater than 28, which is calculated by 

 

Since the test statistic of 11 falls inside the lower critical region, less than 12, the null 
hypothesis Ho is rejected and the alternate hypothesis is accepted, i.e., the flints from the two 
regions have different harnesses.  Because the direction of the difference, it is further concluded 
that the flint in region A is softer than the flint in region B. 

Safety Example:  In an evaluation of marked and unmarked crosswalks (Gibby, Stites, Thurgood, 
and Ferrara, Federal Highway Administration FHWACA/TO-94-1, 1994), researchers in California 
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investigated if marked crosswalks at intersections had a higher accident frequency than 
unmarked crosswalks.  The data was analyzed in four major subsets: (1) all intersections, (2) 
intersections with accidents, (3) intersections with signals, and (4) intersections without signals.  
Each of these was further dived into (1) intersections with crosswalks on the state highway 
approaches only and (2) intersections with crosswalks on all approaches.  This approach 
provided many subsets of data for analysis. 
 
Two hypotheses were tested for each subset of data using a two-sided Mann-Whitney Test for 
two independent samples: 

Ho: There is no difference between accident rates on marked and unmarked crosswalks. 
Ha: There is a difference between the accident rates on marked and unmarked crosswalks. 

A 5% or less level of significance was used as being statistically significant. 
 
Several tests were made for each subset for which the researchers had sufficient data.  In some 
of the tests, the sample size was greater than 20 so the approximate quantiles were found by the 
normal approximation.  Where sample sizes were less than this, the quantiles were calculated 
according to the appropriate formula that matched the specific reference tables used by the 
researchers.  From these numerous tests, they were able to draw these general conclusions: 
 1. At unsignalized intersections marked crosswalks clearly featured higher pedestrian-
vehicle accident rates. 
 2. At signalized intersections the results were inconclusive. 
 
It should be noted that the names of many nonparametric test are not standardized.  In this study 
the researchers refer to the test they used as a Wilcoxon Rank Sum Test.  Their test is the same 
as that called the Mann-Whitney Test for Two Independent Samples in this manual.  Further, they 
used a different reference for their test than cited here.  This means they used a slightly different 
form of the test statistic than used in this manual, which corresponded to the tables in their 
reference versus the tables in the reference cited in this manual.  This example emphasizes the 
care that must be taken when applying nonparametric tests regarding matching the test statistic 
employed with its specific referenced tables.  One should not, for example, use a test statistic 
from this manual with tables from some other source. 
 

 

Kruskal-Wallis One-Way Analysis Of Variance By Ranks Test For Several Independent 
Samples 

Kruskal and Wallis (1952) extended the Mann-Whitney method to be applicable to two or more 
independent samples.  The typical situation is to test the null hypothesis that all medians of the 
populations represented by k  random samples are identical against the alternative that at least 
two of the population medians are different.   

The experimental design that is usually a precursor to applying this test is called the 
completely randomized design.  This design allocates the treatments to the experimental units 
purely on a chance basis.  The usual parametric method of analyzing such data is called a one-
way analysis of variance or sometimes is referred to as a single-factor between-subjects 
analysis of variance.  This parametric method assumes normal distributions in using the F test 
analysis of variance on the data.  Where the normality assumption is unjustified, the Kruskal-
Wallis test can be used. 
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ASSUMPTIONS OF KRUSKAL-WALLIS ONE-WAY ANALYSIS OF VARIANCE BY RANKS 
TEST FOR SEVERAL INDEPENDENT SAMPLES 

1. Each sample is a random sample from the population it represents. 

2. All of the samples are independent of each other. 

3. If there is a difference in any of the k population distribution functions F (x1), F (x2), ..., F 
(xk), it is a difference in the location of the distributions.  For example, if F (x1) is not 
identical with F (x2), then F (x1) is identical with F (x2 + c), where c is some constant. 

4. The measurement scale is at least ordinal. 

INPUTS FOR KRUSKAL-WALLIS ONE-WAY ANALYSIS OF VARIANCE BY RANKS TEST 
FOR SEVERAL INDEPENDENT SAMPLES 

The data consist of several random samples k  of possibly different sizes.  Describe the ith 
sample of size ni by Xi1, Xi2, . . . , Xini,  The data can be arranged in k  columns, each column 
containing a sample denoted by Xi,j where i = 1 to k  and j = 1 to ni for each i sample. 

Table 8: Input Table for Kruskal-Wallis One-Way Analysis of Variance 

sample 1 sample 2 . . .  sample k 

X1,1 X2,1 . . .  Xk,1 

X1,2 X2,2 . . .  Xk,2 

. . .  . . .  . . .  . . .  

X1,n1 X2,n2 . . .  Xk,nk 

 

The total number of all observations is denoted by N 
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        total number of observations from all samples 

Rank the observations Xij in ascending order and replace each observation by its rank R (Xi  j), 
with the smallest observation having rank 1 and the largest observation having rank N.  Let Ri be 
the sum of the ranks assigned to the ith sample.  Compute Ri for each sample. 
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If several values are tied, assign each the average of the ranks that would have been assigned 
to them had there been no ties. 
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HYPOTHESES OF KRUSKAL-WALLIS ONE-WAY ANALYSIS OF VARIANCE BY RANKS 
TEST FOR SEVERAL INDEPENDENT SAMPLES 

Because the Kruskal-Wallis test is sensitive against differences among means, it is convenient 
to think of it as a test for equality of treatment means.  The expected value E (X) is the mean. 

Ho:  E (X1) = E (X2) = . . . = E (Xk)   all of the k  population means are equal 
Ha:  At least one of the k  population means is not equal to at least one of the other 

population means 

The hypothesis shown here is for testing means as used in Montgomery (1997) as an 
alternative to the standard parametric analysis of variance test.  Sheskin (1997) and Conover 
(1999) state the null hypothesis in terms of all of the k  population distribution functions being 
identical.  This difference has no practical effect in the application of this test.  The researcher 
is directed to the goodness-of-fit tests described elsewhere in this Chapter for tests regarding 
the equality of distribution functions.  

TEST STATISTIC FOR KRUSKAL-WALLIS ONE-WAY ANALYSIS OF VARIANCE BY RANKS 
TEST FOR SEVERAL INDEPENDENT SAMPLES 

When there are ties, the test statistic T is 

          

S2 is the variance of the ranks 

 

If there are no ties, S2 = N (N + 1)/12 and the test statistic simplifies to 

      

When the number of ties is moderate, this simpler equation may be used with little difference in 
the result when compared to the more complex equation need for ties. 

INTREPRETATION OF OUTPUT (DECISION RULE) OF KRUSKAL-WALLIS ONE-WAY 
ANALYSIS OF VARIANCE BY RANKS TEST FOR SEVERAL INDEPENDENT SAMPLES 

The tables required for the exact distribution of T would be quite extensive considering that 
every combination of sample sizes for a given k  would be needed, multiplied by however many 
samples k  would be included.  Fortunately, if ni are reasonably large, say ni ≥ 5, then under the 
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null hypothesis T is distributed approximately as chi-square with k - 1 degrees of freedom, Χk-1.  
For k  =3, sample sizes less than or equal to 5, and no ties, consult tables in Conover (1999).   

Reject the null hypothesis Ho at level α if T is greater than its 1 - α quantile.  This 1 - α quantile 
can be approximated by the chi-square Table C-2 with k -1 degrees of freedom.  Otherwise, 
accept Ho if T is less than or equal to the 1 - α quantile indicating the means of all the samples 
are equal in value.  The p-value is approximated by the probability of the chi-square random 
variable with k  - 1 degrees of freedom exceeding the observed value of T. 

Computational Example:  (Adapted from Montgomery (1997, p. 144-145)) A product engineer 
needs to investigate the tensile strength of a new synthetic fiber that will be used to make cloth 
for an application.  The engineer is experienced in this type of work and knows that strength is 
affected by the percent of cotton (by weight) used on the blend of materials for the new fiber.  
He suspects that increasing the cotton content will increase the strength, at least initially.  For 
his application, past experience tells him that to have the desired characteristics the fiber must 
have a minimum of about 10% cotton but not more than about 40% cotton. 

To conduct this experiment, the engineer decides to use a completely randomized design, often 
called a single-factor experiment.  The engineer decides on five levels of cotton weight percent 
(k  samples) and to test five specimens (called replicates) at each level of cotton content (ni for 
each sample is 5) the fibers are made and tested in random order to prevent effects of unknown 
“nuisance” variables, e.g., if the testing machine calibration deteriorates slightly with each test. 

The test results of all 25 observations are combined, ordered, and ranked.  Tied values are given 
the average of the ranks that they would have been assigned to them had there been no ties.  
The test results and the ranks are shown in the following table. 

Table 9: Kruskal-Wallis One-Way Analsis of Variance  
by Ranks Test for Cotton Example 

Weight Percent of Cotton 

15 20 25 30 35 

X1j R (X1j) X2j R (X2j) X3j R (X3j) X4j R (X4j) X5j R (X5j) 

7 2.0 12 9.5 14 11 19 20.5 7 2.0 
7 2.0 17 14 18 16.5 25 25 10 5 
15 12.5 12 9.5 18 16.5 22 23 11 7.0 
11 7.0 18 16.5 19 20.5 19 20.5 15 12.5 
9 4 18 16.5 19 20.5 23 24 11 7.0 
 

Ri = 
 

27.5 
  

66.0 
  

85.0 
  

113.0 
  

33.5 
ni = 5  5  5  5  5 

         N = 
25 

 

An example of how ties are ranked can be seen from the lowest value, which is 7.  Note that 
there are three observations that have a value of 7 so these would normally have ranks 1, 2, and 
3.  Since they are tied, they are averaged and each value of 7 gets the rank of 2.0. 

The hypothesis to be tested is 
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Ho:  E (X1) = E (X2) = . . . = E (Xk) all of the 5 blended fibers, with different percent weights 
of cotton, have mean tensile strengths that are equal 

Ha:  At least one of the 5 blended fiber mean tensile strengths is not equal to at least one of 
the other blended fiber mean tensile strengths 

Since there are ties, the variance of the ranks S2 is calculated by 

 

 

The test statistic is calculated by 

 

For a critical region of 0.05, the 1 - α quantile (0.95) of the chi-square distribution with 5 - 1 = 4 
degrees of freedom from Table C-2 is 9.49.  Since T = 19.06 lies in this critical region, i.e., in 
the region greater than 9.488, the null hypothesis Ho is rejected and it is concluded that at least 
one pair of the blended fiber tensile strength means is not equal to each other. 

PAIRWISE COMPARISONS USING THE KRUSKAL-WALLIS ONE-WAY ANALYSIS OF 
VARIANCE BY RANKS TEST FOR SEVERAL INDEPENDENT SAMPLES 

When the Kruskal-Wallis test rejects the null hypothesis, it indicates that one or more pairs of 
samples do not have the same means but it does not tell us which pairs.  Various sources 
support different methods for finding the specific pairs that are not equal, called pairwise 
comparisons.  Conover (1990) discusses using the usual parametric procedure, called “Fisher’s 
least significant difference,” computed on the ranks instead of the data.  If, and only if, the null 
hypothesis is rejected, the procedure dictates that the population means i and j seem to be 
different if this inequality is satisfied. 
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Ri and Rj are the rank sums of the two samples being compared.  The 1 - α/2 quantile of the t 
distribution, t1-(α/1), with N - k  degrees of freedom is obtained from the t distribution Table C-4.  
S2 and T are as already defined for the Kruskal-Wallis test. 

For the fiber tensile strength computational example, the pairwise comparisons between the 
15% and the 20% cotton content fibers can be made by the following computation.  For a 
critical region of 0.05, from Table C-4, the 1 - α/2 quantile  (0.975) for the t distribution with 25 -5 
= 20 degrees of freedom is 2.086. 

 

 

 

Since the inequality is true, it is concluded that the tensile strength means of the 15% and the 
20% cotton content fibers are different.  Notice that since all the samples are the same size, 
the right side of this equality will remain constant for all comparisons.  The following table lists 
all the pairwise comparisons. 

Table 10: Pairwise Comparisons for Cotton Content Example  
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All of the pairwise inequalities are true except for two, the 15% and 35% pair and the 20% and 
25%.  Based on the engineers originally stated experience, he suspects that the 35% fiber may 
be losing strength which would account for the 15% and 35% pair having the same tensile 
strength.  The equal strengths of the 20% and 25% strengths appears to indicate that little 
benefit is gained in tensile strength by this raise the cotton content as compared to, say, the 
increase from 15% to 20% or from 25% to 30%.  Of course, more testing is probably prudent 
now that this preliminary information is known. 

Wilcoxon Matched-Pairs Signed-Ranks Test For Two Dependent Samples 

While this test is said to be for two dependent samples, it is actually a matched pair that is a 
single observation of a bivariate random variable.  It can be employed in “before” and “after” 
observations on each of several subjects, to see if the second random variable in the pair has 
the same mean as the first one.  To be employed more generally, the Wilcoxon Matched-Pairs 
Signed-Ranks test requires that each of n subjects (or n pairs of matched subjects) has two 
scores, each having been obtained under one of the two experimental conditions.  A difference 
score Di is computed for each subject by subtracting a subject’s score in condition 2 from his 
score in condition 1. Thus, this method reduces the matched pair to a single observation.  The 
hypothesis evaluated is whether or not the median of the difference scores equals zero.  If a 
significant difference occurs, it is likely the conditions represent different populations. 

The Wilcoxon Matched-Pairs Signed Ranks Test was introduced earlier as a median (mean) 
test under the name Wilcoxon Signed-Ranks Test for a Single Independent Sample.  In that 
test, pairs were formed between a value in the sample and the sample median (mean).  Here, 
the test is extended to an experiment design involving two dependent samples.  Other than the 
forming of the pairs, the rest of the procedures remain the same. 

ASSUMPTIONS OF WILCOXON MATCHED-PAIRS SIGNED-RANKS TEST FOR TWO 
DEPENDENT SAMPLES 

1. The sample of n subjects is a random sample from the population it represents.  Thus, the 
Dis are mutually independent. 

2. The Dis all have the same mean. 

3. The distribution of the Dis is symmetric. 

4. The measurement scale of the Dis is at least interval. 

INPUTS FOR WILCOXON MATCHED-PAIRS SIGNED-RANKS TEST FOR TWO DEPENDENT 
SAMPLES 

The data consist of n observations (x1, y1), (x2, y2), . . . , (xn, yn) on the respective bivariate 
random variables (X1, Y1), (X2, Y2), . . . , (Xn, Yn).   

HYPOTHESES OF WILCOXON MATCHED-PAIRS SIGNED-RANKS TEST FOR TWO 
DEPENDENT SAMPLES 

A.  Two-sided test 

Ho:  E (D) = 0    or    E (Yi) = E (Xi)  
Ha:  E (D) ≠ 0 
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B.  Upper-sided test 

Ho:  E (D) ≤ 0    or    E (Yi) ≤ E (Xi)  
Ha:  E (D) > 0 

C. Lower-sided test 

Ho:  E (D) ≥ 0    or    E (Yi) ≥ E (Xi)  
Ha:  E (D) < 0 

TEST STATISTIC |Di | OF WILCOXON MATCHED-PAIRS SIGNED-RANKS TEST FOR TWO 
DEPENDENT SAMPLES 

The ranking is done on the absolute values of the differences between X and Y 

 

All differences of zero are omitted.  Let the number of pairs remaining be denoted by n’, n’ < n.  
Ranks from 1 to n’ are assigned to the n’ differences.  The smallest absolute difference |Di | is 
ranked 1, the second smallest |Di | is ranked 2, and so forth.  The largest absolute difference is 
ranked n’.  If groups of absolute differences are equal to each other, assign a rank to each equal 
to the average of the ranks they would have otherwise been assigned. 

Although the absolute difference is used to obtain the rankings, the sign of Di  is still used in the 
test statistic.  Ri, called the signed rank, is defined as follows: 

Ri = the rank assigned to |Di | if Di  is positive. 

Ri = the negative of the rank assigned to |Di | if Di  is negative. 

The test statistic T+ is the sum of the positive signed ranks when there are no ties and n’ < 50.  
Lower quantiles of the exact distribution of T+ are given in Table C-8, under the null hypothesis 
that the Di s have mean 0. 

 

Based on the relationship that the sum of the absolute differences is equal to n’ (n’ + 1) divided 
by 2, the upper quantiles ωp are found by the relationship 

 

If there are many ties, or if n’ > 50, the normal approximation test statistic T is used which uses 
all of the signed ranks, with their + and - signs.  Quantiles of the approximate distribution of T 
are given in a Normal Distribution Table. 
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INTREPRETATION OF OUTPUT (DECISION RULE) OF WILCOXON MATCHED-PAIRS 
SIGNED-RANKS TEST FOR TWO DEPENDENT SAMPLES 

For the two-sided test, reject the null hypothesis Ho at level α if T+ (or T) is less than its α/2 
quantile or greater than its 1 - α/2 quantile from Table C-8 for T+ (or the Normal Table C-1 for T).  
Otherwise, accept Ho indicating the means of the two conditions are equal.   

For the upper-tailed test, reject the null hypothesis Ho at level α if T+ (or T) is greater than its α 
quantile from Table C-8 for T+ (or the Normal Table C-1 for T).  Otherwise, accept Ho indicating 
the mean of Yi is less than or equal to the mean of Xi. 

For the lower-tailed test, reject the null hypothesis Ho at level α if T+ (or T) is less than its α 
quantile from Table C-8 for T+ (or the Normal Table C-1 for T). Otherwise, accept Ho indicating 
the mean of Yi is greater than or equal to the mean of Xi. 

Computational Example:  (Adapted from Conover (1999, p. 355)) Researchers wanted to 
compare identical twins to see if the first-born twin exhibits more aggressiveness than the 
second born twin does.  The Wilcoxon Matched-Pairs Signed-Ranks test is often used where 
two observations (two variables) are the matched-pairs for a single subject.  Here it is used 
where two subjects are the matched pairs for a single observation (variable).  So each pair of 
identical twins is the matched-pair and the measurement for aggressiveness is the single 
observation. 

Twelve sets of identical twins were given psychological tests that were reduced to a single 
measure of aggressiveness. Higher scores in the following table indicate high levels of 
aggressiveness.  The sixth twin set has identical scores so they are removed from the ranking. 

Table 11: Identical Twin Pyschological Test Example 

Twin Set 1 2 3 4 5 6 7 8 9 10 11 12 

Firstborn Xi 86 71 77 68 91 72 77 91 70 71 88 87 

Second born Yi 88 77 76 64 96 72 65 90 65 80 81 72 

Difference Di +2 +6 -1 -4 +5 0 -12 -1 -5 +9 -7 -15 

Ranks of |Di| 3 7 1.5 4 5.5 na 10 1.5 5.5 9 8 11 

Ri 3 7 -1.5 -4 5.5 na -10 -1.5 -5.5 9 -8 -11 

 

The hypotheses to be tested are the lower-sided test 

Ho:  E (D) ≥ 0    or    E (Yi) ≥ E (Xi) or E (Xi) ≤ E (Yi):  The firstborn twin (E (Xi)) does not 
tend to be more aggressive than the second born twin (E (Yi)) 

Ha:  E (D) < 0    or    E (Yi) < E (Xi) or E (Xi) > E (Yi):  The firstborn twin tends to be more 
aggressive than the second born twin. 

There are several ties so the test statistic is 

7565.0
505
17

'

1

2

'

1 −=
−

==

∑

∑

=

=
n

i
i

n

i

R

Ri
T



 

 Volume II: page 265 

 

For a critical region of size 0.05, the α quantile from the standard normal Table C-1 is -1.6449.  
Since T = -0.7565 is not in this critical region, the null hypothesis Ho is accepted and it is 
concluded that the firstborn twin does not exhibit more aggressiveness than does the second 
born twin. 
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Traffic Example:  In a comparative study of modeling approaches for traffic flow forecasting 
(Smith and Demetsky, Journal of Transportation Engineering, V.123, N.4, July/August, 1997), 
researchers needed to assess the relative merits of four models they developed.  These traffic-
forecasting models were developed and tested using data collected at two sites in Northern 
Virginia.  Two independent sets of data were collected for model development and model 
evaluation.  The models were estimated using four different techniques from the development 
data: historic average, time-series, neural network, and nonparametric regression (nearest 
neighbor).   
 
One of the comparative measures used was the absolute error of the models.  This is simply how 
far the predicted volume deviates from the actual observed volume, using the model evaluation 
data.  The data were paired by using the absolute error experienced by two models at a given 
prediction time.  The Wilcoxon Matched-Pairs Signed-Ranks Test for dependent samples was 
used to assess the statistical difference in the absolute error between any two models.  This test 
was chosen over the more traditional analysis of variance approach (ANOVA) because the 
distribution of the absolute errors is not normal, an assumption required for ANOVA. 
 
One of the models could not be tested because of insufficient data, leaving three models to be 
compared.  These models were compared using three tests, representing all combinations of 
comparison among three models.  Two hypotheses were tested for each pair of models: 

Ho: µ1 -µ1 = 0 
Ha: | µ1 -µ1 ≠  0 | (note: the paper states the alternate hypothesis as µ1 -µ1 > 0, which is 

incorrect for a two-sided test, but its evaluation is correct meaning that it actually 
evaluated as if it were a two-sided test.) 

A 1% or less level of significance was used as being statistically significant. 
 
Data from two sites were used, so the three tests were performed twice.  Although not stated 
specifically in the paper, it appears that the sample size was greater than 50.  This allowed the 
researchers to use the normal approximation test statistic.  For each of the two sites, the 
nonparametric regression (nearest neighbor) model was the preferred model.  Using this 
evidence, as well as other qualitative and logical evidence, the researchers were able to draw 
the conclusion that nonparametric regression (nearest neighbor) holds considerable promise for 
application to traffic flow forecasting. 
 
A technique employed in this evaluation has universal application.  The test selected only 
compares two samples.  Therefore if more samples need to be compared, one can perform a 
series of tests using all the possible combinations for the number of samples to be evaluated.  It 
should be noted that often more sophisticated methods for testing multiple samples 
simultaneously usually exist.  Often these tests require more detailed planning prior to collecting 
the data.  Unfortunately many researchers collect data with only a vague notion of how the data 
will ultimately be analyzed.  This often limits the statistical methods available to them--usually to 
their detriment.  The next test in this manual, Friedman Two-Way Analysis of Variance by Ranks 
Test for several dependent variables, is an alternative that may have provided more 
sophisticated evaluation for these researchers, if their data had been drawn properly. 
 
 

Friedman Two-Way Analysis Of Variance By Ranks Test For Several Dependent 
Variables 

The situation arises where a matched-pair is too limiting because more than two treatments (or 
variables) need to be tested for differences.  Such situations occur in experiments that are 
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designed as randomized complete block designs.  Recall that the Kruskal-Wallis One-Way 
Analysis of Variance by Ranks test was applied to a completely randomized design; this 
design, which relies solely on randomization, was used to cancel distortions of the results that 
might come from nuisance factors.  A nuisance factor is a variable that probably has an effect 
on the response variable, but is not of interest to the analyst.  It can be unknown and therefore 
uncontrolled, or it can be known and not controlled.  However, when the nuisance factor is 
known and controllable, then a design technique called blocking can be used to systematically 
eliminate its effects.  Blocking means that all the treatments are carried out on a single 
experimental unit.  If only two treatments were applied, then the experimental unit would contain 
the matched-pair treatments, which was the subject of the previous section on the Wilcoxon 
Matched-Pairs Signed-Ranks test.  This section discussed a test used when more than two 
treatments are applied (or more than two variables are measured). 

The situation of several related samples arises in an experiment that is designed to detect 
differences in several possible treatments.  The observations are arranged in blocks, which are 
groups of experimental units similar to each other in some important respects.  All the 
treatments are administered once within each block.  In a typical manufacturing experiment, for 
example, each block might be a piece of material b i that needs to be treated with several 
competing methods xi.  Several identical pieces of material are manufactured, each being a 
separate block.  This would cause a problem if a completely randomized design were used 
because, if the pieces of material vary, it will contribute to the overall variability of the testing.  
This can be overcome by testing each block with each of the treatment.  By doing this, the 
blocks of pieces of material form a more homogeneous experimental unit on which to compare 
the treatments.  This design strategy effectively improves accuracy of the comparisons among 
treatments by eliminating the variability of the blocks or pieces of materials.  This design is 
called a randomized complete block design.  The word “complete” indicates that each block 
contains all of the treatments. 

The randomized complete block design is one of the most widely used experimental designs.  
Units of test equipment or machinery are often different in their operating characteristics and 
would be a typical blocking factor.  Batches of raw materials, people, and time are common 
nuisance sources of variability in transportation experiments that can be systematically 
controlled through blocking.  For example, suppose you want to test the effectiveness of 4 
sizes of lettering on signage.  You decide you will measure 10 people’s reactions and want a 
total sample size of 40.  This allows 10 replicates of each size of lettering.  If you simply assign 
the 40 tests (10 for size 1, 10 for size 2, 10 for size 3, and 10 for size 4) on a completely 
random basis to the 10 people, the variability of the people will contribute to the variability 
observed in the people’s reactions.  Therefore, each person can be blocked by testing all four 
lettering sizes on each person.  This will allow us to compare the lettering sizes without the 
high variability of the people confusing the results of the experiment. 

The parametric test method for this situation (randomized complete block design) is called the 
single-factor within-subjects analysis of variance or the two-way analysis of variance.  The 
nonparametric equivalent tests depend on the ranks of the observations.  An extension of the 
Wilcoxon Matched-Pairs Signed-Ranks test for two dependent samples to a situation involving 
several samples is called the Quade Test.  Dana Quade first developed it in 1972.  The Quade 
test uses the ranks of the observations within each block and the ranks of the block-to-block 
sample ranges to develop a test statistic. 

An alternate test to the Quade test was developed much earlier (1937) by noted economist 
Milton Friedman.  The Friedman test is an extension of the sign test and is better known.  
Which test to use depends on the number of treatments.  Conover (1999) recommends the use 
of the Quade test for three treatments, the Friedman test for six or more treatments, and either 
test for four or five treatments.  These recommendations are based on the power of the tests for 
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various levels of treatments.  Since the Friedman test is useful for a much larger range of 
treatments, it is discussed in this section.  Discussion of the Quade test is presented in 
Conover (1999, p. 373-380). 

ASSUMPTIONS OF FRIEDMAN TWO-WAY ANALYSIS OF VARIANCE BY RANKS TEST FOR 
SEVERAL DEPENDENT VARIABLES 

1. The multivariate random variables are mutually independent.  In other words, the results 
within one block do not affect the results within any of the other blocks. 

2. Within each block the observations may be ranked according to some criterion of interest. 

INPUTS FOR FRIEDMAN TWO-WAY ANALYSIS OF VARIANCE BY RANKS TEST FOR 
SEVERAL DEPENDENT VARIABLES 

The data consist of b mutually independent observations where each observation contains k  
random variables (Xi1, Xi2, . . . ,Xbk).  The observations are designated as b blocks, i = 1, 2, . . . 
, b.  The random variable Xij is in block i and is subjected to treatment j (or comes from 
population j).  The data can be arranged in a matrix with i rows for the blocks and j columns for 
the treatments (populations). 

Table 12: Friedman Two-Way Analysis of Variance Table for Ranks Test 
for Several Dependent Variables 

 treatment 
1 

treatment 
2 

 
. . .  

treatment 
k 

block 1 X1,1 X1,2 . . .  X1, k 

block 2 X2,1 X2,2 . . .  X2, k 

. . . . . .  . . .  . . .  . . .  

block b Xb,1 Xb,2 . . .  Xb, k 

 

HYPOTHESES OF FRIEDMAN TWO-WAY ANALYSIS OF VARIANCE BY RANKS TEST FOR 
SEVERAL DEPENDENT VARIABLES 

Ho:  E (X1j) = E (X2j) = , . . . , = E (Xbj); All of the b treatment (population) means are equal, 
i.e., each ranking of the random variables within a block is equally likely. 

Ha:  At least one of the b treatment (population) means is not equal to at least one of the 
other treatment (population) means 

TEST STATISTIC FOR FRIEDMAN TWO-WAY ANALYSIS OF VARIANCE BY RANKS TEST 
FOR SEVERAL DEPENDENT VARIABLES 

Current research reported by Conover (1999, p. 370) has found the approximation of the 
Friedman test statistic by the chi-square distribution is sometimes poor.  This supports a 
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modification to the Friedman test statistic, which allows the F distribution to be used as its 
approximation with better results. 

First rank the treatments (populations) within each block separately.  The smallest value within 
a block is assigned rank 1 continuing through the largest value, which is assigned rank k .  Use 
average ranks in case of ties.  Calculate the sum of the ranks Rj, for each treatment (population) 

 

Then calculate Friedman’s statistic 

           

When there are ties, T1 needs to be adjusted by A and C  

 

After adjusting the test statistic T1 for ties, it becomes 

           

Now the final test statistic T2 is calculated by modifying T1 so it can be approximated by the 
chi-square distribution 

 

INTREPRETATION OF OUTPUT (DECISION RULE) OF FRIEDMAN TWO-WAY ANALYSIS OF 
VARIANCE BY RANKS TEST FOR SEVERAL DEPENDENT VARIABLES 

When the null hypothesis is true, the exact distribution of T2 is difficult to determine so its 
quantiles are approximated by the F distribution with numerator degrees of freedom dfnum = k  - 1 
and denominator degrees of freedom dfden = (b - 1)(k  - 1). 

∑
=

==
b

j
ijj kjXRR

1

,...,2,1for     )(

∑
=







 +

−
+

=
k

j
j

kb
R

kbk
T

1

2

1 2
)1(

)1(
12

( )[ ]∑∑
= =

+
==

b

i

k

j
ij

kbk
CXRA

1

2

1

2

4
)1(

CA

kb
Rk

CA

bCRk
T

k

j
j

k

j
j

−







 +

−−
=

−









−−

=
∑∑

== 1

2

1

2

1

2
)1(

)1()1(

1

1
2 )1(

)1(
Tkb

Tb
T

−−
−

=



 

 Volume II: page 270 

Reject the null hypothesis Ho at level α if T2 is greater than its 1 - α quantile.  This 1 - α quantile 
s approximated by the F distribution Table C-5 with dfnum = k  - 1 and dfden =  (b - 1)(k  - 1).  
Otherwise, accept Ho if T2 is less than or equal to the 1 - α quantile indicating the means of all 
the samples are equal in value.  The approximate p-value can also be approximated from the F 
distribution table.  As one might suspect the approximation gets better as the number of blocks 
b gets larger. 

Computational Example:  (Adapted from Montgomery (1997, p. 177-182)) A machine to test 
hardness can be used with four different types of tips.  The machine operates by pressing the 
tip into a metal specimen and the hardness is determined by the depth of the depression.  It is 
suspected that the four tip types do not produce identical readings so an experiment is devised 
to check this.  The researcher decides to obtain four observations (replicates) of each tip type.  
A completely randomized single-factor design would consist of randomly assigning each of the 
16 tests (called runs) to an experimental unit (a metal specimen).  This would require 16 
different metal specimens.  The problem with this design is that if the 16 metal specimens 
differed in hardness, their variability would be added to any variability observed in the hardness 
data caused by the tips. 

To overcome the potential variability in the metal specimens, blocking can be used to develop a 
randomized complete block design experiment.  The metal specimens will be the blocks.  Each 
block will be tested with all four tips.  Therefore, only four metal specimens will be needed to 
conduct the 16 total tests.  Within each block, the four tests need to be conducted in random 
order.  The observed response to the tests is the Rockwell C scale hardness minus 40 shown 
in the following table. 

Table 13: Randomized Complete Block Design for Metal Specimens Example 

 treatment (tip 
type) 1 

 treatment (tip 
type) 2 

 treatment (tip 
type) 3 

 treatment (tip 
type) 4 

 

 value rank value rank value rank value rank 

block 
specimen 1 

9.3 2 9.4 3 9.2 1 9.7 4 

block 
specimen) 2 

9.4 2.5 9.3 1 9.4 2.5 9.6 4 

block 
specimen 3 

9.6 2 9.8 3 9.5 1 10.0 4 

block 
specimen4 

10.0 3 9.9 2 9.7 1 10.2 4 

Rj (totals)  9.5  9  5.5  16 

 

Since there are ties, first compute A and C 
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Next compute the Friedman test statistic T1 using the formula adjusted for ties 
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Finally modify T1 to obtain the test statistic T2 

 

For a critical region of 0.05, the 1 - α quantile (0.95) of the F distribution with dfnum = k  - 1 = 3 
and dfden =  (b - 1)(k  - 1) = (3)(3) = 9 from Table C-5 is 3.86.  Since T2 = 8.4148 lies in this 
critical region, i.e., in the region greater than 3.86, the null hypothesis Ho is rejected and it is 
concluded that at least one tip type results in hardness values that are not equal to at least one 
other tip type.  From Table C-5, the p-value is less than 0.01.  This means the null hypothesis 
Ho could have been rejected at a significance level as small as α = 0.01 (and even smaller, but 
most tables don’t have values any smaller). 

MULTIPLE COMPARISONS USING FRIEDMAN TWO-WAY ANALYSIS OF VARIANCE BY 
RANKS TEST FOR SEVERAL DEPENDENT VARIABLES 

When the Friedman test rejects the null hypothesis, it indicates that one or more treatments 
(populations) do not have the same means but it does not tell us which treatments.  One 
method to compare individual treatments is presented by Conover (1999, p. 371).  This method 
concludes that treatments l and m are different if the following inequality is satisfied. 

 

Ri and Rj are the rank sums of the two treatments (samples) being compared.  The 1 - α/2 
quantile of the t distribution, t1-(α/1), with (b - 1)(k  - 1) degrees of freedom is obtained from the t 
distribution, Table C-4. A is as already defined for the Friedman test. 

If there are no ties, A in the above inequality simplifies to 

 

Multiple comparisons for the hardness testing machine computational example can be made by 
first computing the right side of the inequality. For a critical region of 0.05, from Table C-4, the 1 
- α/2 quantile  (0.975) for the t distribution with (4 - 1)(4 - 1) = 9 degrees of freedom is 2.262. 
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It can be concluded that any two-tip types whose rank sums are more than 4.8280 are unequal.  
Therefore, tip types which yield mean hardness values different from each other are types 1 and 
4, types 2 and 4, and types 3 and 4.  No other differences are significant.  This means that 
types 1, 2, and 3 yield identical results (at α = 0.05) while type 4 yields a significantly higher 
reading than any of the other three tip types. 

NONPARAMETRIC ANALYSIS OF BALANCED INCOMPLETE BLOCK DESIGNS 

Sometimes it is inconvenient or impractical to administer all the treatments to each block.  
Perhaps there is limited funds or perhaps the number of treatments is simply too large to 
administer to each block.  When blocking is used, but each block does not receive every 
treatment, it is called a randomized incomplete block design.  Furthermore, when certain 
simple treatment scheme conditions are met to aid analysis, the design is called a balanced 
incomplete block design.  The parametric analysis methods for this type of design are 
discussed in detail in Montgomery (1997, p. 208-219).  When the normality assumptions are 
not met, a test developed by Durbin in 1951 may be used.  It is a rank test to test the null 
hypothesis that there are no differences among treatments in a balanced incomplete block 
design.  For details about the Durbin test, see Conover (1999, p. 387-394). 
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CHAPTER VI; SECTION E:   MEASURES OF ASSOCIATION AND TESTS FOR 

INDEPENDENCE FOR DETERMINING RELATIONSHIPS BETWEEN VARIABLES 

Purposes of Measures of Association and Tests for Independence: 

A measure of association describes the relationship between variables.  Another term often 
used is correlation, which is essentially synonymous with association.  Measures of 
association or correlation are descriptive statistical measures that attempt to quantify the 
degree of relationship between two or more variables.  After calculating a measure of 
association, it is usually possible to devise an inferential test to evaluate a hypothesis about the 
measure of association.  This section deals with nonparametric measures of association and 
tests for independence, i.e., measures and tests that do not rely on knowing the parameters of 
the underlying distributions of the variables being studied.  The focus is on comparing two 
variables, called a bivariate measure of association. 

Examples: An analyst or engineer might be interested in assessing the evidence 
regarding the relationship (independent or not) between two variables, e.g., two variables 
such as:  
1.   Airport site evaluation ordinal rankings of two sets of judges, i.e., citizens and airport 
professionals.  
2.   Neighborhood districts residents’ use of a regional mall for purposes of planning 
transit routes.  
3.   Accidents before and during roadway construction to investigate whether factors 
such as roadway grade, day of week, weather, etc. have an impact on crashes.4.   Area 
type and speed limit--as well as other variable pairs--to eliminate intercorrelated 
dependent variables for estimating models that predict the number of utility pole 
accidents.  
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Measures of Association and Tests for Independence Methodology: 

 

Chapter VI, Section E:
Measures of Association

and
Tests for Independence

Methodology

What type of scale is used to measure the data?
� Nominal (observations may be separated according to categories)
� Ordinal (observations may be arranged from smallest to largest)
� Interval/Ratio (the numerical value of the observations has meaning)

Cramer's Contingency Coefficient
(Measure of Association)

-----------------
Chi-square Test for Independence

(Test for Independence)

Use these tests for Nominal Scale Data

Kendall's Tau (τ)
(Measure of Association)

-----------------
Hypothesis Test Using Kendall's Tau

(Test for Independence)

Use these tests for Ordinal, Interval,
 and Ratio Scale Data (1)

Do you want a Measure of Association or a Test for Independence?
� A Measure of Association/Correlation measures the relationship between two

variables in a single independent (random) sample--subjective intreprepation.
� A Test for Independence estimates whether a relationship between two variables is

due to chance or is highly unlikely to have occurred by chance--confidence level.
� In most, but not all, Tests for Independence, the test statistic is the Measure of

Association.  Thus both are calculated when performing the Test for Independence.

(1) Cramer's Contingency Coefficient and Chi-square Test for
    Independence can also be used on Ordinal, Interval, and Ratio
    Scale data by transforming the data to Nominal scale data.

Nominal Scale Data Ordinal, Interval, and Ratio Scale Data
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Measures of Association and Tests for Independence Methodology: 

What type of scale is used to measure the data? 

As the reader will recall, there are four types of measurement scales that can be used to 
quantify data.  These are called nominal, ordinal, interval, and ratio scales, listed from “weakest” 
to “strongest.”  Thus the ratio scale is the strongest and gives us the most quantitative 
information of any of the scales while nominal gives us the least information.  This hierarchy 
allows for data to be transformed to a lower level, but they can’t be transformed to a higher one.  
These measurement scales are defined in detail in Appendix A. 

Do you want a Measure of Association or a Test for Independence? 

Measures of Association:  The most commonly used measure of correlation is Pearson’s 
product-moment correlation coefficient, usually denoted by r. Pearson’s r was developed in 
1896 and 1900 by Karl Pearson (1857-1936), an English mathematician.  Pearson was a 
pioneer of statistics who also developed the chi-square test that is used extensively in 
nonparametric methods.  Pearson’s r, however, is a random variable and therefore has a 
distribution function.  This distribution function depends on the bivariate distribution function of 
the two variables being tested.  Specifically, it assumes that each of the two variables and their 
linear combination are normally distributed--called a bivariate normal distribution.  Therefore, 
Pearson’s r is not useful as a test statistic in nonparametric methods.  Fortunately, other 
measures are available which do not assume a bivariate normal distribution of the two variables, 
which are detailed in this section. 

In order for a quantitative measure of association to be useful, it must be scaled in a manner 
that implicitly yields information by its value.  Traditionally (but there are exceptions), the value 
calculated will fall between 0 and +1 or between -1 and +1.  A 0 value indicates no relationship 
between the two variables being compared.  A value of -1 or +1 indicates a maximum 
relationship between the two variables.  The closer to an absolute value of 1 (either +1 or -1), 
the stronger the measure of association.  When the measure can have a value from -1 to +1, 
the negative values indicate an inverse relationship (one increases as the other decreases) 
while the positive values indicate a positive relationship (both increase or decrease together).   

It is important to remember that these relationships are only associations and do not imply 
causation.  One cannot say, based on a strong measure of association/correlation, that one 
variable causes another variable.  It is possible such a causal relationship exists but it cannot 
be discerned by using a measure of association/correlation.  Such a result could have been 
caused by an extraneous (often called a confounding) variable or variables that were not 
measured by the researcher.  These extraneous variables could be responsible for the observed 
correlation between the two variables. 

Tests for Independence:  Measures of association/correlation are not inferential tests.  But as 
stated earlier, after calculating a measure of association, it is usually possible to devise an 
inferential test to evaluate a hypothesis about the measure of association.  As the reader will 
recall, hypothesis testing is the process of inferring from a sample whether or not a given 
statement about the population appears to be true.  The hypotheses discussed in this section 
can generally be employed in tests for independence.  This allows us to determine whether an 
association between two variables is due to chance or is highly unlikely to have occurred by 
chance.  Whereas a measure of association gives a quantitative measure of the relationship 
between two variables, its interpretation is subjective.  The interpretation of a test for 
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independence allows the researcher to estimate a probability that the observed data occurs 
when the null hypothesis is true (the null hypothesis is usually that the variables are 
independent).  For example, there is less than a 5% probability that a specific data sample of 
two variables would occur given that the two data variables are independent.  In this example, 
since there is less than a 5% probability of the specific data occurring by chance alone, the 
given condition of independence could be rejected (at the 5% significance level).  This means 
that the alternative hypothesis would be accepted, i.e., the two variables are not independent 
and, thus, a relationship between them exists. 

Measure of Association and Test for Independence for Nominal Scale Data 

Cramer’s Contingency Coefficient - Measure of Association for Nominal Scale Data 

The Test for Independence using nominal data discussed in the next section uses a r x c 
contingency table to explore whether two variables within a sample are independent or not.  But 
sometimes instead of testing a hypothesis regarding independence, the analyst simply want to 
express the degree of dependence shown in a particular contingency table.  The most widely 
used measure of dependence (also called a Measure of Association) for an r x c contingency 
table is Cramer’s Contingency Coefficient.  Sometimes called Cramer’s phi coefficient or simply 
Cramer’s coefficient, this measure of dependence was first suggested by Harold Cramer (1893-
1985), a Swedish mathematician and chemist, in 1946. 

ASSUMPTIONS OF CRAMER’S CONTINGENCY COEFFICIENT 

The coefficient is based on the test statistic T developed in the Chi-square Test for 
Independence.  This test is detailed in the following section and all of its underlying 
assumptions apply to Cramer’s Contingency Coefficient. 

INPUTS FOR CRAMER’S CONTINGENCY COEFFICIENT 

A random sample of size N is obtained by the researcher.  The observations may be classified 
according to two variables.  The first variable has r categories (rows) and the second variable 
has c categories (columns).  Let Oij be the number of observations associated with row i and 
column j simultaneously (a cell).  The cell counts Oij are arranged in the following form, which is 
called a r x c contingency table. 

The total number of observations from all samples is denoted by N.  The number of 

observations in the jth column is denoted by Cj, which is the number of observations that are in 
row j (meaning category j of the second variable). The number of observations in the ith row is 
denoted by Rj, which is the number of observations that are in row i (meaning category i of the 
first variable). 
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Table 14: Contingency Table for Two Variables 

  

Colum
n 1 

 

Colum
n 2 

 

. . . 

 

Colum
n j 

 

. . . 

 

Colum
n c 

 

Row 
Totals 

Row 1 O1 1 O1 2 . . . O1 j . . . O1 c R1 

Row 2 O2 1 O2 2 . . . O2 j . . . O2 c R2 

. . .       . . . 

Row i O i 1 O i 2 . . . O i j . . . O i c Ri 

. . .       . . . 

Row r O r 1 O r 2 . . . O r j . . . O r c Rr 

Column Totals C1 C2 . . . Cj . . . Cc N 
 

 

TEST STATISTIC (C) FOR CRAMER’S CONTINGENCY COEFFICIENT 

The difficulty with directly using the test statistic T for the Chi-square Test for Independence is 
its lack of a common scale.  The test statistic T is an estimate of a chi-square value.  Chi-
square values cannot be directly compared because their probabilities vary depending upon 
their degrees of freedom, which varies from sample to sample.  Cramer’s approach lessens this 
dependency on the degrees of freedom by dividing T by the maximum value that T can have.  
The methodology for developing the test statistic T for the Chi-square Test for Independence is 
detailed in the following section and not repeated here.  However, it is easily seen by examining 
the test statistic T formula 

that large values of T arise as the difference in cell counts (Oij - Eij) becomes more pronounced.  
By examining extremely uneven contingency tables, a general rule was developed for the 
maximum value of T being N(k - 1), where k  is the smaller of the number of categories for the 
two variables being considered and N is the total number of observations.  Therefore, when T is 
divided by the approximation of the maximum value of T, the result is a useful coefficient C 
having a common scale.  Current convention uses the square root form. 
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INTREPRETATION OF OUTPUT OF CRAMER’S CONTINGENCY COEFFICIENT 

If the result is close to 1.0, the contingency table indicates a strong dependency between the 
two variables; when it is close to 0.0, the numbers across each row (first variable) are in the 
same proportions to each other as the column totals (second variable) are to each other--
indicating independence. 

It should be noted that while measures of association have a quantitative scale, their 
interpretation is subjective.  The interpretation can be improved by performing the Test for 
Independence on the contingency table as detailed in the following section.  This test 
determines if the test statistic T (estimate of chi-square value) is statistically significant at a 
given level of significance.  The Measure of Association computed for the contingency table, in 
this case Cramer’s Contingency Coefficient will be significant at this same level of significance.  
Finally, it is important to note once more that these relationships are only associations and do 
not imply causation. 

 

Other Nonparametric Measures of Association for Nominal Scale Data 

Whereas Cramer’s Contingency Coefficient is the most widely used measure of dependency for 
r x c contingency tables, other measures are sometimes used.  One widely know measure is 
Pearson’s Coefficient of Mean Square Contingency sometimes simply called Pearson’s 
Contingency Coefficient.  Detailed information on this measure and others is available from 
Conover (1999, p231-233) or Sheskin (1997, p.243-244).  The choice of a measure of 
dependency is a personal choice. 

 

Chi-square Test for Independence (also called Cross Classification or Cross 
Tabulation) - Test for Independence for Nominal Scale Data 

ASSUMPTIONS OF CHI-SQUARE TEST FOR INDEPENDENCE 

1) The sample of N observations is a random sample. 

2) Each observation may be categorized into exactly one of the r categories for one variable 
and c categories for the other variable (i.e., the r categories are mutually exclusive and 
collectively exhaustive as are the c categories) 

3) The number of observations that fall into each r category for one variable or for each c 
category for the other variable are not predetermined by the researcher prior to the data 
collection phase of a study. 

4) Each cell contains at least 5 observations (see the discussion under “Trouble shooting” 
about possible remedies if this assumption is violated). 

Safety Example:  In a reexamination of a study to determine whether to use red left turn arrows 
instead of red balls (Kullback and Keegel, Journal of Transportation Engineering, V.111, N.4, July, 
1985), researchers challenged the conclusions of the previous study because of inappropriate 
use of the Chi-square Test for Independence.  The original study had used a contingency table 
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with 72 cells.  However 30 of these cells had zero observations, making the use of this test highly 
problematic.  

5) The measurement scale is at least nominal. 

INPUTS FOR CHI-SQUARE TEST FOR INDEPENDENCE 

The data consist of an r x c contingency table, as prepared for Cramer’s Contingency 
Coefficient detailed in the previous section.  

HYPOTHESES OF CHI-SQUARE TEST FOR INDEPENDENCE 

Let the probability of a randomly selected value from the ith population being classified in the jth 
class be denoted by pi j, for i = 1, 2, . . . , r, and  j = 1, 2, . . . , c. 

Ho:  The two variables are independent of each other, i.e., the rows and columns represent 
two independent classification schemes.  (Oi j  = Ei j, for all cells).  

Ha:  The two variables are not independent of each other. (Oi j  ≠ Ei j, for all cells). 

TEST STATISTIC (T ) OF CHI-SQUARE TEST FOR INDEPENDENCE 

The null hypothesis can be stated as the event “an observation is in row i” is independent of the 
event “that same observation is in column j,” for all i and j.  By definition, when two events are 
independent, the probability of both occurring is simply the product of their probabilities.  Thus, 
for any cell, assuming the null hypothesis is true (the variables are independent), the expected 
number of observations is the product of their category probabilities.  The row probability is 
simply the row total divided by all the observations, P (row i) = Ri /N.  Similarly, the column 
probability is the column total divided by all the observations, P (column j) = Cj /N.  Therefore 
the expected number of observations in a cell is the cell probability times the total number of 
observations in all the cells 

 

Where Ei j represents the expected number of observations in cell (i, j) when Ho is true.  The test 
statistic T is given by 

 

INTEPRETATION OF OUTPUT (DECISION RULE) OF CHI-SQUARE TEST FOR 
INDEPENDENCE 

The approximate distribution of T is the chi-square distribution with (r - )(c - 1) degrees of 
freedom. Therefore the critical region of approximate size α significance level corresponds to 
values of T greater than x1- α, the (1 - α) quantile of a chi-square random variable with (r - 1)(c - 1) 
degrees of freedom, obtained from the Chi-square distribution, Table C-2.  One rejects Ho if T 
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exceeds x1-α (meaning that an observation’s categorization on the first variable is associated 
(i.e., not independent) with the categorization on the second variable).  Other wise the analyst 
accepts Ho (meaning the two variables are independent). 

 
Transit Example:  In the design of off-peak transit routes (Ross and Wilson, Transportation 
Engineering Journal, V.103, N.TE5, September 1977), researchers in Cedar Rapids, Iowa, 
developed a routing technique to identify the trade area of major trip attractors and design the 
transit routing to serve areas of high potential within the trade area.  To demonstrate the 
effectiveness of the technique, the researchers collected data for a non-CBD (central business 
district) regional mall and its trade area.  The data captured demographic characteristics of the 
mall’s patrons and characteristics of their trips to the mall during off-peak hours.  Screening 
methods were used to eliminate from evaluation traffic zones of very low potential transit 
ridership to the mall, essentially all areas outside a 10-minute travel time to the mall.  
Additionally, low population traffic zones within the 10-minute limit were also dropped, typically 
rural zones.  The remaining traffic zones were aggregated into four districts conducive to 
efficient transit routing to the mall. 
 
Several questions were posed in the form of two hypotheses and tested using the Chi-square 
Test for Independence for nominal data: 

Ho: The two variables are independent of each other. 
Ha: The two variables are not independent of each other. 

A 1% or less level of significance was used as being statistically significant and the p-values 
were reported when the level of significance was greater than 1%. 
 
One example of a question explored was the preference of district residents for shopping at the 
mall when compared to the CBD.  The responses to this choice question were that they shopped 
(1) more, (2) the same, or (3) less in the CBD than in the mall.  Since there were four districts 
being evaluated, the researchers set up a 3 by 4 contingency table.  The null hypothesis is that 
the rows (level of shopping at the mall) are independent of the columns (the district in which the 
shopper lived).  This was rejected at a degree of significance of 0.01.  This is interpreted as 
follows. Given that the data are independent, there is less than a 1% chance that the large 
differences between the expected and observed values occurred by chance alone.  Therefore the 
alternate hypothesis is accepted: the level of shopping is different among the districts.  Several 
other questions were explored in a similar manner: (1) are the trip frequencies the same by 
district (no), (2) are the planned versus unplanned trips to the mall the same by districts (yes with 
a p-value = 0.58), (3) are the previous locations of the mall patrons just before coming to the mall 
the same by district (yes with a p-value of 0.70), (4) are the trip making rates per occupied 
dwelling unit the same by district (yes with a p-value > 0.70), and then (5) for each zone within a 
district, are the trip making rates per occupied dwelling unit the same (results varied by zone).   
 
From these tests, the researchers were able to draw these general conclusions: 
 1.  After dropping the lowest use district, all three remaining districts appear to be producing 
trips to the mall as a function of the number of occupied dwelling units in the districts. 
 2.  In two of the districts at least one zone produces trips at a rate different than would be 
expected if all trip rates were equal. 
 
 
APPROXIMATE VERSUS EXACT INFERENCES FOR CHI-SQUARE TEST FOR 
INDEPENDENCE AND CHI-SQUARE GOODNESS OF FIT TEST  

Nonparametric techniques generate p-values without making any assumptions about the 
distributions.  However, they do rely on approximate solutions.  Recall the noted nonparametric 
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authority W.J. Conover’s words: “nonparametric methods use approximate solutions to exact 
problems, while parametric methods use exact solutions to approximate problems.”  These 
approximations tend to become better as the sample size gets larger because it usually 
approaches its solution asymptotically or as some say, the law of large numbers comes into 
play.  So when samples sizes are sufficiently large the approximations are usually quite good.  

For both the Chi-square Test for Independence and the Chi-square GOF test, the exact 
distribution of the test statistic is very difficult to find and classically is almost never used.  The 
asymptotic chi-square approximation for the test statistic is satisfactory if the expected values 
in the test statistic are not too small.  However the exact distribution can be found, and has 
been used for some time for small contingency tables, e.g., a 2 by 2 contingency table, where 
the computations required were manageable.  The computations for larger size contingency 
table are difficult computationally.  With the advent of modern computers, however, such 
computations are possible and may provide a more useful method when testing small size 
samples.  These computations are still a nontrivial task and rely on special algorithms.  Cyrus 
R. Mehta and Nitin R. Patel are two researchers who have developed such special algorithms 
and have published their work in this field.  They report that software support for their methods 
is available in many standard packages including StatXact-3, LogXact-2, SPSS Exact Tests, 
and SAS Version 6.11.  More statistical software publishers will probably add this capability as 
it becomes more recognized.  One should consult these software providers for more 
information. 

 

Measure of Association and Test for Independence for Ordinal, Interval, and 
Ratio Scale Data 

Kendall’s Tau (τ) - Measure of Association for Ordinal, Interval, and Ratio Scale Data 

Kendall’s Tau is of a type that can be called measures of rank correlation.  Compared to 
measures of association for nominal scale data, these measures use the additional information 
contained in ordinal, interval, and ratio scale data in their computation.  In general, this 
additional information provides tests with greater power without having to make the assumptions 
about the distribution of the test statistics as is the case for parametric tests (e.g., the widely 
used Pearson’s product moment correlation coefficient).  Rank correlation methods use the 
ranks (order) attributed to the data values rather than the values themselves resulting in 
nonparametric tests.   

ASSUMPTIONS OF KENDALL’S TAU (τ) 

1) P (X = x) < 1 which is a trivial assumption since it is unlikely the parent population that the 
sample is drawn from will have only one member (number).  This assumption, however, 
allows this test to be valid for all types of populations, whether continuous, discrete, or 
mixtures of the two. 

2) The measurement scale is at least ordinal. 

INPUTS FOR KENDALL’S TAU (τ) 

The data consist of a random sample of size n having two variables (X, Y). 
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TEST STATISTIC (τ) FOR KENDALL’S TAU 

Slightly different versions of Kendall’s Tau are used by different researchers that require different 
tables. Described here is the method used by Conover (1990, p.319-323, TableA11 p.543).  Two 
observations, for example (10.4, 0.6) and (13.9, 1.1), are called “concordant” if both members 
(variables) of one observation are larger than their respective members of the other observation.  

Let Nc be the number of concordant pairs of observations out of the nC2 possible pairs. A pair of  

 

observations, such as (10.4, 0.6) and (14.2, 0.3), are called “discordant” if the two numbers in 
one observation differ in opposite directions (one negative and one positive) from the respective 
members in the other observation.  Let Nd be the total number of discordant pairs of 
observations.  Pairs with ties between respective members are counted differently, as described 
later. Recall nCr = (n!) / (r! (n - r)!) are all the number of ways in which r objects can be selected 
from a set of n distinct objects.  Therefore, the n observations may be paired nC2 = (n!) / (2! (n - 
2)!) = n (n - 1) / 2 different ways.  Thus, the number of concordant pairs Nc plus the number of 
discordant pairs Nd plus the number of pairs with dies will add up to n (n - 1) / 2.  The measure 
of correlation (association) when there are not ties is 

 

If all pairs are concordant, then Kendall’s Tau equals 1.0; when all pairs are discordant, it 
equals -1.0. 

Ties:  In equation form, a pair of observations (X1, Y1) and  (X2, Y2) is concordant if (Y2 - Y1) / (X2 
- X1) > 0 and discordant if (Y2 - Y1) / (X2 - X1) < 0.  If X1 = X2 the denominator is zero so no 
comparison can be made.  But when Y1 = Y2 (and X1 ≠ X2), then (Y2 - Y1) / (X2 - X1) = 0.  In this 
case the pair should be counted as one-half (1/2) concordant and one-half (1/2) discordant.  
While this makes no difference in the numerator of Kendall’s Tau because the one-half terms 
cancel when computing Nc - Nd, it does change the way Tau should be computed.  In the case 
of ties, the measure of association (correlation) is 
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This version of Kendall’s Tau has the advantage of achieving +1 or -1 even if ties are present.  
This version is sometimes called the “gamma coefficient.”  

INTREPRETATION OF OUTPUT OF KENDALL’S TAU (τ) 

If the result is close to 1.0, the data indicate a strong positive association/correlation.  This 
means the larger values of X tend to be paired with the larger values of Y and the smaller values 
of X tend to be paired with the smaller values of Y.  If the result is close to -1.0, the data 
indicate a strong negative association/correlation.  This means the larger values of X tend to be 
paired with the smaller values of Y and the smaller values of X tend to be paired with the larger 
values of Y.  A result close to 0.0 indicates the values of X seem to be randomly paired with the 
values of Y, and hence indicate that X and Y are independent.  However, independence has not 
been statistically tested so the most the analyst can say is that the variables are uncorrelated.   

To statistically test the association (or lack of), the Test of Independence in the next section 
needs to be made.  Once that is made, however, and assuming the test is statistically 
significant at a given level of significance, then Kendall’s Tau will be significant at this same 
level of significance.  As with all Measures of Association, Kendall’s Tau only measures an 
association between two variables and do not imply that one causes the other. 

Computational Example:  (Adapted from Conover (1999, p.320)) Suppose the analyst 
collected twelve observations, each having two variables for each observation.  The analyst 
wants to determine the Measure of Association using Kendall’s Tau between two variables. One 
of the variables is denoted as X (it doesn’t matter which one), and the other variable Y.  For 
ease of calculation, the observations are ordered on their X variable and calculate their 
concordant and discordant pairs as shown in the following table. Included are the ranks of the 
variables, which some people find easier to use when comparing.  You can use the values 
directly or their ranks to make the comparisons.  Ranking of ties uses their average rank. 

By arranging the data in increasing values of X, each Y may be compared with only those Ys 
below it.  In this manner each pair is only considered once and the comparisons can be done 
by hand fairly quickly.  Using the pair (560, 3.2) with ranks (5, 1.5) as an example, the pair 
relationships are found by comparing 3.2 (or rank 1.5) with the following Ys of 3.2, 3.8, 3.5, 4.0, 
3.9, and 4.0 (or with ranks 1.5, 9, 5, 11.5, 10, and 11.5).  In 5 comparisons the second Y is 
larger (concordant), in no cases is the second Y smaller (discordant), and in one case there is 
a tie (1/2 concordant and 1/2 discordant).  Note that the two pairs where 560 is tied with the 
second X are not counted. 

Table 15: Kendall’s Tau Measure of Association between Two Varaiables 

Values 
 

(Xi,Yi) 

Ranks 
 

(Ri,Ri) 

Concordant Pairs  
Below  

(Xi,Yi) and (Ri,Ri) 

Discordant Pairs  
Below  

(Xi,Yi) and (Ri,Ri) 

(530, 3.5(1)) ( 1, 5) 7 4 

(540, 3.3) ( 2, 3) 8 2 

(545, 3.7) ( 3, 8) 4 5 

(560, 3.2(1)) ( 5, 1.5) 5.5 0.5 

(560, 3.5) ( 5, 5) 4.5 1.5 

(560, 3.6) ( 5, 7) 4 2 

Xi tie 
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(570, 3.2(1)) ( 7, 1.5) 5 0 

(580. 3.8) (8, 9) 3 1 

(610, 3.5) (9.5, 5) 2 0 

(610, 4.0(2)) (9.5, 11.5) 0.5 1.5 

(640, 3.9) (11, 10) 1 0 

(710, 4.0(2)) (12,.11.5 ) n/a n/a 

  Nc = 44.5 Nd = 17.5 
(1)Yi tie   
(2)Yi tie 

Xi tie 
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Safety Example:  In an evaluation of vehicular crashes with utility poles (Zegeer and Parker, 
Transportation Research Record No. 970, 1984), researchers used data from four states to 
investigate the effects of various traffic and roadway variables on the frequency and severity of 
the crashes.  Several methods were used to assess these effects including correlation analysis, 
analysis of variance and covariance, and contingency table analysis. 
 
Correlation analysis was conducted to determine if a relationship existed between the 
independent and the dependent variables for purposes of determining the best variables to use in 
a predictive model.  Similarly correlation analysis between independent variables was conducted 
in order to avoid problems of collinearity in predictive models that occurs when two or more 
independent variables in a model are highly correlated.  For variables having interval and ratio 
scale data, the “Pearson correlation coefficient” was used.  For measuring the association 
between the discrete, ordinal independent variables, “Kendall Tau correlation” was used.  For 
example, a Tau value of 0.727 was reported for the correlation between area type and speed limit.  
There were three area types: urban, urban fringe, and rural.  A value of 1.000 would indicate 
“perfect” correlation between these two variables while a value of 0.000 would indicates “no” 
correlation.  The researchers made a qualitative decision that this Tau value was sufficiently 
close to 1.0 to warrant eliminating one of the variables--area type--as an independent variable in 
their predictive models.  After deciding on the “best” variables to include, the researchers used 
linear and nonlinear regression analysis to develop predictive models. 
 
It is important to note that when reporting results, lack of specificity in naming and/or describing 
the actual statistical tests used can cause confusion.  In this example, the researchers reported 
they used the “Pearson correlation coefficient”, except for ordinal data, for which they used 
“Kendall Tau correlation” analysis.  In neither case is a statistical reference given, which would 
have allowed a reader so inclined to determine the exact statistical tests that were used.  Both 
Pearson and Kendall formulated multiple tests for correlation and they are reported in literature 
and textbooks under various names.  In this case, “Kendall’s tau” is a relatively unique name but 
the Pearson correlation coefficient used must simply be guessed.  It is probably Pearson’s 
Product Moment Correlation Coefficient, which is arguably the most widely used correlation 
coefficient for interval and ratio scale variables when developing linear regression models.  An 
alternate method for providing specificity would be to include sample calculations or other 
descriptors of the results such that the specific test could be deduced by the reader.  Again, this 
is lacking in the example reported here. 
 
 

Other Nonparametric Measures of Association for Ordinal, Interval, and Ratio Scale 
Data 

Spearman’s Rho (ρ) is another measure of association that is historically more commonly 
discussed in statistical textbooks.  Its computation is a natural extension of the most popular 
parametric measure of association, Pearson’s product-moment correlation coefficient (r) 
mentioned earlier.  Spearman’s Rho is simply Pearson’s product-moment correlation coefficient 
computed using the ranks of the two variables instead of their values.  An advantage of 
Spearman’s Rho over Kendall’s Tau is that it is easier to compute, but this becomes moot 
when using many of today’s computer software programs which will compute both. 

The primary advantage of Kendall’s Tau is that the sampling distribution of tau approaches 
normality very quickly.  Therefore, when the null hypothesis of independence is true, the normal 
distribution provides a good approximation of the exact sampling distribution of tau of small 
sample sizes--better that for Spearman’s Rho which requires a larger sample size for this 
approximation.  Another commonly cited advantage is that Kendall’s Tau is an unbiased 
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estimate (i.e., the most accurate) of the population parameter tau whereas Spearman’s Rho is 
not an unbiased estimate (i.e., not as accurate) of the population parameter rho. 

While Kendall’s Tau arguably provides a better measure of association that does Spearman’s 
Rho, it does not preclude the use of Spearman’s Rho.  On the contrary, Spearman’s Rho 
provides a useful nonparametric and should not be avoided, especially if, for example, it is the 
only one available in the researcher’s statistical software.  When hypothesis testing is used for 
Tests of Independence, both Kendall’s Tau and Spearman’s Rho will produce nearly identical 
results. 

Hypothesis Test Using Kendall’s Tau (τ)  - Test for Independence for Ordinal, Interval, 
and Ratio Scale Data 

ASSUMPTIONS OF HYPOTHESIS TEST USING KENDALL’S TAU (τ) 

The coefficient is based on the test statistic Tau (τ) developed in the Kendall’s Tau Measure of 
Association (τ).  This test is detailed in a previous section and all of its underlying assumptions 
apply to this Hypothesis Test. 

INPUTS FOR HYPOTHESIS TEST USING KENDALL’S TAU (τ) 

The data consist of a random sample of size n having two variables (X, Y) as detailed in a 
previous section for Kendall’s Tau as a measure of association. 

HYPOTHESES OF THE HYPOTHESIS TEST USING KENDALL’S TAU (τ) 

Kendall’s Tau (τ) can be used as the test statistic to test the null hypothesis of independence 
between the two variables (X, Y), with possible one or two tailed alternatives as described 
below.  The test involves determining if our computed value of Kendall’s Tau (τ) is large enough 
or small enough to allow us to conclude that the underlying population correlation coefficient 
between the two variables is some value other than zero.   

A.  Two-sided test 

Ho:  The two variables are independent of each other, i.e., the two variables have zero 
correlation.  

Ha:  The correlation between the two variables equals some value other than zero, i.e., pairs 
of observations either tend to be concordant or tend to be discordant. 

B.  Upper-sided test 

Ho:  The two variables are independent of each other, i.e., the two variables have zero 
correlation.  

Ha:  The correlation between the two variables equals some value greater than zero, i.e., 
pairs of observations either tend to be concordant. 

This is used when the variables are suspected of being positively correlated. 

C. Lower-sided test 

Ho:  The two variables are independent of each other, i.e., the two variables have zero 
correlation.  
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Ha:  The correlation between the two variables equals some value less than zero, i.e., pairs 
of observations tend to be discordant. 

This is the one-side test to use when the variables are suspected of negatively correlated 

TEST STATISTIC (τ) FOR HYPOTHESIS TEST USING KENDALL’S TAU 

The methodology for developing the test statistic Kendall’s Tau (τ) is detailed in a previous 
section and not repeated here.  The Tau (with no ties) should be used when there are no ties or 
few ties (a few can be tolerated with acceptable results).  If there are extensive ties then the Tau 
(with ties) should be used as the test statistic. 

INTREPRETATION OF OUTPUT (DECISION RULE) OF HYPOTHESIS TEST USING 

KENDALL’S TAU (τ) 

For the two-sided test, reject the null hypothesis Ho at the level of significance α (meaning the 
two variables are correlated) if the test statistic Tau is less than the α/2 quantile or greater than 
its 1 - α/2 quantile in the null distribution tabulated in Table C-9, otherwise accept Ho (meaning 
the two variables are independent). 

For the upper-sided test, reject the null hypothesis Ho at the level of significance α (meaning the 
two variables are positively correlated) if the test statistic Tau is greater than the 1 - α/2 quantile 
in the null distribution tabulated in Table C-9, otherwise accept Ho (meaning the two variables 
are independent). Similarly, for the lower-sided test, reject the null hypothesis Ho at the level of 
significance α (meaning the two variables are negatively correlated) if the test statistic Tau is 
less than the α/2 quantile in the null distribution tabulated in Table C-8, otherwise accept Ho 
(meaning the two variables are independent). 
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CHAPTER VI; SECTION F: GOODNESS OF FIT (GOF) METHODS FOR 

DETERMINING SAMPLE DISTRIBUTIONS 

Purposes of Goodness of Fit Methods: 

Goodness-of-fit methods infer how well a particular set of data fits a given distribution as a 
whole.  Such tests are designed to compare the sample obtained with the type of sample one 
would expect from the hypothesized distribution to see if the hypothesized distribution function 
“fits” the data in the sample. 

Many of statistical inference methods detailed in this manual involve hypothesis testing.  
Hypothesis testing is the process of inferring from a sample whether or not to accept a certain 
statement about the population.  Recall that a sample is a group of items (data points) selected 
from a parent population (all data points of which our sample is a subset) so that properties or 
parameters of the parent population (simply called population) may be estimated.  The 
statement under scrutiny is called the hypothesis. 

Often the hypotheses being tested are statements about the unknown probability distribution of 
the data points being observed.  Examples include “The median is 4.0” and “The probability of 
being in category A is the same for both populations.”  These look only at parts of the unknown 
probability distribution, such as the median or at an isolated statement about some of the 
probabilities.  But it is often important to characterize the distribution as a whole.  In order to do 
this, statements must be tested about all of the parts simultaneously.  Two examples of these 
types of hypotheses are “The unknown distribution function is the normal distribution function 
with a mean of 2.5 and a variance of 1.75” and “The distribution function of this parent population 
is binomial, with parameters n = 10 and p - 0.2.”  These more comprehensive hypotheses may 
be tested with a goodness-of-fit test, the subject of this section. 

The goodness-of-fit methods are not restricted to testing a single sample against a known 
distribution.  They can also be used to test if two (or more) samples are both drawn from the 
same, but unknown, distribution.  These samples are independent, i.e., drawing one sample 
from the population does not in any way affect the drawing of another sample from the 
population.  Although not discussed in this manual, the reader should be aware that goodness-
of-fit tests are also available for dependent samples.  The reader is referred to the references 
listed at the beginning of this Chapter for more information on testing two or more dependent 
samples. 

Examples: An analyst or engineer might be interested to assess the evidence regarding 
the relative goodness of fit of: 
1.   Candidate predictive models to the observed data for expected accident rates for rail-
highway crossings.  
2.   Air quality data to hypothetical probability distributions--lognormal, gamma, beta, 
Weibull and Johnson--with the intent of using the distributions to predict the number of 
days with observed ozone and carbon monoxide concentrations exceed National 
Ambient Air Quality Standards.  
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Goodness-of-Fit Methodology: 

 

Chapter VI, Section  F:
Goodness-of-Fit (GOF)

Methodology

What type of scale is used to measure the data?
� Nominal (observations may be separated according to categories)
� Ordinal (observations may be arranged from smallest to largest)
� Interval/Ratio (the numerical value of the observations has meaning)

Chi-square GOF Tests
Use these tests for Nominal Scale Data

Kolmogorov-Smirnov Type GOF Tests
Use these tests for Ordinal, Interval, and

Ratio Scale Data(1)

Are you testing one sample or multiple samples?
� Testing one sample (or multiple samples, one at a time) against a known

distribution.
� Testing two samples to see if they are all drawn from the same distribution (which

is unknown and remains so).
� Testing multiple samples to see if they are all drawn from the same distribution

(which is unknown and remains so).

(1) Chi-square GOF tests can also be used on Ordinal, Interval, and
    Ratio Scale data by transforming the data to Nominal scale data.

Nominal Scale Data Ordinal, Interval, and Ratio Scale Data
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Goodness-of-Fit (GOF) Methodology: 

What type of scale is used to measure the data? 

As the reader will recall, there are four types of measurement scales that can be used to 
quantify data.  These are called nominal, ordinal, interval, and ratio scales, listed from “weakest” 
to “strongest.”  Thus the ratio scale is the strongest and gives us the most quantitative 
information of any of the scales while nominal gives us the least information.  This hierarchy 
allows for data to be transformed to a lower level, but they can’t be transformed to a higher one.  
These measurement scales are defined in detail in Appendix A. 

Are you testing one sample or multiple samples? 

The type of test to be used depends on what the researcher is trying to determine about the 
distribution from which the data sample(s) is drawn.  Even for the same type of data scale, the 
following three possibilities lead to different test methods, or in some cases, variations of the 
same test method. 

1. Testing one independent sample (or multiple samples, tested one at a time) against a 
known distribution that is postulated by the researcher.  Usually the researcher has some 
clues as to what the postulated distribution might be.  This may come from the 
researcher’s prior experience or from that of another, perhaps gained through a literature 
search.  But regardless of how selected, the knowledge about the postulated distribution 
will have to be sufficient to provide the detailed comparison statistics needed by the GOF 
test. 

2. Testing two samples to see if they are drawn from the same distribution, which is unknown.  
Sometimes the researcher does not want to find out which distribution a sample comes 
from but wants to know if two samples both come from the same distribution.  This is useful 
knowledge in a number of situations.  For example, a researcher may have two instruments 
for sampling data; one instrument is believed to sample the data more accurately but costs 
considerably more in time and money than the other method.  The researcher can draw 
samples with each instrument and test to see if they are drawn from the same underlying 
distribution.  If so, then the researcher is beginning to build a case for using the cheaper 
instrument as being adequate to sample the data, even though it is less accurate. 

3. Testing multiple samples to see if they are all drawn from the same distribution, which is 
unknown and remains so.  This is an extension of the two-sample case, but here the 
researcher wants to simultaneously test if several samples all come from the same 
underlying distribution. 

Goodness-of-Fit Tests for Nominal Scale Data - Chi-square Tests 

The chi-square test (χ 2) for goodness of fit is the oldest and best-known goodness-of-fit test.  It 
was first invented in 1900 by Karl Pearson (1857-1936), an English mathematician who was a 
pioneer in statistics.  Its popularity is probably attributed to its early invention and its universal 
usability.  As mentioned earlier, since all data scales can be transformed to a “lower” data 
scale, and since nominal scale data is the lowest, then a test devised for nominal scale data 
can be used on any type of data.  Therefore, since the chi-square test only requires nominal 
data, it is truly a universal test.  This coupled with its simplicity makes it the first choice for all 
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goodness-of-fit needs by many researchers.  However, one can argue that in today’s 
environment of easy-to-use statistical software, the more complex tests for higher scale data 
should be used where applicable, because they are generally more powerful than the chi-square 
test. 

The basic methodology for all chi-square tests is the same, regardless if for one sample or 
multiple samples.  A test uses formal hypothesis statements that are described later.  But 
simply stated, it is a test of how well observed data fit a theoretical distribution.  The data are 
classified into groups and the number of observations in each group denoted by O (observed).  
The expected number in each group E is calculated from the theoretical distribution.  The value 
of χ 2 is then worked out using: 

 

A small value of χ 2 means the data fit the theoretical distribution well; a large value means they 
fit the distribution poorly.  This interpretation is straight forward if one looks at the equation for χ 
2.  If the sample was in fact taken from the theoretical distribution, the number of observations O 
in each group would be quite close to expected E number in each group.  Therefore the 
difference between these (O - E) will be quite small.  And the summation shown in the equation 
would also be quite small.  On the other hand, if the sample came from a different distribution 
than the theoretical distribution tested, the number of observations expected from the 
theoretical distribution would be quite different than the number of observations.  This larger 
difference would lead to a large value of χ 2. 

Chi-square Goodness-of-Fit Test for Single Independent Sample 

ASSUMPTIONS OF CHI-SQUARE GOF TEST FOR SINGLE INDEPENDENT SAMPLE 

1) The sample is a random sample. 

2) The measurement scale is at least nominal. 

3) Each cell contains at least 5 observations (see the discussion under “Trouble shooting” 
about possible remedies if this assumption is violated). 

INPUTS FOR CHI-SQUARE GOF TEST FOR SINGLE INDEPENDENT SAMPLE 

The data consist of N independent observations of a random variable X.  These N observations 

are grouped into c classes (or categories), and the numbers of observations in each class are 

arranged in the following manner.   Oj is the number of observations in category j, for j = 1, 2, 
... , c. 

∑ −
=

groupsall i

ii

E
EO )(2χ
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Table 16: Chi-Square Goodness of Fit Table for Single Independent Variable 

       Total 
number of 

observations 

Cell/Category/Clas
s 

Class  
1 

Class  
2 

. . . Class  
j 

. . . Class  
c 

 

Observed 
frequency 

O1 O2 . . . Oj . . . Oc N 

 

HYPOTHESES OF CHI-SQUARE GOF TEST FOR SINGLE INDEPENDENT SAMPLE 

Let F (x) be the true but unknown distribution function of X, and let F*(x) be some completely 
specified distribution function, the hypothesized distribution function. 

Ho:  F (x) = F*(x) for all x 
Ha:  F (x) ≠ F*(x) for at least one x 

The hypotheses may be stated in words. 

Ho:  The distribution function of the observed random variable is F*(x). 
Ha:  The distribution function of the observed random variable is different than F*(x). 

TEST STATISTIC (T ) OF CHI-SQUARE GOF TEST FOR SINGLE INDEPENDENT SAMPLE 

Let pj* be the probability of a random observation on X being in category j, under the 
assumption that F*(x) is the distribution function of X.  Then the expected number of 
observations in each cell is determined by multiplying the total number of observations N by the 
probability of each cell pj*.  So Ej is defined as: 

Ej = pj*N,        j = 1, 2, . . . , c 

where Ej  represents the expected number of observations in class j when Ho is true.  The test 
statistic T is given by: 

 

INTREPRETATION OF OUTPUT (DECISION RULE) OF CHI-SQUARE GOF TEST FOR 
SINGLE INDEPENDENT SAMPLE 

The approximate distribution of T is the chi-square distribution with (c - 1 - w) degrees of 
freedom.  Therefore the critical region of approximate size α significance level corresponds to 
values of T greater than x1- α, the (1 - α) quantile of a chi-square random variable with (c - 1 - w) 
degrees of freedom, obtained from the Chi-square distribution Table C-2. The analyst rejects Ho 

∑ ∑
= =

−=
−

==
c

j

c

j j

j

j

jj N
E
O

E
EO

T
1 1

22
2 )(

 of estimate χ
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if T exceeds x1- α (meaning the two distributions are not alike), otherwise the analyst accepts Ho 
(meaning the two distributions are alike). 

The degree of freedom used is (df = c - 1 - w), where c is the number of categories (or cells) and 
w is the number of parameters that must be estimated.  The number of parameters that must be 
estimated w depends on which theoretical distribution you are comparing to the sample.  As an 
example, suppose one is using this test to determine whether the sample data are compatible 
with the normal distribution.  Said another way, is the sample data drawn from a parent 
population having a Normal distribution.  In order to do this, one must estimate the values of the 
parent population mean (µ) and standard deviation (σ) by computing the values of the sample 
data mean (XBAR) and standard deviation (sBAR).  Since in this case two population parameters 
were estimated from the data, the degrees of freedom would be df = c - 1 - 2 (which requires at 
least four c categories (cells), since df must be equal to or greater than one). 

Chi-square Goodness-of-Fit Test for Two or More Independent Samples 

ASSUMPTIONS OF CHI-SQUARE GOF TEST FOR TWO OR MORE INDEPENDENT SAMPLES 

1) Each sample is a random sample. 

2) The outcomes of the various samples are mutually independent (particularly among 
samples, because independence within samples is part of the first assumption). 

3) Each observation may be categorized into exactly one of the c categories (i.e., the 
categories are mutually exclusive and collectively exhaustive). 

4) The researcher determines the number of observations in each sample taken before the 
data collection phase of a study. 

5) Each cell contains at least 5 observations (see the discussion under “Trouble Shooting” 
about possible remedies if this assumption is violated). 

6) The measurement scale is at least nominal. 

INPUTS FOR CHI-SQUARE GOF TEST FOR TWO OR MORE INDEPENDENT SAMPLES 

There are r populations in all, and one random sample is drawn from each population.  Let ni 
represent the number of observations in the ith sample (from the ith population) for 1 = i = r.  
Each observation in each sample may be classified into one of c different categories.  Let Oij be 
the number of observations from the i th sample that fall into class (or category or cell) j, so 

ni = Oi1 + Oi2 + . . . + Oij + . . . + Oic       for all i 

The data are arranged in the following form, which is called an r x c contingency table. 
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Table 17: Contingency Table for Chi-Square Goodness of Fit Test  
for Two or More Variables 

Samples below 
are drawn from 

these 
populations 

 

Class 
1 

 

Class 
2 

 

. . . 

 

Class  
j 

 

. . . 

 

Class 
c 

 

Totals 

Population 1 O1 1 O1 2 . . . O1 j . . . O1 c n1 

Population 2 O2 1 O2 2 . . . O2 j . . . O2 c n2 

. . .       . . . 

Population i O i 1 O i 2 . . . O i j . . . O i c ni 

. . .       . . . 

Population r O r 1 O r 2 . . . O r j . . . O r c nr 

Totals C1 C2 . . . Cj . . . Cc N 
 

The total number of observations from all samples is denoted by N.  The number of 

observations in the j th column is denoted by Cj, which is the number of observations from all 
populations that are in class j. 

N = n1 + n2 + ... + ni + ... + nr 

Cj = O1j + O2j + . . . + Oij + . . . + Orj       for all j 

 

HYPOTHESES OF CHI-SQUARE GOF TEST FOR TWO OR MORE INDEPENDENT SAMPLES 

Let the probability of a randomly selected value from the i th population being classified in the j th 
class be denoted by pi j, for i = 1, 2, . . . , r, and  j = 1, 2, . . . , c. 

Ho:  All of the probabilities in the same column are equal to each other (i.e., p1j = p2j = . . . = 
prj , for all j).   

Ha:  At least two of the probabilities in the same column are not equal to each other (i.e., pi j 
≠ pk j for some j, and for some pair i and k ). 

It is not necessary to stipulate the various probabilities.  The null hypothesis merely states that 
the probability of being in class j is the same for all populations, no matter what the probabilities 
might be (and no matter which category is being considered).  This test is sometimes called 
the “chi-square test for homogeneity” because it evaluates whether or not the r samples are 
homogeneous with respect to the proportions of observations in each of the c categories.   
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TEST STATISTIC (T ) OF CHI-SQUARE GOF TEST FOR TWO OR MORE INDEPENDENT 
SAMPLES 

Because two or more samples are being comparing to each other, the expected probabilities of 
some “known” distribution are not used as a comparison.  Rather, the expected probabilities of 
each cell, based on what it should be if all distributions are in fact the same (which is our null 
hypothesis Ho), is calculated.  This is done by calculating the “average” probability of each cell 
using the sample probabilities.  If in fact all the sample distributions are the same then each 
cell probability should be close to this average.  If they aren’t the same, then this difference will 
cause the test statistic to become larger.  Recall that a large test statistic tends to reject the 
null hypothesis (meaning the analyst rejects the distributions being the same) and accepts the 
alternative hypothesis (meaning that at least two of the distributions are different).  These 
“average” expected probabilities Eij , are calculated by: 

N
Cn

E ji
ji =  

Where Ei j represents the expected number of observations in cell (i, j) when Ho is true.  The test 
statistic T is given by 

 

INTREPRETATION OF OUTPUT (DECISION RULE) OF CHI-SQUARE GOF TEST FOR TWO 
OR MORE INDEPENDENT SAMPLES 

The approximate distribution of T is the chi-square distribution with (r - )(c - 1) degrees of 
freedom. Therefore the critical region of approximate size α significance level corresponds to 
values of T greater than x1- α, the (1 - α) quantile of a chi-square random variable with (r - 1)(c - 1) 
degrees of freedom, obtained from the Chi-square distribution Table C-2.  The analyst rejects Ho 
if T exceeds x1-α (meaning the at least two distributions are not alike), other wise she accepts 
Ho (meaning all the distributions are alike). 

Safety Example: In a comparison of formulae for predicting rail-highway crossing hazards 
(Ardeshir and Demetsky, Transportation Research Record No. 1114, 1987), researchers used 
four formulae (models) to predict the number of accidents at each of 1,536 rail-highway 
crossings.  Data and the actual number of observed accidents were available for these 1,536 
crossings over a five-year period.  Each formula specifies the distribution of the expected 
number of accidents over this five-year period.  Therefore, the observed number of accidents 
can be compared to the expected number of accidents for each model using the chi-square 
goodness-of-fit test.  Each crossing is treated as a separate category so the chi-square test 
statistic is computed by 

∑
=

−536,1

1

2)(

i i

ii
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where AO is the number of observed accidents and AC is the number of computed accidents at 
each of the 1,536 crossings. 
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Using this method, chi-square test statistics were computed for each of the four models 
separately.  The purpose of this was to compare how well each model fit the actual data.  Or put 
another way, how well the distribution of accidents obtained from each model fit the distribution 
of the actual observed  
accidents.  The four test statistics were calculated to be to 2176, 3810, 961, and 833.  The authors 
concluded that the model producing the lowest test statistic was the best fit of the four models. 
 
It should be noted that these authors used the chi-square GOF test to provide information 
regarding goodness-of-fit of each model compared to each of the other models.  For this purpose, 
the chi-square test statistics are used as a “measure” of goodness of fit.  No determination was 
made as to the probability that one or more of the four estimated distributions were statistically 
likely to be the same as the distribution of the observed data.  To do this, one would obtain the (1 - 
α ) quantile of a chi-square random variable having (r - 1)(c - 1) degrees of freedom.  Since only 
two distributions are compared at once, r = 2 while c = 1536, resulting in a df = (2 - 1)(1536 - 1) = 
1535.  Most statistical table for the chi-square distribution do not list values for df > 100.  
However, Conover (1999, p.510) provides a method for estimating these values by 
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where wp is the (1 - α ) quantile of a chi-square random variable, df = degrees of freedom, and xp = 
the value from the standardized normal distribution.  Making these calculations yields values 
having significance of 0.05 (p-value = 0.95) and 0.01 (p-value = 0.99) of 1627 and 1667 
respectively.  Based on these, one could conclude that although there are some deviations 
between the estimated and observed frequencies in these distributions, the chi-square 
goodness-of-fit test indicated there is a reasonably high likelihood that the deviations in the two 
best fitting models (test statistics of 833 and 961) can be attributed to chance alone.  In other 
words, the analyst is reasonably confident that these two models estimate distributions that are 
similar to the distributions of the observed data. 
 
Please note that all the assumptions inherent in the chi-square test cannot be verified by the 
information provided by the authors of this paper.  Specifically, the minimum number of 
frequencies in each of the 1536 cells is not stated.  This causes concern because accidents are 
infrequent  occurrences, even when summed over a five year period.  It is recommended that 
authors specifically state what the underlying assumptions were for all statistical methods used 
and that they have been met (or if not met, why the method still yields useful information). 
 

 

Trouble Shooting Chi-square Tests: 

How many observations should be included in each category (cell)? 

According to Conover (1999, p.241) care must be taken not to let the numerator (Ejs) of the 
Test statistic T become too small.  If some of the Ejs are small, the asymptotic chi-square 
distribution may not be appropriate, but just how small is not clear.  Tradition holds that five is 
the minimum number of expected observations that should be contained in each category (cell).  
If a researcher is presented with a situation where less than 5 expected observations occurs in 
a category, sometimes two or more of the categories can be combined in such a way that none 
of the Ejs is less than 5.  Using this rule will generally be “safe.”  However, if this is a problem, 
the researcher is advised to seek more advanced texts like this Chapter’s references.  
Research indicates that various relaxations of the general rule may be taken.   
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Can the number of observations N ever be too large? 

In any goodness of fit test Ho will be rejected (indicating the two distributions are different) if the 
sample size is large enough.  For this reason the Test statistic T is often used as a measure of 
goodness of fit.  Rejection of the null hypothesis in sufficiently large samples occurs because 
real data are never really distributed by any theoretical distribution. These theoretical 
distributions (e.g., normal, Poisson, etc.) are used to approximate real data because of the 
many properties that can be inferred from a completely known and specified distribution.  What 
is sought is whether or not the data are “close enough” to a theoretical distribution, so that the 
theoretical distribution can be used to obtain reasonably accurate results.  A goodness-of-fit 
test is one way of ascertaining if this agreement is “close enough.” 

How can I transform ordinal, interval and ratio scale data to nominal scale data so I 
can use the chi-square test? 

At times, a researcher may want to use the chi-square test for data that have a higher scale 
than simply nominal.  This means that the researcher is willing to give up the extra power that 
usually comes from nonparametric tests using ranking methods, such as the Kolmogorov-
Smirnov type for ordinal scale or higher data.  To transform ordinal (or interval/ratio) data, one 
simply has to devise a meaningful scheme to group the data into categories.  There are two 
practical considerations when doing this.  First, data must be grouped in such a manner that no 
category has less than five expected occurrences in a category.  The second consideration 
applies when comparing to a known distribution (say the Normal distribution).  In this case, the 
categories must be chosen such that the frequencies of the known distribution can be 
estimated and there are enough categories to insure df ≥ 1.  As an example, suppose the 
following 40 interval scale data points (shown from smallest to largest) are measurements that 
are suspected of following a normal distribution. 

Table 18: Forty Ordered Observations from a Normal Distribution 

1.87 3.65 4.56 5.29 
2.32 3.86 4.69 5.29 
2.40 3.96 4.71 5.60 
2.93 4.05 4.73 5.67 
3.01 4.18 4.84 5.72 
3.11 4.29 4.86 5.78 
3.17 4.29 4.92 5.93 
3.34 4.38 5.01 6.20 
3.45 4.45 5.01 6.69 
3.48 4.55 5.11 7.71 

A chi-square test is used, the data are classified into 4 groups.  This will provide us with (c - 1 - 
w) degrees of freedom, or 1 degree of freedom (4 -1 - 2) since there are four categories, and two 
parameters will be estimated for the hypothesized normal distribution.   

The data are first ordered.  Then the mean is estimated (4.48), and the standard deviation (1.22) 
of the sample is estimated, to approximate the mean and standard deviation of the 
hypothesized parent population (now hypothesized to be N (4.48, 1.22)). If groups are created 
that represent the four quartiles of the N (4.48, 1.22) there will be four groups.  Each group is 
expected to contain one-fourth of any sample drawn from it.  In this case, that analyst has 40 
data points, and so would expect 10 points to be in each quartile.  Each quartile’s range of 
values can be calculated using the standard normal distribution.  For example, the first quartile 
will contain values from -∞ to 3.57.  This is calculated using the 0.25 quartile of the standard 
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normal  (-0.6725) from the Standard Normal distribution, Table C-1, and transforming it to N 
(4.48, 1.22).  As the reader will recall, use of the standard normal distribution table requires the 

“z-transformation” be used which is 

 

where µ is the mean, σ the standard deviation, x the data value, and z the transformed value. 
One computes z (-0.6725), and wants to find x so x = (1.22)(-0.675) + 4.48 = 3.57.  Therefore, 
the values for the first quartile will be -∞ ≤ x ≤ 3.57.  In similar fashion, the other quartile cut 
points can be calculated as 4.48, 5.30, and +∞.  Separating the observations using these 
boundaries results in four groups, each containing the measurements that would be in the 
appropriate quartile assuming they are distributed N (4.48, 1.22). 

Table 19: Forty Normal Observations Binned into Quartiles 

 1st quartile 2nd quartile 3rd quartile 4th quartile 
 1.87 3.65 4.55 5.60 
 2.32 3.86 4.56 5.67 
 2.40 3.96 4.69 5.72 
 2.93 4.05 4.71 5.78 
 3.01 4.18 4.73 5.93 
 3.11 4.29 4.84 6.20 
 3.17 4.29 4.86 6.69 
 3.34 4.38 4.92 7.71 
 3.45 4.45 5.01  
 3.48  5.01  
   5.11  
   5.29  
   5.29  

no. observations 10 9 13 8 
range -∞ ≤ x ≤ 3.57 3.57 ≤ x ≤ 4.48 4.48 ≤ x ≤ 5.30 5.30 ≤ x ≤ +∞ 

 
The analyst can now use the chi-square test for a single independent sample, which is 
described in the next section.  For the 4 categories, the observed frequencies will be 10, 9, 13, 
and 8 while the expected frequencies assuming a theorized N (4.48, 1.22) distribution will be 
10, 10, 10, and 10. More categories could have been used. Assuming that categories of equal 
probability size were used, then the largest number of categories is eight, which still maintains 
a minimum of five expected occurrences in each category. 

 

Goodness-of-Fit Tests for Ordinal, Interval, and Ratio Scale Data - Kolmogorov-
Smirnov Type Tests 

Kolmogorov and Smirnov developed procedures which compare the empirical distribution 
functions (EDF) of two samples to see if they are similar--that is, drawn from the same known 
or unknown parent population. The empirical distribution function (EDF) is a cumulative 

σ
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x

z
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probability distribution function constructed from observed or experimental data (see definition of 
EDF for more detailed information).  Two cumulative functions can be compared graphically, 
which has an innate appeal, but Kolmogorov and Smirnov developed more rigorous statistical 
procedures that are discussed in this section.  All these procedures use the maximum vertical 
distance between these functions of how well the functions resemble (fit) each other--or said 
another way, their “goodness of fit.” 

Kolmogorov developed statistics that are functions of the maximum vertical distance between 
an EDF S (x) of an unknown distribution and the cumulative distribution function CDF F (x) of a 
known distribution.  These are one-sample tests and are said to be of the Kolmogorov-type.  
Smirnov worked with these same maximum distances but between two empirical density 
functions.  These types of statistics are called the Smirnov-type.  All Kolmogorov-Smirnov type 
tests are for continuous distributions whereas the chi-square is valid for both continuous and 
discrete distributions.  However, one may still use the Kolmogorov-Smirnov type tests for 
discrete distributions realizing the results yield a conservative approximation for the critical 
levels. They are often preferred over the chi-square GOF test if the sample size is small.  The 
chi-square test assumes the number of observations is large enough so that this distribution 
provides a good approximation of the distribution of the test statistic, whereas the Kolmogorov 
test is exact even for small samples.  Also the Kolmogorov-Smirnov type tests are more 
efficient with data and usually more powerful. 

Kolmogorov introduced his GOF test for a single sample in 1933.  It provides an alternative to 
the chi-square GOF test when dealing with data of ordinal scale or higher.   

Smirnov introduced his GOF test for two samples in 1939.  It is similar to the Kolmogorov single 
sample test except it compares two unknown empirical distribution functions rather than an 
unknown EDF to a known CDF.  It is important to note that much of the literature refers to these 
tests by combining the names of two originators and distinguishing them by the number of 
samples; after this fashion, the tests are called the Kolmogorov-Smirnov GOF test for a single 
sample and the Kolmogorov-Smirnov GOF test for two samples. 

Kolmogorov Goodness-of-Fit Test for Single Independent Sample (Ordinal, Interval, 
and Ratio Scale Data) 

ASSUMPTIONS OF KOLMOGOROV GOF TEST FOR SINGLE INDEPENDENT SAMPLE 

1) The sample is a random sample. 

2) The measurement scale is at least ordinal. 

3) The theoretical distribution (and by implication the sample distribution) is continuous.  Test 
may still be used for discrete distributions but doing so leads to a conservative test.  If this 
is not adequate, Conover (1999, p.435-437) details a method of obtaining the exact critical 
level for a discrete distribution. 

4) All parameters of the hypothesized distribution function are known, that is the distribution 
function is completely specified.  If parameters have to be estimated from the sample, the 
test becomes conservative. 

INPUTS FOR KOLMOGOROV GOF TEST FOR SINGLE INDEPENDENT SAMPLE 

The data consist of n independent observations of a random variable X1, X2, . . . , Xn, associated 
with some unknown distribution function F (x). 
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HYPOTHESES OF KOLMOGOROV GOF TEST FOR SINGLE INDEPENDENT SAMPLE 

Let F (x) be the true but unknown distribution function of X, and let F*(x) be some completely 
specified distribution function, the hypothesized distribution function. 

A.  Two-sided test 

Ho:  F (x) = F*(x) for all x 
Ha:  F (x) ≠ F*(x) for at least one x 

B.  One-sided test 

Ho:  F (x) ≥ F*(x) for all x 
Ha:  F (x) < F*(x) for at least one x 

This is used when the distributions are suspected of being the same except that the 
sample distribution is shifted to the right of the hypothesized distribution.  In other words, 
the values of the F (x) tend to be larger than the values of the F*(x).  This is a more general 
test than testing for the distributions only differing by a location parameter (means or 
medians). 

C.  One-sided test 

Ho:  F (x) ≤ F*(x) for all x 
Ha:  F (x) > F*(x) for at least one x 

This is the one-side test to use when the distributions are suspected of being the same 
except that the sample distribution is (smaller) shifted to the left of the hypothesized 
distribution. 

TEST STATISTIC (T, T +, T −) OF KOLMOGOROV GOF TEST FOR SINGLE INDEPENDENT 
SAMPLE 

Let S (x) be the empirical distribution function (EDF) based on the random sample X1, X2, . . . , 
Xn.  The test statistic T is defined differently for hypotheses sets A, B and C.  The graph gives a 
general illustration of the two distribution functions being compared, showing how T, T+ and T- 
are obtained. 

A.  Two sided test:  The test statistic T is the maximum (denoted by “sup” for supremum) 
vertical difference between S(x) and F*(x): 

)()(sup * xSxF
x

T −=  

B.  One-sided test:  The test statistic T+ is the maximum vertical difference by F*(x) above S(x): 

[ ])()(sup * xSxF
x

T −=+  

C.  One-sided test:  The test statistic T-  is the maximum vertical difference by S(x) above F*(x): 

[ ])()(sup * xFxS
x

T −=−  
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Figure 21: Comparison of Two Distribution Functions 

 

 

 

 

 

 

 

INTREPRETATION OF OUTPUT (DECISION RULE) OF KOLMOGOROV GOF TEST FOR 
SINGLE INDEPENDENT SAMPLE 

Reject the null hypothesis Ho at the level of significance α (meaning the two distributions are not 
alike) if the appropriate test statistic (T, T+ or T-) exceeds the 1 - α quantile (w1 - α) as given in 
the Table C-10, otherwise accept Ho (meaning the two distributions are alike).  Note that the 
two-sided test statistic T is always equal to the larger of the one-sided test statistics T+ and T-.   

Conover (1999, p.438-439) details one of the most useful features of the Kolmogorov two-sided 
test, the ability to form a confidence band for the true unknown distribution function F (x).  This 
allows upper and lower bounds to be placed on the graph of the EDF S (x) and make the 
statement that the unknown distribution function F (x) lies entirely within those bounds, with 1- 
α confidence that the statement is correct.  The reader is directed to the reference for more 
details and the methodology.  

Environment Example:  In a reexamination of previous papers that fitted air quality data to 
hypothetical probability distributions (Chock and Sluchak, Atmospheric Environment, V.20, N.5, 
1986), the researchers built the case that the six goodness of fit (GOF) methods used gave 
varying results as to which of the six hypothesized parent distributions the samples were drawn 
from.  Air quality data are frequently fitted to hypothetical probability distributions--in this case to 
lognormal, gamma, beta, Weibull and Johnson distributions--with the intent of using the 
distributions to predict the number of days on which observed ozone and carbon monoxide 
concentrations exceed National Ambient Air Quality Standards.  Since these GOF methods did 
not agree, and for other reasons stated by the researchers, they conclude that “best” fitted 
distributions of air quality data should not be used to predict the very extreme values used in 
setting air quality standards.  They suggest that a less-extreme standard, such as using the 95th 
percentile of the data, would significantly reduce the impact of the intrinsic uncertainty of the 
estimate.   
 
Only three of the six GOF methods used are statistical GOF methods capable of supporting 
hypothesis testing: chi-square, Kolmogorov-Smirnov, and Cramer-von Mises-Smirnov.  In 
reporting the results, the significance for the chi-square GOF test is given.  However, for the 
other two tests the significances are not reported or is any hypothesis testing done.  The 
researchers only use qualitative statements such as “fit the . . . data set well.”  It is 
recommended that when possible, and it is certainly possible with statistical GOF tests, a 
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S(x) 

T and T + 

T - 

1.0 

0.5 
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hypothesis test be done at a stated significance level or a p-value be reported to allow the reader 
to adequate evaluate the reported results. 
 
While the six GOF tests do vary in selecting the best fitting distribution, it is interesting to note 
that the three statistical GOF tests all did yield the same result.  These three methods--Chi-
square, Kolmogorov-Smirnov, and Cramer-von Mises-Smirnov--all picked the same distribution 
of those offered as the best fitting for the two samples.  They did, however, pick different 
distributions for each of the two samples.  The three other GOF tests employed by the 
researchers--absolute deviation, weighted absolute deviation, and log-likelihood value-- gave 
varying results. 
 
The two samples used by the researchers to support their arguments were actually the same 
data.  The first sample had 122 data points and the second sample was 120 of these points, the 
two removed points being the lowest values, deemed to be outliers by the authors.  The best 
fitting hypothetical distributions for the two samples differed.  This illustrates the importance of 
“outliers.”  It is recommended that “outliers” never be removed from data without good 
justification.  Furthermore, that justification should be stated in the findings--as the authors did in 
this example paper.  Obviously, the removal of these two “outliers” had a significant impact on 
the conclusions drawn in this paper and interested readers would want to know the reasons for 
removing the two outliers so they can form their own conclusions. 
 
It should be noted once again the importance of specificity when discussing statistical tests used 
to reach conclusions--either by citing a reference for the statistical test(s) used or by reporting 
sufficient information such that the reader can accurately deduce the specific test 
statistic/method used.  In this example the researchers list the results for the “Kolmogorov-
Smirnov statistic” GOF test for each of the six distributions tested.  The values range from about 
5.5 to 9.5.  The Kolmogorov GOF test described in this manual uses the maximum “vertical 
distance” between the empirical distribution function (EDF) of the data and the cumulative 
distribution function (CDF) of the hypothesized distribution as the test statistic.  This means that 
the test statistic ranges from 0.0 to 1.0.  Obviously the researchers were using some other form 
of a Kolmogorov-Smirnov type test statistic and a compatible set tables to interpret the results.  
Again, researchers are cautioned not to use the test statistics given in this manual with tables 
taken from some other source unless certain that they are compatible.  The researchers did cite 
a reference for the Cramer-von Mises-Smirnov GOF test they used.  This test was devised by the 
three statisticians for whom it is named between 1928 and 1936.  The citation given by the 
researchers was a 1946 book by Cramer.  While this documents the test adequately, such an old 
reference may be generally inaccessible to most readers.  Thought should be given to citing 
more current references to assist the interested reader. 
 

Additional Nonparametric GOF Tests For Single Independent Sample (Ordinal, 
Interval, and Ratio Scale Data) 

LILLIEFORS GOF TESTS FOR NORMAL AND EXPONENTIAL DISTRIBUTIONS FOR SINGLE 
INDEPENDENT SAMPLE 

The Kolmogorov GOF test assumes the theorized distribution is completely specified, i.e., no 
parameters have to be estimated from the sample.  If parameters are estimated from the 
sample, then it becomes conservative.  To provide more precise tests, additional tables have 
been developed using the same Kolmogorov test statistic.  The tables vary for the specific 
hypothesized distribution being tested.  These tests are still nonparametric because the validity 
of the test (the α level) does not depend on untested assumptions regarding the population 
distribution.  Rather, the population distribution form is the hypothesis being tested.   
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Lilliefors developed a GOF test in 1967, which tests the composite hypothesis of normality.  
Under this method, the null hypothesis states that the sample is drawn, not from a single 
specified distribution, but from the family of normal distributions.  This allows that neither the 
mean nor variance of the normal distribution must be specified.  Conover (1999, p.443-447) 
provides the detailed method and table for this test.  In a similar manner, Lilliefors later (1969) 
developed a GOF test for the family of exponential distributions.  This test method and tables 
are also detailed in Conover (1999, p.447-449).  The power of both these tests are believed to be 
greater than the chi-square test.  A potentially useful application of the Lilliefors GOF test for 
exponential distributions is when a researcher is theorizing that when events occur randomly, 
the time between events follow an exponential distribution.  In this situation, the test can be 
used as a test of randomness of the data. 

SHAPIRO-WILK GOF TEST FOR NORMAL DISTRIBUTION FOR SINGLE INDEPENDENT 
SAMPLE 

Another test for normality of an EDF is the Shapiro-Wilk GOF test.  Some studies have 
concluded that this test has greater power than the Lilliefors test in many situations.  This test 
is not of the Kolmogorov-type.  Conover (1999, p.450-451) provided the detailed method and 
tables for this test.  A useful feature of this test is highlighted though an example by Conover, 
wherein several independent goodness-of-fit tests are combined into one overall test of 
normality.  This allows several small samples from possibly different populations, which by 
themselves are insufficient to reject the hypothesis of normality, to be combined and thereby 
provide enough evidence to disprove normality. 

 

Smirnov Goodness-of-Fit Test for Two Independent Samples (Ordinal, Interval, and 
Ratio Scale Data) 

ASSUMPTIONS OF SMIRNOV GOF TEST FOR TWO INDEPENDENT SAMPLES 

3) The samples are random samples. 

4) The two samples are mutually independent. 

5) The measurement scale is at least ordinal. 

6) The theoretical distribution (and by implication the sample distribution) is continuous.  May 
still be used for discrete distributions but doing so leads to a conservative test. 

INPUTS FOR SMIRNOV GOF TEST FOR TWO INDEPENDENT SAMPLES 

The data consist of two independent random samples, one of size n, X1,  X2, . . . , Xn, 
associated with some unknown distribution function F (x).  The other sample is of size m, Y1, 
Y2, . . . , Ym, associated with some unknown distribution function G (x). 

HYPOTHESES OF SMIRNOV GOF TEST FOR TWO INDEPENDENT SAMPLES 

A.  Two-sided test 

Ho:  F (x) = G (x) for all x 
Ha:  F (x) ≠ G (x) for at least one x 
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B.  One-sided test 

Ho:  F (x) ≤ G (x) for all x 
Ha:  F (x) > G (x) for at least one x 

This is used when the distributions are suspected of being the same except that the 
sample distribution F (x) is shifted to the left of the sample distribution G (x).  In other 
words, the X values of the F (x) tend to be smaller than the Y values of the G (x).  This is a 
more general test than testing for the distributions only differing by a location parameter 
(means or medians). 

C.  One-sided test 

Ho:  F (x) ≥ G (x) for all x 
Ha:  F (x) < G (x) for at least one x 

This is the one-side test to use when the distributions are suspected of being the same 
except that the sample distribution F (x) (X values) is (larger) shifted to the right of the 
sample distribution G (x) (Y values). 

TEST STATISTIC (T, T +, T −) OF SMIRNOV GOF TEST FOR TWO INDEPENDENT SAMPLES 

Let S1 (x) be the empirical distribution function (EDF) based on the random sample X1, X2, . . . , 
Xn. Let S2x) be the empirical distribution function (EDF) based on the other random sample 
Y1,Y2,. . , Ym.  The test statistic T is defined differently for hypotheses sets A, B and C. 

A.  Two sided test:  The test statistic T is the maximum difference between the two EDFs, S1(x) 
and S2(x): 

)()(max 21 xSxS
x

T −=  

B.  One-sided test:  The test statistic T+ is the maximum difference by S1(x) above S2(x): 

[ ])()(max 21 xSxS
x

T −=+  

C.  One-sided test:  The test statistic T-  is the maximum difference by S2(x) above S1(x): 

[ ])()(max 12 xSxS
x

T −=−  

INTREPRETATION OF OUTPUT (DECISION RULE) OF SMIRNOV GOF TEST FOR TWO 
INDEPENDENT SAMPLES 

Reject the null hypothesis Ho at the level of significance α (meaning the two distributions are not 
alike) if the appropriate test statistic (T, T+ or T-) exceeds the 1 - α quantile (w1 - α) as given in 
the Table C-11 of n = m or Table C-12 if n ≠ m, otherwise accept Ho (meaning the two 
distributions are alike). Note that the two-sided test statistic T is always equal to the larger of 
the one-sided test statistics T+ and T-.   
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Additional Nonparametric GOF Tests For Several Independent Samples (Ordinal, 
Interval, and Ratio Scale Data) 

BIRNBAUM-HALL TEST FOR THREE INDEPENDENTSAMPLES 

This test is an extension of the two-sided Smirnov test, which may be used for any number of 
equal size samples.  However, tables for three samples are all that are readily available in the 
reference given.  Similar to finding the maximum distance between S1 (x) and S2 (x) for the 
Smirnov test, the Birnbaum-Hall test find the maximum distance that exists between any 
combination of two of the three EDFs being tested: S1 (x), S2 (x), S3 (x).  Conover (1980, p.377-
379) details the methodology for this GOF test for Ordinal scale or better data and includes the 
necessary table for finding the critical values for three samples.  However, Conover omits this 
test in the third edition of his book (1999) because most data sets are not of equal size, a 
requirement of this test.  For multiple samples of unequal size, the researcher can use the 
nonparametric Chi-square GOF test for two or more independent samples. 

ONE-SIDED AND TWO-SIDED SMIRNOV TESTS FOR THREE OR MORE INDEPENDENT 
SAMPLES 

These tests are similar to the Birnbaum-Hall tests but tables are available from Conover (1980, 
p.379-384) for up to 10 samples, which must all be of the same size.  Again however, Conover 
(1999) omits these tests in the third edition of his book (1999) because most data sets are not 
of equal size, a requirement of these tests.  The Chi-square GOF test for two or more 
independent samples can be used when dealing with unequal sample sizes. 

 


