

City, University of London Institutional Repository

Citation: Ozkaya, M. (2014). A Design-by-Contract based Approach for Architectural

Modelling and Analysis. (Unpublished Post-Doctoral thesis, City University London)

This is the accepted version of the paper.

This version of the publication may differ from the final published version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/13045/

Link to published version:

Copyright: City Research Online aims to make research outputs of City,

University of London available to a wider audience. Copyright and Moral Rights

remain with the author(s) and/or copyright holders. URLs from City Research

Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,

educational, or not-for-profit purposes without prior permission or charge.

Provided that the authors, title and full bibliographic details are credited, a

hyperlink and/or URL is given for the original metadata page and the content is

not changed in any way.

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

City Research Online

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

A Design-by-Contract based
Approach for Architectural
Modelling and Analysis

Mert Ozkaya

Christos Kloukinas (supervisor)
George Spanoudakis (co-supervisor)

A thesis submitted for the degree of Doctor of

Philosophy (PhD)

Software Engineering Research Group
Department of Computer Science

December 21, 2014

1

Contents

1 Introduction 14
1.1 Introduction . 14
1.2 Motivation . 15
1.3 Research Question . 19
1.4 Thesis Goal . 19
1.5 Summary of the XCD Architecture Description Language 21
1.6 Structure of the thesis . 25
1.7 Publications . 25
1.8 Contribution to the EU Project . 27
1.9 Summary . 27

2 Related Work 28
2.1 Introduction . 28
2.2 Software Engineering Paradigms . 28
2.3 Analysis of Architecture Description Languages (ADLs) 34
2.4 Informal Modelling Languages . 58
2.5 Design-by-Contract based Techniques . 63
2.6 Other Formal Design Approaches . 71
2.7 Summary . 75

3 Contractual, Reusable, Realisable Software Architectures 76
3.1 Introduction . 76
3.2 The Structure of XCD . 77
3.3 Contractual Behaviour Specification . 84
3.4 High-level Semantics of XCD . 90
3.5 Summary . 98

4 Formal Representation of XCD 99
4.1 Introduction . 99
4.2 XCD Syntax . 99
4.3 Rules for Valid XCD Specifications . 108
4.4 Formal Semantics of XCD– Mapping XCD to SPIN’s ProMeLa 119
4.5 Summary . 133

5 Tool Support for XCD 135
5.1 Introduction . 135
5.2 Tool Architecture . 135
5.3 Tool Demonstration . 137
5.4 Checking Model Correctness via SPIN . 139
5.5 Summary . 149

2

6 Evaluation of XCD 151
6.1 Introduction . 151
6.2 Gas Station Case Study . 152
6.3 Lunar Lander System Case Study . 160
6.4 Aegis Case Study . 169
6.5 English Auction Interaction Protocol . 175
6.6 Nuclear Power Plant . 181
6.7 Summary . 190

7 Discussion of XCD 191
7.1 Introduction . 191
7.2 First-class Complex Connectors . 191
7.3 Glue-less Connectors for Realisable Architecture Specifications 195
7.4 Design-by-Contract (DbC) . 198
7.5 Formal Semantics in SPIN’s ProMeLa . 203
7.6 Summary of Contributions . 207

8 Conclusions 209
8.1 Summary of the Thesis . 209
8.2 Further Work . 211

A An Introduction to the ProMeLa Language 220

B Nuclear Power Plant System’s Global Protocol in ProMeLa 223

C SPIN’s Verification Results for the Evaluated Case-studies 226
C.1 Gas Station . 226
C.2 FIPA English Auction Protocol . 227
C.3 Nuclear Power Plant . 227
C.4 AEGIS Combat System . 228

Bibliography 230

3

List of Tables

2.1 The analysis results of the software engineering paradigms 31
2.2 ADL component terms . 32
2.3 ADL connector terms . 33
2.4 ADL analysis results . 57
2.5 The analysis results of the informal modeling languages 63
2.6 The analysis results of the design-by-contract based specification lan-

guages . 67
2.7 The analysis results of the DbC-based design approaches 71
2.8 The analysis results of some other formal design approaches 75

4.1 Functions used in defining XCD’s well-definedness rules 108
4.2 Functions used in the formal translations of XCD into ProMeLa 119

5.1 Verification results for 4 different configurations of shared-data 140

6.1 Verification results for gas station . 156
6.2 Verification results for lunar lander . 167
6.3 Verification results for aegis – with the corrected connector given in

Figure 6.26 . 174
6.4 Verification results for auction – with the deadlock-free connector given

in Figure 6.33 . 180
6.5 Verification results for the centralised nuclear power plant 188

7.1 ADL analysis results - reprinted from Table 2.4 207

4

List of Figures

1.1 An unrealisable protocol/connector . 18
1.2 Connectors in circuits . 21
1.3 Contractual specifications of client and server 23
1.4 Contractual specification of a connector for client and server 24

2.1 The relationships between early (before 1999) and recent ADLs (start-
ing from 1999) . 35

2.2 Specification of shared-data access in Darwin 36
2.3 Specification of shared-data access in Olan 37
2.4 Specification of shared-data access in Wright - reprinted from Figure 4

of [Allen and Garlan, 1997] . 38
2.5 Specification of shared-data access in UniCon 40
2.6 Specification of shared-data access in Rapide 41
2.7 Specification of shared-data access in C2 42
2.8 Specification of shared-data access in ACME 44
2.10 Specification of shared-data access in LEDA 45
2.11 Specification of shared-data access in Koala 46
2.12 Specification of shared-data access in SOFA 47
2.13 Specification of shared-data access in COSA 52
2.14 Specification of shared-data access in CONNECT 56

3.1 Generic component structure . 78
3.2 Generic port structure . 79
3.3 Component method chaining . 80
3.4 Generic structure of a provided port with a complex method 80
3.5 Generic connector structure . 81
3.6 Generic port-variable structures . 82
3.7 Sample connector type specification . 83
3.8 Generic composite component structure 83
3.9 Java Thread with XCD contracts . 88
3.10 Specification of a connector between Java Thread and a user program . 89
3.11 Semantics of components . 90
3.12 Semantics of a port p’s actions . 92
3.13 Generic structure of complex methods in provided ports – reprinting

Figure 3.4 . 95
3.14 Generic structure of complex methods in role port-variables – reprint-

ing Figure 3.6b . 95
3.15 Semantics of complex methods in provided ports 96
3.16 Semantics of simple methods in provided ports 97
3.17 Composite component semantics . 97

5

4.1 Structure of a Model . 100
4.2 Structure of a composite component type 101
4.3 Structure of a primitive component type 102
4.4 Structure of a component port . 103
4.5 Structure of port interaction contracts . 103
4.6 Structure of port functional contracts . 104
4.7 Structure of a connector type . 105
4.8 Structure of role port-variable actions . 106
4.9 Structure of role interaction contracts . 107
4.10 Grammar rules for expressions . 107
4.11 The use of /nothing in contracts . 108
4.12 The use of @ symbol in contracts and connector instances 108
4.13 Consistent connector parameters with the connector roles 112
4.14 Inconsistent connector parameters with the connector roles 113
4.15 Incompatible types of the linked role port-variables 114
4.16 Compatibility between component port and role port-variables 114
4.17 Incompatibility between component port and role port-variables 114
4.18 Consistent actions of component ports with the role port-variables . . . 115
4.19 Inconsistent component port actions with the port-variable actions of

the connector roles given in Figure 4.18 116
4.20 Number of associations for component ports 117

5.1 Architecture of XCD’s tool . 136
5.2 Specification of shared-data access in XCD 137
5.3 Process labels for tracing the executions of shared-data users and memory142
5.4 SPIN’s verification report template . 147
5.5 An example error trail - assertion violation error 148
5.6 An example software architecture with deadlocking behaviour 149
5.7 The error trail produced from the verification of the software architec-

ture specified in Figure 5.6 . 149

6.1 Conceptual diagram of gas station . 152
6.2 Customer component type specification of gas station 153
6.3 Cashier component type specification of gas station 154
6.4 Pump component type specification of gas station 154
6.5 Connector type specifications of gas station 155
6.6 Gas station composite component type specification 156
6.7 SPIN’s verification report – error due to wrong use of Pump method . . 157
6.8 SPIN’s verification report – error due to pump’s consumer buffer overflow158
6.9 Conceptual diagram of lunar lander . 160
6.10 DataStore component type specification of lunar lander 161
6.11 Calculation component type specification of lunar lander 162
6.12 User Interface component type specification of lunar lander 163
6.13 Data2Calculation connector type specification 163
6.14 Complex Data2Calculation connector type specification of lunar lander 164
6.15 Calculation2UserInterface connector type specification of lunar lander . 165
6.16 Complex Calculation2UserInterface connector type specification of lu-

nar lander . 165
6.17 UserInterface2Data connector type specification of lunar lander 166

6

6.18 Complex UserInterface2Data connector type specification of lunar lander167
6.19 LunarLander composite component type specification of lunar lander . 167
6.20 Conceptual diagram of aegis . 169
6.21 Client component type specification of aegis 170
6.22 Server component type specification . 170
6.23 MixedComponent component type specification of aegis 171
6.24 Client2Server connector type specification of aegis 171
6.25 Aegis composite component type specification of aegis 173
6.26 Deadlock-free Client2Server connector type specification of aegis 173
6.27 Conceptual diagram of FIPA english auction interaction protocol [FIPA

TC C, 2001] . 175
6.28 Initiator component type specification of english auction 176
6.29 Participant component type specification of english auction 177
6.30 Initiator2Partcipant connector type specification of english auction . . . 177
6.31 AuctionProtocol composite component type specification of english

auction . 178
6.32 SPIN’s verification report – error due to the deadlocking auction com-

ponents . 179
6.33 Deadlock-free connector specification of english auction 180
6.34 Decentralised architecture of nuclear power plant 181
6.35 Component Types for the nuclear power plant 182
6.36 Decentralised connector type specification of nuclear power plant 182
6.37 P1 and P2 roles for the nuclear plant connector given in Figure 6.36 . 183
6.38 UR and NA roles for the nuclear plant connector given in Figure 6.36 . 183
6.39 Composite component type specification of nuclear power plant 184
6.40 Global protocol for nuclear power plant – reprinted from Figure 1.1 . . 184
6.41 SPIN’s verification report – error due to the violation of the user-

defined system property . 185
6.42 Centralised architecture of nuclear power plant 185
6.43 Controller component type specification of nuclear power plant 186
6.44 Connector type for the nuclear plant – including controller 186
6.45 Controller role of connector type in Figure 6.44 186
6.46 Controller role – provided port-variables 187
6.47 Controller role – required port-variables 188

7.1 The relationships between early and recent ADLs – reprinted from
Figure 2.1 . 192

7.2 Conceptual diagram of FIPA english auction interaction protocol [FIPA
TC C, 2001] – reprinted from Figure 6.27 193

7.3 Initiator2Partcipant connector type specification – reprinted from Fig-
ure 6.30 . 193

7.4 An unrealisable protocol/connector – reprinted from Figure 6.40 196
7.5 Contractual specifications of client and server – reprinted from Fig-

ure 1.3 . 200
7.6 Improving functional contracts for required methods 201
7.7 Contractual specification of a connector for client and server – reprinted

from Figure 1.4 . 202

8.1 Semantics of components . 216

7

8.2 Semantics of components - 2 . 217
8.3 Grammar rules for required method and emitter event functional con-

tracts . 217
8.4 Grammar rule for role interaction contracts 218

8

Listings

2.1 JML specification for a square-root method 64
2.2 Spec# specification for a square-root method 65
2.3 OCL specification for a square-root method 66
3.1 An example of a component helper function 78
3.2 Provided/Required port method functional constraints 85
3.3 Consumer/Emitter port method functional constraints 87
4.1 ProMeLa code expansion for the ProMeLa’s select construct 111
4.2 Translating an entire XCD model . 120
4.3 Translating an enum specification . 121
4.4 Translating a typedef specification . 121
4.5 Translating a composite component specification 122
4.6 Producing the communication channels for primitive component in-

stances . 122
4.7 Translating a primitive component specification 122
4.8 Translating emitter port specifications . 125
4.9 Translating consumer port specifications 126
4.10 Translating required port specifications 127
4.11 Translating provided port specifications – simple methods 128
4.12 Translating provided port specifications – complex methods 130
4.13 Data and parameter-assignments of contracts 132
4.14 Checking race conditions in ProMeLa . 133
5.1 Command for executing XCD’s tool . 138
5.2 Commands for SPIN verification . 139
5.3 Checking buffer overflow for consumers in ProMeLa model 141
5.4 Attribute for specifying consumer buffer size 141
5.5 LTL specification of a liveness property for shared-data 142
5.6 LTL specification of a safety property for shared-data 142
5.7 Macro for specifying LTL property . 143
5.8 A ProMeLa process for checking a shared-data property 143
5.9 Macro for specifying monitor process . 143
5.10 Modified atomic action for memory’s set event 144
5.11 Modified atomic action for memory’s get method 144
5.12 Macro for imposing atomicity during property checking 145
5.13 SPIN commands for viewing the error trail 147
5.14 SPIN commands for viewing the shortened error trail 148
6.1 LTL property for checking notifications of the paid gas release 158
6.2 LTL property for checking the receipt of the paid gas 158
6.3 Monitor process for checking correct amount of gas 159
6.4 Modified atomic block translations of the customer’s pump method . . 159

9

6.5 Enum type for the nuclear power plant specification 187
6.6 Wright connector for the nuclear power plant – reprinted from Figure 1.1189
8.1 Supported connector specification by the tool 211
8.2 Unsupported connector specification by the tool 211
A.1 Using SPIN’s ProMeLa verification language 221
B.1 Monitor process for the glue property of nuclear power plant 223
B.2 Modified atomic block translation for NA’s inc/double method 224
C.1 Error trail for the gas station verification - assertion violation error due

to wrong use of services . 226
C.2 Error trail for the FIPA english auction verification - invalid end state

error due to deadlock . 227
C.3 Error trail for the nuclear power plant - assertion violation error due

to user-defined property violation . 227
C.4 Unreached code for the AEGIS combat system verification 228

10

Acknowledgements

I would like to give my biggest thanks to my supervisor Christos Klouki-
nas. I always felt myself very lucky to be supervised by someone like him
who has very deep theoretical and practical knowledge in software engi-
neering and willing to share them with others. When I started my PhD,
I had very basic knowledge and experience about software architecture
specifications and their formal verification. However, Christos provided
me huge technical support to bridge the gap as quickly as possible. He
guided me continuously which was really priceless and played a key role
in making this PhD success on time. He also offered me tremendous help
to solve the problems that I have encountered. Indeed, he was always
there when I got stuck solving a problem and felt desperate about it.
He never refused to meet me whenever I knocked his door and he never
cut the meetings short. Instead, he always promoted long and fruitful
discussions without any time restrictions so as to make me as much com-
fortable as possible. Briefly, I owe him a lot not only to make me succeed
my PhD but also to make me learn and experience with so many new
things.

Secondly, I would like to thank all the people in the department of com-
puter science, with whom I shared the same office during my PhD. Also,
I would like to express my special gratitude to Mark Firman who is the
departmental administrator. Mark was very helpful to me for all non-
technical issues that I have experienced during the PhD. Without his
contribution, I could not have worked in such a peaceful and problem-
free environment.

Thirdly, I would like to thank my parents Hulya and Turgay who pro-
vided me continuous emotional and financial support during the PhD.
Whenever I felt too much pressure and was very close to give up, they
did their best to make me feel relaxed and keep up working. I would
also like to mention my twin brother Onur, with whom I lived together
in London during my PhD. Certainly, he is the one who made me live
in London as though I was at home. Onur has been a great brother and
also a friend for me, who helped me enjoy my stay in London.

Last but not least, I would like to express my grateful thanks to the
IOT@Work project and all of its collaborators. Without the full fund
I have got from IOT@Work, it would not have been possible for me to
study PhD at City and also afford to attend so many conferences.

11

Declaration for Copying the Thesis

To meet the regulations for the physical format, binding and retention
of theses submitted at City University London, I make the following
declaration.

I grant powers of discretion to the University Librarian to allow the
thesis to be copied in whole or in part without further reference to the
author. This permission covers only single copies made for study pur-
poses, subject to normal conditions of acknowledgement.

Mert Ozkaya

12

Abstract

Research on software architectures has been active since the early nineties, leading
to a number of different architecture description languages (ADL). Given their im-
portance in facilitating the communication of crucial system properties to different
stakeholders and their analysis early on in the development of a system this is un-
derstandable. However, practitioners rarely use ADLs, and, instead, they insist on
using the Unified Modelling Language (UML) for specifying software architectures.
I attribute this to three main issues that have not been addressed altogether by the
existing ADLs. Firstly, in their attempt to support formal analysis, current ADLs
employ formal notations (i.e., mostly process algebras) that are rarely used among
practitioners. Secondly, many ADLs focus on components in specifying software ar-
chitectures, neglecting the first-class specification of complex interaction protocols as
connectors. They view connectors as simple interaction links that merely identify
the communicating components and their basic communication style (e.g., procedure
call). So, complex interaction protocols are specified as part of components, which
however reduce the re-usability of both. Lastly, there are also some ADLs that do
support complex connectors. However, these include a centralised glue element in
their connector structure that imposes a global ordering of actions on the interact-
ing components. Such global constraints are not always realisable in a decentralised
manner by the components that participate in these protocols.

In this PhD thesis, I introduce a new architecture description language called XCD

that supports the formal specification of software architectures without employing a
complex formal notation and offers first-class connectors for maximising the re-use of
components and protocols. Furthermore, by omitting any units for specifying global
constraints (i.e., glue), the architecture specifications in XCD are guaranteed to be
realisable in a decentralised manner.

I show in the thesis how XCD extends Design-by-Contract (DbC) for specifying (i)
protocol-independent components and (ii) complex connectors, which can impose only
local constraints to guarantee their realisability. Use of DbC will hopefully make it
easier for practitioners to use the language, compared to languages using process alge-
bras. I also show the precise translation of XCD into SPIN’s formal ProMeLa language
for formally verifying software architectures that (i) services offered by components
are always used correctly, (ii) the component behaviours are always complete, (iii)
there are no race-conditions, (iv) there is no deadlock, and (v) for components having
event communications, there is no overflow of event buffers. Finally, I evaluate XCD

via five well-known case studies and illustrate XCD’s enhanced modularity, expressive
DbC-based notation, and guaranteed realisability for architecture specifications.

13

Chapter 1

Introduction

1.1 Introduction

Continuous improvements on technology and ever-increasing demands of customers
lead to software systems getting larger and more complex. Complexity in software
systems has given rise to component-based software development techniques that
help manage complexity [Beneken et al., 2003]. To this end, Component-based Soft-
ware Engineering (CBSE) [He et al., 2005] was proposed, promoting the development
of complex systems in terms of off-the-shelf components. Thus, development from
scratch would no longer be the case. Instead, software systems can be built using
pre-fabricated, re-usable components. By doing so, high-quality software systems can
be developed with much less cost and within shorter period of time.

In CBSE, components interact with their environment through interfaces that
represent their external behaviours. A component interface consists of services offered
by the component and those required as well for properly functioning. So, thanks to
their interfaces, components can be used as black-box entities without having to
deal with lower-level details about their internal behaviours. Indeed, systems are
composed out of components by connecting their interfaces with each other. The way
the components of a system are composed together is determined by the software
architecture of the system.

Software architecture [Perry and Wolf, 1992, Garlan and Shaw, 1994, Clements
et al., 2003] is a high-level design activity, concerned with the successful composition
of components into an entire system that meets functional and non-functional require-
ments. It is at the level of architectural design where low-level details of components
are suppressed, and, their high-level complex interactions via the component inter-
faces (i.e., the protocols of interactions) can be focused on and reasoned about. So,
design problems, e.g., the use of interface services in the wrong order, can be identi-
fied early on at the stage of high-level design. Indeed, problems due to incompatible
interfaces of inter-connected components are crucial, which prevent the components
from being composed to a whole system and analysed for non-functional properties,
e.g., reliability and security.

Unified Modelling Language (UML) [Rumbaugh et al., 1999] is the de facto lan-
guage for visually specifying and designing software systems. UML supports both
high-level and low-level designs, which is widely used in specifying high-level software
architectures too. It offers a variety of diagrams, such as class and component dia-
grams. Using these diagrams, systems can be specified as a composition of components
that are connected with each other via association links [Ivers et al., 2004]. However,

14

UML does not support first-class specification of interaction protocols for the linked
components, which are crucial for reasoning about their composition. Moreover, UML
has very weak formal semantics, which are open to different interpretations and not
easily formally analysed.

Another alternative method for specifying software architectures is the architec-
ture description languages (ADLs), which have emerged in the nineties and become
one of most active areas of software engineering [Vestal, 1993,Clements, 1996,Medvi-
dovic and Taylor, 2000,Fuxman, 2000,Woods and Hilliard, 2005]. There are numer-
ous ADLs developed so far, e.g., Darwin [Magee and Kramer, 1996], UniCon [Shaw
et al., 1995], Wright [Allen and Garlan, 1997], Rapide [Luckham, 1996], C2 [Taylor
et al., 1996], LEDA [Canal et al., 1999], AADL [Feiler et al., 2006], SOFA [Plasil
and Visnovsky, 2002], RADL [Reussner et al., 2003], etc. Each ADL offers its own
architectural notation, but, they share basic notions, e.g., components, interfaces,
and connectors. Unlike UML, ADLs allow designers to specify the architectures of
their systems precisely. Moreover, ADLs are offered with various features depending
on their scope of interest. Some offer automatic code generation for facilitating the
implementation of the specified systems. Some offer notations for specifying non-
functional properties of systems (e.g., reliability and security), which can be com-
municated among stakeholders and analysed via analysis tools. Some offer notations
based on formal methods (e.g., process algebras [Bergstra, 2001]) for specifying the
behaviours of architectural elements and formally verifying them using formal analysis
tools, e.g., model checkers.

While ADLs appear as useful for software architecture specifications, there are
some issues about the practical use of ADLs in industry. In the following section, I
discuss these issues as the motivation for this PhD. This is followed by the research
question and thesis goal. Next, I introduce my novel architecture description language,
called XCD. This chapter is ended with respectively the thesis structure, the summary
of my publications during the PhD, and the contributions to the IOT@Work EU
project that funded my PhD.

1.2 Motivation

As introduced above, there are too many ADLs developed so far with various useful
features, e.g., formal verification and early code generation. There are still ongoing at-
tempts towards this field, leading to the developments of new ADLs ever-increasingly.
So, one would have hoped that we could point to a handful of ADLs as the languages
of choice of practitioners for specifying software system architectures. Nevertheless,
ADLs remain in the scope of the research communities only. ADLs could not gain
the expected momentum and be used by practitioners in industry. This is essentially
stated in the recent survey of Malavolta et al. [Malavolta et al., 2012], which proves
that practitioners mainly use UML for specifying software architectures. This is in-
deed problematic considering that UML provides a very weak support for architecture
specification (e.g., no first-class connectors, no formal semantics, etc.). Therefore, in
this PhD, I investigated the reasons that cause ADLs to be shown lack of interest by
practitioners despite their advantages, e.g., formal verification and early code gener-
ation. To this end, I studied and analysed more than twenty different ADLs, whose
results are presented in Section 2.3 (page 34). By doing so, I identified a set of prob-
lems that current ADLs suffer from and may potentially hinder their application in

15

practice. The focus of this PhD is on addressing these problems and proposing a
solution for them. In the rest of this section, I discuss the problems that I identified
through the analysis of the existing ADLs.

1.2.1 Statement of Problems

Having analysed many ADLs including both the early ones developed in the nineties
and the recent ones, I determined that none of the studied languages offers a non-
algebraic notation for specifying reusable and realisable software architectures. The
ADLs that support formal analysis all require designers to use process algebras, which
are unfamiliar to the designers. Furthermore, the existing ADLs can be divided into
two groups with regard to their support for connectors. While some view connec-
tors just as links between components, some viewing them as interaction protocols
for components. Those that support link connectors cause less reusable software ar-
chitectures. Those that support interaction protocols cause potentially unrealisable
software architectures. In the rest of this section, I discuss these three issues that
cannot be addressed together by the researched ADLs.

1.2.1.1 Algebraic Notations of the ADLs

The ADLs that support formal analysis do so by introducing algebraic notations that
are based on process algebras mostly (e.g., FSP [Magee et al., 1997], CSP [Hoare,
1978], and π-calculus [Milner et al., 1992]) or some other formalisms, e.g., Z [Spivey,
1992]. By doing so, these languages allow designers to formally specify the behaviours
of architectural elements and then formally analyse them using the analysis tools
(e.g., model checkers). Therefore, designers need to learn and use the formalisms to
specify their software architectures in these ADLs. Considering that practitioners are
used to specify their systems using UML and their derivatives (e.g., ArchiMate [Arc,
2009]), algebraic notations are found unnatural to the way they specify their systems.
Indeed, according to a recent survey conducted by Malavolta et al. among fourty-
five different practitioners, algebraic ADLs are found as requiring a "steep learning
curve" [Malavolta et al., 2012]. So, such languages with algebraic notations remain
in the focus of the research community only.

The ADLs that are not algebraic are so because their main focus of interest is on
automatic code generation from architecture specifications – not on formal analysis.
For that reason, such languages lack formally defined semantics, and, instead, give
precise transformation of specifications into C/Java implementations, which is usually
automated by a tool support. In my view, software architectures are difficult to
produce and one would need to be able to perform some early analyses with them
instead of simply using them as documentation and producing high-level code. Indeed,
code generation is in fact not found that useful by practitioners, as shown by Malavolta
et al.’s survey [Malavolta et al., 2012]. I also believe that approaches which use
architectural descriptions to produce code skeletons are pushing too far too fast. An
architecture is usually at a much higher level of abstraction than actual code and can
be implemented in different ways, just like “high-level design” classes do not need to
be reflected in “low-level design” classes in OO. With major frameworks like CORBA,
JavaBeans, OSGi, Web Services, etc. been revised so often and falling out of fashion
quickly 1, it is also extremely difficult for a code-generation tool to keep up-to-date

1See Google Trends http://bit.ly/14uaUNZ

16

http://bit.ly/14uaUNZ

and runs the danger of simply becoming irrelevant quite quickly, unlike tools that
analyse architectures.

1.2.1.2 Limited Support for User-defined, Complex Connectors

Component specifications need to be as independent of their context as possible, in
order to maximise reuse. In Software Architectures (SA) [Perry andWolf, 1992,Garlan
and Shaw, 1994, Shaw and Garlan, 1996], this can be achieved through the use of
user-defined, complex connectors [Allen and Garlan, 1997], which specify the context-
specific interactions among a set of connected component instances, i.e., the protocol
that these use when employed within a particular system. This is similar to how
developers program in languages such as C++. They define a class like vector (re-
sizable array), specifying what are the basic operations one can do with it. The
vector class increases its reusability by not specifying anything about swap, reverse,
sort, etc., instead leaving these to be specified by independent algorithms, among
which developers select the appropriate one according to their context, e.g. bubble-
sort vs quick-sort vs merged-sort, etc. By keeping the two separate, developers can
increase the modularity and reusability of their code. The data-structures/classes stay
independent of specific usage patterns, which are described separately as algorithms.
Indeed, the reusability of the algorithms themselves increases as well, as they can
usually be applied at different classes, e.g. one can reverse a linked list with the same
algorithm that reverses a vector. Similarly, components can increase their reusability
by not specifying anything about the different protocols/connectors they can be used
with, e.g. whether a transistor will be used with a sequential or parallel connector or
whether a server replica will be used with a specific distributed consensus protocol.
Instead, these connectors can be specified independently and components simply need
to specify the sets of supported behaviours.

Unfortunately, many ADLs used today provide only limited support (if any) for
complex, user-defined connectors, thus decreasing the modularity and reusability of
the architectures. The lack of support for complex connectors causes designers to end
up with two alternatives. One is to ignore protocols in their high-level design, which
inhibits the analysis of crucial system properties, such as deadlock-freedom, and also
can lead to architectural mismatch [Garlan et al., 1995], i.e., the inability to compose
seemingly compatible components due to wrong assumptions these make about their
interaction. The other is to incorporate the protocol behaviour inside the components
themselves, which leads to complicated component behaviour that is neither easy to
understand nor to analyse and makes it difficult to reuse components with different
protocols, as well as to find errors in specific protocol instances. Incorporating pro-
tocol behaviour inside components is essentially following a reuse-by-copy approach,
whereby each component has its own copy of the protocol constraints.

1.2.1.3 Potentially unrealisable architecture specifications

A formal framework for specifying connectors in the Wright ADL was presented in the
seminal work of Allen and Garlan [Allen and Garlan, 1997] and has been followed by
almost all approaches that support connectors – a set of protocol role behaviours, that
component participants should implement, and a “glue” element that choreographs
them. However, connectors are not supported in the main languages used by practi-
tioners [Malavolta et al., 2012], who complain about the complexity of ADLs (largely
an orthogonal issue). In fact, the languages that do support connectors tend to do so

17

P2UR NAP1

inc

inc

double

double

MSC1 MSC2

P2UR NAP1

inc

inc

double

double

P2UR NAP1

inc

double

double

inc

(a) A nuclear power plant’s (unrealisable) MSCs [Alur et al.,
2003]

(b) An unavoidable bad be-
haviour in the nuclear plant
[Alur et al., 2003]

1 connector Plant_Connector =
2 role P1 = ur → na → P1.
3 role P2 = ur → na → P2.
4 role UR = inc → UR ◻ double → UR.
5 role NA = inc → NA ◻ double → NA.

6 glue = P1.ur→UR.inc → P1.na→NA.inc

7 → P2.ur→UR.double → P2.na→NA.double→glue

8 ⊓ P2.ur→UR.double → P2.na→NA.double

9 → P1.ur→UR.inc → P1.na→NA.inc → glue.

(c) Wright’s (unrealisable) connector for Alur’s nuclear power plant of (a)
Note: Actions with a bar are initiated by the current process, → is the action
sequence operator, and ◻ and ⊓ are external and internal choice operators.

Figure 1.1: An unrealisable protocol/connector

in a manner that is difficult to use in practice. This is because, following Wright [Allen
and Garlan, 1997], these languages allow designers to specify connectors that are po-
tentially unrealisable in a distributed manner. Realisability is defined as: “We define
a set of MSCs [i.e., a glue] to be realisable if there exist concurrent automata [the
connector roles] which implement precisely the MSCs it [the glue] contains.” [Alur
et al., 2003]

Consider the Nuclear Power Plant case study [Alur et al., 2003], shown in Fig-
ure 1.1. In the plant, the quantities of Uranium (UR) and Nitric Acid (NA) need to
be the same at all times. Two processes P1 and P2 respectively increase and double
these quantities and to ensure the plant’s safety they need to strictly follow the pro-
tocol described by the message sequence charts of Figure 1.1a. However the protocol
in Figure 1.1a was proved to be unrealisable. It cannot be realized in a decentralised
manner so that bad behaviours like the one in Figure 1.1b are avoided [Alur et al.,
2003].

One can explore whether the protocol satisfies certain conditions that imply its
realisability [Alur et al., 2005,Basu et al., 2012], attempt to identify implied scenar-
ios that are not included in the protocol [Uchitel et al., 2004], or even attempt to
repair it [Lekeas et al., 2011] by multi-casting messages to more recipients. How-
ever, there will always be cases where the protocol cannot be realized. Worse yet,
there are cases where it cannot be decided whether a protocol is realisable in a dis-
tributed manner with only the specified roles or not – the general problem is un-
decidable [Alur et al., 2005]. This problem relates to the undecidability of decen-
tralised observation and control [Tripakis, 2004]. Complex connectors in ADLs can
use their “glue” element to impose non-local interaction constraints on the partici-
pating components, just like service choreographies do. However such global inter-
action constraints cannot always be realized by the individual participating compo-
nents/services because sometimes these cannot know the global system state. Nev-

18

ertheless, such unrealisable protocols are very easy to specify in existing ADLs. In-
deed, Figure 1.1c shows the Wright [Allen and Garlan, 1997] connector specification
of the unrealisable protocol of Figure 1.1a. It shows the four participating roles
(P1, P2, UR, and NA), and the glue part of the connector. The glue element links
role actions together (e.g. P1.ur→UR.inc or P1.na→NA.inc), essentially establishing
the communication channels between component ports. However, the glue also im-
poses global interaction constraints – in this instance requesting that the behaviour
inc→inc→double→double ⊓ double→double→inc→inc is followed by the UR and NA

roles. While linking component actions together is desirable and does not create any
realisability problems, the imposition of global interaction constraints allows design-
ers to present unrealisable specifications (as is the case here [Alur et al., 2003]) as
architectural solutions. While a requirements language needs to be able to express
something potentially unrealisable (as it is a wish), I believe that an ADL needs to be
able to specify only realisable designs, as these are supposed to be solutions for the
requirements: wishing for a building that is suspended in the air is acceptable but
presenting a drawing of such a building as an architectural solution is not, unless it
is made explicit how this can be achieved.

1.3 Research Question

In Section 1.2.1, three different issues were discussed that current ADLs fail to address
at the same time. That is, it is not possible with the existing ADLs to specify highly
reusable and realisable software architectures using a non-algebraic notation. The
issue of reusability emerges from the ADLs that view connectors just as simple links
among components. With these ADLs, interaction protocols for components can
only be specified as part of component specifications, which may however prevent
the components being re-used in different contexts requiring different protocols. The
ADLs that do view connectors as interaction protocols do not hinder the re-usability
of components, but, they cause potentially unrealisable specifications due to allowing
the specification of global protocol constraints as part of connectors. The last issue
is the algebraic notations of some ADLs. Indeed, the ADLs that support formal
analysis all require process algebra based notation to be learned and used. However,
practitioners have already stated in some occasions, e.g., the survey of Malavolta et
al. [Malavolta et al., 2012], that they find process algebras unfamiliar. Therefore, in
this PhD, I seek to answer the following research question: Is it possible to develop
a formal architecture description language that does not require the use of a formal
notation which is generally unfamiliar to practitioners, that promotes reusable designs
via the specification of arbitrary generic connectors without allowing the expression of
unrealisable protocols, and which is expressive enough to support the specification and
formal analysis of known case studies?

1.4 Thesis Goal

The thesis goal is based on the research question that is given in Section 1.3. I basically
focus on achieving the possibility of developing a new language for specifying re-usable
and realisable software architectures using a formal but familiar notation. So, I aim
in this PhD

to develop an architecture description language that (i) maximises the

19

re-usability of components in a protocol-independent way, (ii) guaran-
tees realisability by definition, (iii) offers a formal but familiar behaviour
notation, and (iv) enables formal analysis.

To achieve the thesis goal of developing a new ADL, the requirements that must
be performed are given as follows:

1. First-class support for complex connectors: This requirement emerges from the
i th part of the goal definition. To maximise reusability in design, the new ADL
must offer first-class connectors for specifying complex interaction mechanisms,
i.e., interaction protocols. By doing so, components can encapsulate only their
computational behaviour, which enables them to be re-used in various contexts
each requiring different interaction mechanisms. Likewise, connectors can also
be re-used to control different sets of components.

2. Glue-less connectors : This requirement emerges from the ii th part of the goal
definition. To guarantee realisability of software architectures, connectors of the
new ADL must not impose global constraints on the components via glue-like
elements. Instead, connectors must constrain components locally.

3. Non-algebraic behaviour specification : This requirement emerges from the iii th

part of the goal definition. To enhance familiarity, the new ADL’s notation
must not require the knowledge of process algebra. Instead, its notation must
be practical and resemble highly used languages, e.g., Java.

4. Formal semantics: This requirement emerges from the iv th part of the goal
definition. To support formal analysability, the semantics of the new ADL must
be defined using some formalism that is supported by a model checker. So,
architecture specifications in the new ADL can be translated into the models of
the chosen formalism in accordance with the formal semantics and analysed via
the formalism’s model checker.

5. Prototype tool support : Like the fourth requirement, this requirement also emerges
from the iv th part of the goal definition. To enhance the practicality of the
formal analysis, there needs to be a tool developed that can take any software
architectures specified in the new ADL and translate them into the formal mod-
els automatically in accordance with the formal semantics. Otherwise, manual
translations will be required for formal analysis, which cannot always be possible
in the case of large and complex systems.

6. Extensibility: While the above mentioned requirements describe the features
to be supported in the new ADL, it should also be possible to modify these
features later on or extend them with new additional features. Indeed, to adapt
to the ever-changing needs of designers, it may be necessary to modify some
existing features, e.g., the syntax and semantics improvements for architectural
elements. There may also be new additional features that are wished to be
supported besides the existing features, e.g., visual notation, a (sub) language
for specifying system properties, and architectural constructs for some domains
such as real-time.

20

→ (r1, ∣∣ (→ (r2, r3),
r4

))

(a) Simple connectors, i.e., wires (b) Complex connectors

Figure 1.2: Connectors in circuits

1.5 Summary of the XCD Architecture Description

Language

XCD, standing for Connector-centric Design, is a new architecture description lan-
guage that I developed, and, it offers: (i) first-class support for user-defined, complex
connectors; (ii) realisable software architectures by definition; (iii) a simple to un-
derstand, yet formal, language for specifying behaviour, based on Design-by-Contract
(DbC); and (iv) automated mapping of XCD specifications into SPIN’s ProMeLa
formalism for formal analysis.

1.5.1 First-class Support for Complex Connectors

XCD grants connectors in software architectures first-class status, allowing designers
to specify both simple interaction mechanisms and complex protocols. Component
specifications are now simplified, since they do not include their protocols of interac-
tion. This allows the components to be re-used in different configurations under the
control of different connectors imposing different protocols on them. Indeed, connec-
tors can also be instantiated as many times as needed and easily re-used for controlling
different components in different configurations.

To illustrate complex protocols and their importance for both architectural un-
derstandability and analysis, I will use a simple example from electrical engineer-
ing. Let us consider k concrete electrical resistors, r1,⋯, rk, i.e., our system compo-
nents. When using a sequential connector (→), the overall resistance is computed as
R→(N,{Ri}Ni=1) = ∑N

i=1Ri, where N and Ri are variables (Ri correspond to connector
roles), to be assigned eventually some concrete values k and rj . If using a parallel
connector (∥) instead, it is computed as R∥(N,{Ri}Ni=1) = 1/∑N

i=1 1/Ri. So the inter-
action protocol (connector) used is the one that gives us the formula we need to use
to analyse the system – if it does not do so, then we are probably using the wrong
connector abstraction. The components (rj) are simply providing some numerical
values to use in the formula, while the system configuration tells us which specific
value (k, rj) we should assign to each variable (N , Ri) of the connector-derived for-
mula. By simply enumerating the wires/connections between resistors/components,
we miss the forest for the trees. This leads to architectural designs at a very low level
that is not easy to communicate and develop – as [Delanote et al., 2008] found the
case to be with AADL.

Figure 1.2a shows the number of simple connectors (identified with ellipses) that
are needed in our circuit system. It is easy to see that there are many of them and
it is not so easy to identify the protocol logic, especially as the system size increases
– this is the equivalent of spaghetti code. By making interaction protocols implicit
in designs, analysis also becomes difficult and architectural errors can go undetected
until later development phases. Indeed, we are essentially forced to reverse-engineer

21

the architect’s intent in order to analyse our system – after all, the designer did not
select the specific wire connections by chance but because they form a specific complex
connector. When complex connectors are employed instead, as in Figure 1.2b, then
the number of connectors to be considered is reduced substantially. This makes it
much easier to understand the system and to analyse its overall resistance by taking
advantage of the connector properties as:

1.5.2 Realisable Software Architectures

Connectors in XCD are not specified with glue-like elements. Instead, connectors are
considered as a simple composition of roles, which represent the interaction behaviour
of participating components, and built-in sub-connectors (i.e., links) that allow ac-
tions of one role to reach another. Coordination is now the responsibility of roles
alone. If a particular property is desired then it must be shown that the roles satisfy
it. But this is a problem that is decidable for finite state systems – model-checking.
Thus a designer can easily specify a protocol and be sure that it has the required
properties. Designers can also feel reassured that the architectural protocols are in-
deed realisable in principle, without the need to transform them into centralised ones,
which might invalidate architectural analyses concerning scalability, performance, re-
liability, information flows, etc., as aforementioned.

So in the case of the nuclear power plant system specified in Figure 1.1 (page 18),
the designer should quickly realise that the desired global property is not satisfied by
the roles and opt for a centralised protocol instead, by adding a centralised controller.
Thus, surprises are avoided – it becomes clear early on whether something can be
made to work in a decentralised manner or not, as it is tested by the more experi-
enced architect. The less experienced designers do not have to waste their time trying
to achieve the impossible or take the easy (and dangerous) way out and turn a de-
centralised protocol into a centralised one. In XCD, glues are turned from constraints
to be imposed to a property that needs to be verified, thus turning an undecidable
problem that the less experienced designers have to deal with, into a decidable one
for them (and pushing the responsibility to resolve the issue to the more experienced
architect).

1.5.3 Design-by-Contract based Specifications

In XCD, the Design-by-Contract (DbC) [Meyer, 1992] approach is followed to formally
specify the behaviours of components. XCD extends DbC so as to better support soft-
ware component frameworks like CORBA [OMG, 2012a] and OSGi [OSGi Alliance,
2012]. XCD’s extension of DbC allows for the specification of contracts not only for
the component provided services but for its required services too. This is because,
unlike object classes for which DbC was initially designed, components also have re-
quired services in their public interfaces. Besides two-way methods, components may
consume and emit one-way asynchronous events; so, XCD’s extension of DbC further
includes events. At the same time, XCD proposes a different contract structure so as

22

1 component client(int id){
2 byte data:=-1;
3 required port service{
4 @functional{
5 promises: arg := id;
6 requires ∶ \result >= 0;
7 ensures ∶ data:=\result;
8 otherwise ∶
9 requires ∶ \result < 0;

10 ensures ∶ data:=0;}
11 int request(int arg);
12 }
13 emitter port initialisation{
14 @functional{
15 promises: arg2 := id;
16 ensures: /nothing;}
17 initialise(int arg2);
18 }
19 }

20 component server(){
21 bool isInitialised:=false;
22 provided port service{
23 @interaction{accepts:isInitialised;}
24 @functional{
25 requires: arg >= 0;
26 ensures: \result := 5;
27 otherwise ∶
28 requires: arg < 0;
29 ensures: \result := 3;}
30 int request(int arg);
31 }
32 consumer port initialisation{
33 @interaction{waits:!isInitialised;}
34 @functional{
35 requires: true;
36 ensures ∶ isInitialised := true;}
37 initialise(int arg2);
38 }
39 }

Figure 1.3: Contractual specifications of client and server

to better distinguish between the functional and interaction component constraints,
which are usually mixed together in most DbC approaches. Finally, XCD uses DbC
to specify connectors/protocols as well as components.

1.5.3.1 Component Contracts

Components are specified with (i) ports representing the points of interaction with
their environment, and (ii) data representing the component state. Component ports
can be either consumer/emitter for communicating one-way asynchronous events, or
provided/required for two-way synchronous methods. Event ports consist of events,
while method ports consist of methods; and, the behaviours of events and methods
are specified with functional and interaction contracts. Figure 1.3 gives a simple
specification of client and server components for illustrating the ports with contractual
methods/events. So, for provided and consumer ports (e.g., lines 22–31 and lines 32–
38 in Figure 1.3 respectively), their method/event functional contracts are just like
the classic contracts introduced by the familiar DbC-based approaches, represented
with pre-conditions (requires) and post-conditions (ensures). It should, however,
be noted that while pre-conditions are expressions, post-conditions in XCD are in
fact assignments. So, whenever their pre-condition is met, their post-conditions are
applied to update component state and to set method result. For required and emitter
ports (e.g., lines 3–12 and 13–18 in Figure 1.3 respectively), their functional contracts
further include promises clause for assigning parameter arguments of events/methods
to be requested.

To specify at which states the functional contracts of events/methods can be
processed, XCD introduces interaction contracts. An interaction contract can be
specified in two (mutually exclusive) ways. In the first (safe) way, a delaying pre-
condition (waits) is employed to declare the component states where an event/method
action can be processed (e.g., line 33 in Figure 1.3). In all other states the actions
are blocked from being processed, until the pre-condition is satisfied. In the second
(unsafe) way, a designer can specify a pre-condition (accepts) to declare the states
where a method call (or an event) is acceptable and will be processed and those where
it is not acceptable and potentially catastrophic (e.g., line 23 in Figure 1.3). Rejected
(i.e., not acceptable) calls lead to chaotic behaviours, indicating the wrong use of
services.

23

1 connector client_server_conn(
2 client_r{service, initialisation}, server_r{service, initialisation}){
3 role client_r{
4 bool isInitialised := false;
5 required port_variable service{
6 @interaction{
7 waits:isInitialised;
8 ensures: /nothing;}
9 int request(int arg);

10 }
11 emitter port_variable initialisation{
12 @interaction{
13 waits:!isInitialised;
14 ensures: isInitialised:=true;}
15 initialise(int arg2);
16 }
17 }

18 role server_r{
19 provided port_variable service{
20 int request(int arg);
21 }
22 consumer port_variable initialisation{
23 initialise(int arg2);
24 }
25 }
26 connector link1(client_r{service},
27 server_r{service});
28 connector link2(client_r{initialisation},
29 server_r{initialisation});
30 }

Figure 1.4: Contractual specification of a connector for client and server

1.5.3.2 Connector Contracts

Connectors are specified with roles to be assumed by the components and instances of
other connectors that they are using. Each role represents the interaction protocol of
a component that assumes the role. A role is specified with data and port-variables,
mirroring a component assuming the role. Note that when connectors are instantiated
in configurations, components are passed via connector parameters to be associated
with the roles. The role port-variables are bound to ports of the components assuming
the role and constrain the port actions via their interaction contracts. So, a port can
perform its method/event actions when both its own interaction constraint and the
constraints of the role port-variables are satisfied. Figure 1.4 gives the specification
of a connector for controlling the interaction of a client with a server. Therein,
two roles are specified: client_r (lines 3–17) and server_r (lines 18–25). The role
client_r constrains the client, guaranteeing that the client cannot request services
before initialising the server. The server is not constrained by the role server_r.
Moreover, a basic link connector is provided by XCD to specify a simple asynchronous
method call or uni-casting of events between role port-variables (so the component
ports). In Figure 1.4, for instance, one method-call link is instantiated in lines 26–27
for connecting the required port of the client with the provided port of the server,
and, another uni-casting link is instantiated in lines 28–29 for connecting the emitter
port of the client with the consumer port of the server. Note that the types of the
link connectors (i.e., either method-call or uni-casting) are derived implicitly, based
on the type of the ports it is connecting.

1.5.4 Mapping into SPIN’s ProMeLa

To formally analyse software architectures in XCD, I defined the precise mapping of
XCD into SPIN’s ProMeLa language [Holzmann, 2004]. This mapping has been au-
tomated by the prototype tool that I developed which allows designers to obtain a
ProMeLa model of their XCD specifications. So then, using the SPIN model checker,
the system behaviours can be verified that (i) the method/event interaction con-
straints are satisfied, (ii) the method/event functional pre-conditions are complete,
(iii) there are no race-conditions, (iv) event buffer sizes suffice, and (v) there is no
deadlock.

24

1.6 Structure of the thesis

In the rest of the thesis, I initially present the related work in Chapter 2. In the related
work, first, I discuss some of the well-known software engineering paradigms in terms
of their support for the software architecture level of design. Then, I continue with my
analysis of more than twenty different architecture description languages. Following
that, I discuss some of the well-known modelling languages that can be used for spec-
ifying software architectures. Finally, I discuss several design approaches including
those applying Design-by-Contract [Meyer, 1992] to the software architecture level of
design.

In Chapter 3, I introduce the XCD approach. Firstly, I discuss the structure of
the XCD language, followed by the contractual specification of behaviours in XCD.
Lastly, I introduce the high-level semantics of XCD to give some initial flavour about
how components and connectors are interpreted.

In Chapter 4, the formal representation of XCD is given. Firstly, I describe the
formal syntax of XCD, including the grammar rules for specifying contractual software
architectures in XCD. Then, I define the well-definedness rules for specifying valid
software architectures in XCD. Lastly, I discuss the formal semantics of XCD by
showing how syntactically correct XCD specifications can be transformed into formal
models in SPIN’s ProMeLa language.

In Chapter 5, I introduce the prototype automation tool that I developed for XCD.
Firstly, I describe the tool architecture and how it can be used. Following that, I give
a short demonstration of the tool via a shared-data case study. Lastly, I show how
the SPIN model checker can be used to verify system behaviours and what kind of
properties can be checked (and how).

In Chapter 6, I evaluate XCD through a number of well-known case studies that
are specified in XCD and analysed for a number of properties using the SPIN model
checker.

In Chapter 7, I discuss the XCD approach, showing how it meets the thesis goal
and the goal requirements given in Section 1.4.

Finally, in Chapter 8, I summarise the main points of the thesis and discuss further
work that can be performed to improve XCD.

1.7 Publications

1.7.1 Initial Version of XCD

XCD builds on my earlier attempts at developing such an architecture description
language, which have been published as the following five papers. In my early work,
XCD was influenced more from BIP’s separation of behaviour, interaction, and con-
trol [Basu et al., 2011], and thereby introduced three main architectural elements:
components, connectors, and control strategies (papers 1 to 4). Control strategies are
essentially extra role constraints specified externally to the connector roles, allowing
to experiment with different design solutions without modifying connectors. More-
over, I used the Finite State Process (FSP) process algebra [Magee and Kramer, 2006]
to define the formal mapping of XCD elements that allows formal verification via the
LTSA model checker (paper 5).

1. Kloukinas, C. and Ozkaya, M. (2013). Xcd – Modular, Realizable Software
Architectures. In Păsăreanu, C. and Salaün, G., editors, Formal Aspects of

25

Component Software, volume 7684 of Lecture Notes in Computer Science, page
152–169. Springer Berlin Heidelberg.

2. Kloukinas, C. and Ozkaya, M. (2012). XCD – Simple, modular, formal software
architectures. Technical Report TR/2012/DOC/01, Department of Computing,
School of Informatics, City University London, Northampton Square, London,
EC1V 0HB, U.K. ISSN 1364–4009.

3. Ozkaya, M. and Kloukinas, C. (2012). Highly Analysable, Reusable, and Real-
isable Architectural Designs with XCD. In Kim, T.-h., Ramos, C., Kim, H.-k.,
Kiumi, A., Mohammed, S., and Ślęzak, D., editors, Computer Applications for
Software Engineering, Disaster Recovery, and Business Continuity, volume 340
of Communications in Computer and Information Science, page 72–79. Springer
Berlin Heidelberg.

4. Ozkaya, Mert, and Christos Kloukinas. Facilitating Early Architectural Explo-
ration with Connector-Centric Design (XCD). Technical Report YCS-2012-480,
Department of Computer Science, The University of York, York, UK, 2012.
7-15.

5. Ozkaya, M. and Kloukinas, C. (2013b). Towards Design-by-Contract based
software architecture design. In SoMeT, pages 157–164. IEEE.

1.7.2 Final Version of XCD

The thesis focuses entirely on the final version of XCD that I have published with
the following five papers. In my final work, I have simplified the main notions, no
longer having "control strategies" – they can already be represented by connectors.
Moreover, I have extended the language to better support designers (e.g. enumerated
types, interval values, helper functions, asynchronous interaction, or indeed composite
components that were not supported in my initial FSP encoding and tool). I have
also replaced FSP with SPIN’s ProMeLa language [Holzmann, 2004], as encoding
asynchronous interaction and method/event parameters in FSP required too much
effort. SPIN has also a more powerful model checker than FSP’s LTSA – partly
because it does not attempt to construct the state-space of each process as it is
defined but only does so on-the-fly, as needed. SPIN’s code availability also helped
me in better understanding the use of some constructs and slightly optimising my
models.

1. Ozkaya, M. and Kloukinas, C. (2013). Are we there yet? analyzing architec-
ture description languages for formal analysis, usability, and realizability. In
Demirörs, O. and Türetken, O., editors, EUROMICRO-SEAA, pages 177–184.
IEEE.

2. Ozkaya M. and Kloukinas C. (2013). Towards a Design-by-Contract based
approach for realizable connector-centric software architectures. In Cordeiro,
J., Marca, D. A., and van Sinderen, M., editors, ICSOFT, pages 555–562.
SciTePress.

3. Ozkaya, Mert, and Christos Kloukinas. (2014). Realizable, Connector-Driven
Software Architectures for Practising Engineers. 8th International Conference
on Software and Data Technologies, Revised Selected Papers, Springer Berlin
Heidelberg.

26

4. Ozkaya M. and Kloukinas C. (2014). Architectural Specification and Analysis
with XCD - The Aegis Combat System Case Study. In Proceedings of the 2nd
International Conference on Model-Driven Engineering and Software Develop-
ment, pages 368-375.

5. Ozkaya M. and Kloukinas C. (2014). Design-by-Contract for Reusable Com-
ponents and Realizable Architectures. In the 17th International ACM Sigsoft
Symposium on Component-Based Software Engineering.

1.8 Contribution to the EU Project

This PhD has been fully funded by the IoT@Work2 European funded research project
under the coordination of Siemens [Houyou and Huth, 2011]. Our role as a City
University London was to design and develop the monitoring infrastructure, which is
essentially one of the IoT@Work Integrated Technologies. Furthermore, City was sup-
posed to perform the formal specification and verification of the IoT@Work project’s
software architectures and analyse their interaction protocols. So, I was planning to
use the XCD language for this purpose. However, due to the time restrictions for
the project, I could not have the chance to use XCD for specifying and analysing
IoT@Work’s software architectures.

1.9 Summary

In this chapter, having given some background information about software architec-
tures, I introduced the motivation behind my work. Therein, three problems were
described that none of the researched architecture description languages addresses
at the same time. These problems are (i) algebraic (i.e., unfamiliar) notations for
specifying software architectures, (ii) lack of support for first-class connector ele-
ments, and (iii) potential unrealisability of software architectures. Indeed, there is no
language identified which offers formal but non-algebraic notation for specifying real-
isable software architectures in terms of first-class components and connectors. Then,
I defined the research question and thesis goal, stating my intention towards develop-
ing a novel architecture description language that addresses these three problems at
the same time. Therefore, I also introduced in this chapter my new language called
XCD. XCD’s introduction herein gives some initial flavours of how I aim at address-
ing the above mentioned issues. These are, XCD’s notation is based on the familiar
Design-by-Contract approach instead of process algebras. XCD also grants connec-
tors with first-class status, which separate interaction protocols from components.
XCD guarantees the realisability of software architectures by preventing designers
from specifying unrealisable global protocols via connectors. Finally, I concluded by
summarising the publications accomplished during the PhD and the contributions to
the EU project that funded my PhD.

2https://www.iot-at-work.eu/

27

https://www.iot-at-work.eu/

Chapter 2

Related Work

2.1 Introduction

Now, in this chapter, I discussed the approaches that I identified as relevant to the
architectural specification and analysis of software systems. Given the thesis goal
in Section 1.4 for addressing the issues in Section 1.2.1, I am especially interested in
understanding the support for specifying re-usable, formally analysable, and realisable
software architectures using a non-algebraic behaviour notation (e.g., contractual).

Firstly, the well-known software engineering paradigms are discussed that are
widely adopted by architecture modelling languages. By studying the paradigms,
I can understand their support for realisable, re-usable and non-algebraic software ar-
chitecture specifications. This also gives the clue about the level of support provided
by the languages adopting these paradigms. After the discussions of the paradigms, I
discuss the relevant work performed in different fields in terms of their support for re-
usability (i.e., separate components and connectors), behaviour modelling notation,
formal semantics, and realisability. These fields are the architecture description lan-
guages (ADLs), informal modelling languages, and Design-by-Contract (DbC). Lastly,
I end the literature discussion with some of the well-known component-based formal
design approaches, which can also be used in specifying software architectures.

2.2 Software Engineering Paradigms

I focus on three different paradigms that have gained high popularity in software engi-
neering, applied in several programming and modelling languages, and also adopted by
several design approaches. These are Object Oriented Software Engineering (OOSE),
Component based Software Engineering (CBSE), and Service Oriented Software En-
gineering (SOSE). In the rest of this section, these paradigms are discussed in terms
of their support for re-usable designs and some crucial architectural concepts, i.e.,
components, interfaces, and complex connectors (representing interaction protocols).

2.2.1 Object Oriented Software Engineering (OOSE)

Object Oriented Software Engineering (OOSE) promotes the development of software
systems in terms of objects (i.e., components) interacting with each other via method-
calls [Booch, 1995]. An object has an interface of methods and instance variables for
its state. Every object derives from a class that describes the method behaviours and
the state holders (i.e., instance variables) for its objects.

28

The basic characteristics of OOSE are: inheritance, polymorphism, and encap-
sulation. Inheritance and polymorphism serve to maximise software re-use [Rubin,
1990]. Inheritance allows to specify a super class that contains the commonly used
methods and variables by a group of sub classes. These sub classes can then be cre-
ated by extending the super class without the need to specify the same methods and
variables from scratch every time. Polymorphism allows to specify the behaviour of
a method in multiple ways, each sharing the method name but differing in function-
ality. Finally, the encapsulation is for hiding the internal state of objects and how it
is changed via method-calls; object clients only know about the method signatures of
object interfaces.

Focussing on inheritance, polymorphism, and encapsulation, OOSE neglects other
notions, e.g., loose coupling between interacting objects for their independent use in
various contexts [Chidamber and Kemerer, 1994]. Indeed, while inheritance allows to
re-use the same methods and variables for multiple classes, it creates a tight coupling
between the objects of these classes. Whenever a change is made to a super class,
this affects all those inheriting from it, hindering their independent use.

OOSE also provides weak support for component interfaces. In an object ori-
ented language, classes for the objects can specify only the methods that the objects
can offer to their environment. However, component models used in practice, such
as the CORBA Component Model (CCM) [OMG, 2012a] 1 and OSGi [Tavares and
de Oliveira Valente, 2008,OSGi Alliance, 2012] introduce elements that do not ap-
pear in these languages. Components in these models can provide multiple interfaces
instead of a single one. They in fact not only provide interfaces but also explicitly
require interfaces for their proper functioning. Their interfaces (both provided and
required) can contain not only methods but also events, i.e., asynchronous messages
exchanged between components.

Lastly, OOSE does not promote the first-class specification of complex interactions
among objects. Indeed, most of the object-oriented languages neglect the first-class
specification of algorithms that impose complex interaction protocols for objects so as
to achieve certain functionalities (e.g., sorting and swapping). They do not offer any
particular notations for specifying and implementing algorithms. This may however
cause developers to embed their software algorithms as part of the class implementa-
tions and thus reduce the re-usabilities of the class objects with different algorithms.
Moreover, algorithms cannot be re-used for different class objects either. Java is
one of the most popular object-oriented programming languages that offers classes
only (i.e., component types). Another example can be the Unified Modelling Lan-
guage (UML) [Rumbaugh et al., 1999], whose discussion can be found in the informal
languages part, given in Section 2.4.1. UML also neglects interaction protocols and
supports the high-level specification of systems in terms of class objects that are con-
nected with simple links. C++ is a notable exception. Unlike Java where everything
must be declared as classes (or as part of classes), C++ offers function templates2 that
can be used globally to implement algorithms for components. It also offers the algo-
rithms library3 that consists of function templates implementing several algorithms
for objects, e.g., various sorting algorithms for vectors.

1A quick introduction is included in [Krishna et al., 2005].
2http://www.cplusplus.com/doc/oldtutorial/templates/
3http://www.cplusplus.com/reference/algorithm/

29

http://www.cplusplus.com/doc/oldtutorial/templates/
http://www.cplusplus.com/reference/algorithm/

2.2.2 Component Based Software Engineering (CBSE)

Component-based Software Engineering (CBSE) helps develop software systems out
of reusable components, thus reducing development time and cost, and leading to a
higher system quality [Pour, 1998]. Reusable components end up having fewer design
and implementation errors, as these are identified and corrected through their use by
different systems.

The specification of components consists essentially of the documentations of their
interfaces, which represent the external behaviour of the components. Interfaces help
the component users in understanding what services the components offer to their
environment and what services they require to operate properly.

The problem with CBSE is that while it promotes the first-class specification of
components, interaction protocols for the components are neglected that cannot be
specified as first class elements. So, component specifications are expected to include
their protocol information too. However, this may not always be the case. Compo-
nent specifications may describe their external behaviours only and thus omit any
protocol information, e.g., any assumptions component may have made about their
environment. This may lead developers re-using such components to observe incom-
patibility problems. That is, due to undocumented interaction protocols embedded
within component implementations, the users are not be able to successfully inte-
grate the components to their environments. This has been identified as architectural
mismatch [Garlan et al., 1995]. Even if the interaction protocols were documented
inside component specifications, one may have a different problem. The interaction
protocols may be incompatible with the requirements of the users, thus hindering the
re-usability of the components in different contexts. In such situations, components
may need to be modified or re-developed by the end-user side to adapt it to the user
environment. Or, alternatively, the end-user side can choose to modify their own
requirements to meet the component protocols.

Lack of support for explicit and separate specification of interaction protocols in
CBSE unfortunately influenced the field of software architecture. This, in fact, con-
flicts with the general description of software architectures [Garlan and Shaw, 1994],
where it is stated that software architecture is specified as a collection of components
and also connectors representing the interaction among the components. However,
there are a number of architecture description languages (ADLs) that fail to offer
first-class connector elements. As discussed shortly in Section 2.3, such ADLs lead to
either incompatible components that cannot be composed or less reusable components
due to the reasons discussed above.

2.2.3 Service Oriented Software Engineering (SOSE)

Service Oriented Software Engineering (SOSE) is another paradigm that promotes the
composition of systems from re-usable units [Stojanovic and Dahanayake, 2005,Huhns
and Singh, 2005]. While the basic units of CBSE are components, they are referred
to as services in SOSE. Both SOSE and CBSE have a lot in common, aiming in
general at reducing the cost of developing applications by means of maximising the
reuse [Breivold and Larsson, 2007]. However, they differ in that CBSE promotes
finding the correct component and adapting it to the context in which it is composed
with other components, while SOSE promotes the discovery of the services and their
composition to build a new application. So, with CBSE, users mostly care about
possessing a component that they can adapt it to their environment. But with SOSE,

30

SE
Paradigm

High-
level
components

User-defined
complex
connectors

Formal
behaviour
specification

Formally
analysable

Always
realisable

OOSE Class
objects

No No No Yes

CBSE Yes No Yes † Yes †† Yes

SOSE Yes Yes Yes † Yes † † Potentially
no

† Yes means here that the languages following the respective paradigm can support formal
behaviour specifications.
† † Yes means here that the languages following the paradigm can be formally analysable.

Table 2.1: The analysis results of the software engineering paradigms

users do not possess a component; instead, they rent it for use without the ability to
change. Indeed, SOSE places its main emphasis on the three roles: the developers of
services, their publishers to the market, and the service users for building their systems
by composing services [Tsai, 2005]. In CBSE, users of the services are extended with
application builders, who can perform the component adaptations.

Unlike CBSE, SOSE treats interaction protocols explicitly. Components (i.e., ser-
vices in SOSE) interact with each other via service composition mechanisms, which
can be in either of the two forms, i.e., orchestration and choreography [Papazoglou
et al., 2007]. With orchestration, services are composed to a system via another ser-
vice that plays the role of a centralised controller, which coordinates the behaviour
of the system services. In choreography, no additional service is introduced. Instead,
services are composed via a global interaction protocol that defines how each service
is supposed to behave in its interaction. The choreography is popular among ADLs,
applied first with the Wright language [Allen and Garlan, 1997] and then followed
by all other inspiring architecture description languages. Their connector structure
has a glue element for coordinating the component behaviours, which is essentially a
choreographer. However, as discussed in Section 1.2.1.3 (page 17), glue leads to spec-
ifications that cannot always be realisable in a decentralised manner as components
in distributed systems have partial observability of the system state and thus cannot
be constrained with a global protocol.

2.2.4 Summary

In this section, I introduced above three popular software paradigms, i.e., OOSE,
CBSE, and SOSE, and discussed their support for the main architectural elements.
Table 2.1 gives the results of their analysis. All these paradigms commonly support
the development of systems in terms of components. However, OOSE suffers from
tight coupling among components, which hinders their reusability. Moreover, OOSE
and CBSE do not provide support for the first-class specification of interaction pro-
tocols. So, this may cause designers to omit interaction protocols in their system
specifications, which leads to the inability of composing components to a system due
to undocumented interaction protocols. Alternatively, the interaction protocols can
be injected inside component specifications. This hinders the re-usability of compo-
nents in different contexts that require different protocols. Unlike OOSE and CBSE,
SOSE do support explicit specification of interaction protocols, which is problem-
atic though. SOSE’s orchestration mechanism requires a centralised controller that
is specified just as components (using services). The other choreography composition
mechanism causes potentially unrealisable specifications (see Section 1.2.1.3).

31

ADL Component
Type

Component
Computation

Component
Interface

Darwin component NA service
Olan component class implementation interface
Wright component computation port
UniCon template NA interface
Rapide module behavior interface

C2 component behavior top_domain,
bottom_domain

MetaH component implementation port, event
ACME component property port
LEDA component spec is role
Koala component NA interface
SOFA template architecture frame
XADL schema NA schema
PiLar component constraint interface
RADL component parameterised

contract
interface

CBabel module module port
PRISMA component aspect port
COSA class component NA interface
ADLMAS agent Plan module interface
SKwyRL agent Capabilities interface
AADL component implementation feature
Archface interface compo-

nent
NA port

CONNECT component NA port
MontiArc component invariant port

NA means that the feature is not applicable on the ADL.

Table 2.2: ADL component terms

32

ADL Connector
Type

Connector
Glue

Connector
Role

Darwin NA NA NA
Olan NA NA NA
Wright connector glue role
UniCon protocol NA player
Rapide NA NA NA

C2 connector NA top_domain,
bottom_domain

MetaH NA NA NA
ACME connector NA role
LEDA NA NA NA
Koala NA NA NA
SOFA template NA NA
XADL schema NA schema
PiLar component constraint interface
RADL NA NA NA
CBabel connector NA port
PRISMA connector aspect inrole or outrole
COSA class connector glue interface
ADLMAS connecting

agent
NA role

SKwyRL connector NA NA
AADL NA NA NA
Archface interface connec-

tor
NA port

CONNECT connector glue role
MontiArc NA NA NA

Table 2.3: ADL connector terms

33

2.3 Analysis of Architecture Description Languages

(ADLs)

There have already been different works performed on the analysis of ADLs, e.g,
Vestal’s [Vestal, 1993], Clements’s [Clements, 1996], Medvidovic and Taylor’s [Med-
vidovic and Taylor, 2000], Woods and Hilliard’s [Woods and Hilliard, 2005], and
Malavolta et al.’s [Malavolta et al., 2012]. The first three ([Clements, 1996,Medvi-
dovic and Taylor, 2000, Vestal, 1993]) primarily focused on identifying the defining
characteristics of an ADL and its architectural elements. While they are quite helpful
in understanding what an ADL is, their possible features, and the degree of support
that current ADLs provide for them, they do not exactly help understand why in-
dustry keeps itself away from using ADLs. Furthermore, these works did not cover
new-generation ADLs, e.g., SOFA [Plasil and Visnovsky, 2002], AADL [Feiler et al.,
2006], COSA [Oussalah et al., 2004], LEDA [Canal et al., 1999], etc., which were
developed more recently.

The latter two works ([Woods and Hilliard, 2005,Malavolta et al., 2012]) consid-
ered the use of ADLs in the industry, whose main concern is the usability of ADLs.
Practitioners seemed to agree that code generation is not very useful [Malavolta et al.,
2012]. There was also almost a consensus that formal analysis is less important than
effective communication of architectures. I believe that this is indeed the case, as
the primary purpose of an architecture is to establish a common understanding of
what a system is supposed to do and the main ways it will achieve so. However, the
two are not contradictory. The formal languages used so far (CSP, Z, etc.) hamper
understanding and require a lot of investment to produce architectural specifications.
I strongly believe that were the formal specification done in a language with a more
familiar notation, practitioners would adopt it overwhelmingly and actively use tools
to analyse their designs, even those that currently only use them for communication.
After all, effectively communicating flawed architectural designs through the use of
informal languages is not the way forward – discovering an architectural flaw during
implementation, integration, or system use is too costly. Moreover, the problem of
realisability for software architectures, discussed in Section 1.2.1.3 (page 17), has not
been addressed by any of these works, which current ADLs suffer from. After all, no
one wants to produce a design that is impossible to implement.

Therefore, I performed my own ADL analysis and considered more than twenty
different ADLs. I focussed on identifying the potential reasons for the unpopularity of
ADLs among practitioners in industry. I divided this section into two parts, early and
recent ADLs depicted in Figure 2.1, discussing in them the relevant ADLs in terms of
the five features listed as follows and the level of support the ADLs provide for them:
(i) component support; (ii) complex connector support; (iii) behaviour specification;
(iv) formal semantics; and, (v) realisability (if problematic only). While component
support allows to identify whether the languages are high-level or domain-specific,
complex connector support identify the level of re-usability in architecture specifica-
tions. Behaviour specification is important in understanding whether the language
notations are based on some formalisms (e.g., process algebras). Formal semantics are
for identifying their support for formal verification of software architectures. Lastly,
realisability is concerned with the languages which support any construct (e.g., con-
nector glue) that can cause unrealisable specifications.

In Tables 2.2 and 2.3, the ADL-specific names for the generic concepts of ar-

34

Figure 2.1: The relationships between early (before 1999) and recent ADLs (starting
from 1999)

chitectural components and connectors are presented respectively. For components,
the following concepts are focussed on: (i) component type, (ii) component compu-
tation (i.e., internal behaviour), and lastly, (iii) component interface (i.e., external
behaviour). For connectors, the following concepts are focussed on: (i) connector
type (ii) connector role, representing the interaction behaviour of each component
participating to the connector interaction, and lastly, (iii) connector glue, which is a
coordinator for controlling role behaviours. In the rest of this section, for simplicity
and enhanced understanding, the generic names are used instead of the ADL-specific
names. However, one can always consult on these tables to observe the ADL-specific
names for the generic concepts. Note that if any of these concepts is not supported
by an ADL, it is indicated as NA (i.e., not applicable) in the tables.

2.3.1 Early First-generation ADLs

A number of different ADLs were developed during the early days of research in soft-
ware architectures, with researchers experimenting on the proper structures needed
for supporting architectural descriptions and their relations. Here I consider the main
ADLs from that period, presented in an almost chronological order.

2.3.1.1 Darwin

Darwin is one of the first architecture description languages, intended as a general-
purpose language for specifying distributed systems as configurations of components
[Magee and Kramer, 1996].

Component support In Darwin, software architectures are specified in terms
of hierarchical components. Component types in Darwin (e.g., user and memory in
Figure 2.2) are specified with interfaces they provide to their environment and require
from them too. Each interface of a component is responsible for the communication
of a single message.

A composite component type further includes a computation, which is specified
as a configuration of some component instances. As illustrated in Figure 2.2, shared-
Data_access is of a composite type, describing a configuration of users and memory.
Therein, the component instances are specified via inst construct and the required
and provided interfaces of these components are connected via bindings. Composite
components can also export the interfaces of their component instances; so, they can

35

1 component user
2 require get , s e t ; }
3

4 component memory{
5 provide get , s e t ; }
6

7 component sharedData_access {
8 inst
9 user1 : user ; user2 : user ;

10 data :memory ;
11 bind
12 user1 . get −− data . get ;
13 user2 . get −− data . get ;
14 user1 . s e t −− data . s e t ;
15 user2 . s e t −− data . s e t ;
16 }

Figure 2.2: Specification of shared-data access in Darwin

interact with their environment.
Connector support Unlike what was suggested earlier [Perry and Wolf, 1992,

Garlan and Shaw, 1994], Darwin does not support the specification of connectors in
architectural designs. Components interact with each other through bindings speci-
fied in composite component types as illustrated in sharedData_access in Figure 2.2.
However, such bindings cannot describe the way interaction occurs between compo-
nents, thus resulting in the protocols of interactions being hard-wired inside compo-
nents. This not only overcomplicates component specifications but also reduces their
re-usability and hampers the architectural evaluation of different candidate interac-
tion protocols.

Behaviour Specification Darwin does not originally support formal behaviour
specifications, rather focussing on the structural aspects of dynamic software archi-
tectures.

The Tracta approach [Giannakopoulou et al., 1999,Magee et al., 1999] has been
proposed later on, to extend Darwin with formal behaviour specification. Tracta
uses the Finite State Process (FSP) language [Magee and Kramer, 2006], through
which component behaviours are specified as processes. A simple component type is
specified with a primitive FSP process, while a composite component with a composite
FSP process that composes the processes corresponding to (sub) components of the
composite type. FSP allows Darwin architectures to be exhaustively analysed by
tools such as LTSA, for safety and liveness properties.

Semantics of Darwin Darwin’s semantics were formally defined using π-calculus
[Milner et al., 1992]. Component interfaces are mapped as agent processes in π-
calculus. The bindings, used in composite components to bind their component in-
stances are also mapped as agents. The agent for a binding is composed with the
processes for the required and provided interfaces that it connects and establishes
their communication.

Later, with the Tracta approach, mentioned above, Darwin’s semantics were de-
fined using Finite State Process algebra (FSP) for the formal verification of component
behaviours.

2.3.1.2 Olan

Olan is another ADL, developed in the nineties, which facilitates the development of
distributed systems [Bellissard et al., 1996]. It integrates the notions of object-oriented
software engineering paradigm (e.g., classes) to module interconnection languages

36

1 component class User {
2 interface
3 require r eque s t (out data) ;
4 }
5

6 component class Memory {
7 interface
8 provide s e r v i c e (out data) ;
9

10 attribute int shared_data ;
11 }
12

13 component class SharedData{
14 interface
15

16 implementation
17 us e r In s = inst User ;
18 memoryIns = inst Memory ;
19

20 us e r In s . r eque s t bind to memoryIns . s e r v i c e using methodCall ;
21 }

Figure 2.3: Specification of shared-data access in Olan

[Prieto-Díaz and Neighbors, 1986].
Component support Component types in Olan are specified either as primitive

(e.g., User and Memory in Figure 2.3) or composite (e.g., SharedData in Figure 2.3).
Primitive component types are specified with interfaces, consisting of services. An
interface service can be either (i) a two-way method, which are required from their
environment or provided to it, or (ii) a one-way event, which are emitted or received.
Besides interfaces, primitive component types can have some attributes, each holding
a data that can be changed throughout their execution. If a component is of compos-
ite type, it further includes a computation, i.e., a configuration of some component
instances. The interfaces of component instances are connected to each other via
built-in connectors. Moreover, a composite type in Olan can have its own interface,
which can be connected with the interfaces of its component instances.

Connector support Olan provides support for connectors, which is limited
though. It offers a pre-defined set of simple connector types, which are synchronous
method-call and asynchronous events. Olan also support the broadcasting of events
and method-calls to multiple recipients. However, designers are not allowed to specify
complex interaction mechanisms as connectors.

Behaviour Specification Olan does not support specifying behaviours of compo-
nents. It instead focuses on the implementation and deployment of distributed system
specifications. As presented in their more recent work [Bellissard et al., 2000], Olan
provides a framework for the deployment of software architectures in various middle-
ware implementations, such as agent-based message oriented middleware, CORBA,
and Java RMI. To do this, Olan restrict component types in their recent work to a
pre-defined set, consisting of middleware-specific types. Designers can specify their
components using these pre-defined types and enrich their specifications with certain
non-functional properties. These properties are again specific to the middleware im-
plementations adopted by the chosen component types. Moreover, connector types
are also restricted to middleware-specific types.

Semantics of Olan Lacking in support for formal behaviour specification, Olan
does not have formally defined semantics either. Instead, in their recent work [Bel-
lissard et al., 2000], precise mappings of pre-defined component types to the corre-
sponding middleware implementations are defined.

37

1 System sharedData_access
2 component user () =
3 port r eque s t= get → r eque s t [] s e t → r eque s t
4 spec . . .
5 connector SharedData
6 role I n i t i a l i z e r =
7 let A = se t → A ⊓ get → A ⊓ ✓
8 in s e t → A
9 role User = s e t → User ⊓ get → User ⊓ ✓

10 glue = let Continue = I n i t i a l i z e r . s e t → Continue
11 [] User . s e t → Continue
12 [] I n i t i a l i z e r . get → Continue
13 [] User . get → Continue
14 [] ✓
15 in I n i t i a l i z e r . s e t → Continue [] User . s e t → Continue [] ✓
16 }
17 Instances
18 user_ins : User
19 i n i t i a l i s e r _ i n s : User
20 sharedData_ins : SharedData
21 Attachments
22 user_ins . r eque s t as sharedData_ins . user
23 i n i t i a l i s e r _ i n s . r eque s t as sharedData_ins . i n i t i a l i s e r
24 end sharedData_access

Figure 2.4: Specification of shared-data access in Wright - reprinted from Figure 4
of [Allen and Garlan, 1997]

2.3.1.3 Wright

Wright is an architecture description language, well-known for its formal and explicit
treatment of connectors in architectural designs [Allen and Garlan, 1997,Allen, 1997].

Component support A component type (e.g., User in Figure 2.4) is specified
with interfaces and a computation. A component interface can operate as many
actions as desired in its environment. A component computation is used (optionally)
to specify either (i) a configuration of component and connector instances, or, (ii) a
protocol for coordinating the interface behaviours.

Connector support Connectors are granted with first-class status. That is, with
Wright connectors, designers can specify either simple interconnection mechanisms
(e.g., procedure call) among components or complex mechanisms (i.e., interaction
protocols such as an auction) for component interactions.

A connector type in Wright (e.g., SharedData in Figure 2.4) is specified with roles
and a glue. Roles represent the interaction behaviours of the participating components
and the glue coordinates the components playing the roles.

Behaviour specification Component and connector behaviours are formally
specified using an extended form of CSP [Hoare, 1978]. As illustrated in Figure 2.4,
a component interface is specified as a CSP process, describing an order of action
executions performed via the interface. Likewise, a component computation is also
specified as a CSP process, which constrains the interface processes to behave as a
whole in a way that meets the component functionality. For connectors, their roles
are behaviourally specified as processes, describing the interaction behaviours of com-
ponents that play the roles. The connector glue is also specified with a process that
imposes a global constraint on the role processes.

Semantics of Wright , The extended form of CSP, used for specifying the be-
haviours of components and connectors, was also used in defining the semantics of
the language. By doing so, formal verification of Wright architectures is possible via
the FDR model checker [Bro, 2010].

Connectors are each defined as a parallel composition of the role processes with the

38

glue process. Similarly, component semantics are defined by composing the interface
processes with the computation process that coordinates the interface behaviours. In
a configuration, participating component interfaces replace connector roles, when they
are “compatible” [Allen and Garlan, 1997], i.e., the ports restricted over the traces of
the roles refine the roles. Apart from this compatibility check, role processes are not
used, instead the glue process is composed with the component interface processes
directly.

Realisability Glue specifications used in Wright connectors essentially serve two
purposes. First, they connect together component interface actions, set and get ac-
tions of Initialiser and User in Figure 2.4. Second, they impose a global ordering of
component actions. Unfortunately, this second feature can lead to potentially un-
realizable system specifications for distributed systems. Components in distributed
systems have partial observability of system state. That is, they cannot know at which
state the other components are at all points in time and thus cannot be constrained
with a global constraint. The detailed discussion of Wright connectors’ unrealisability
is already given in Section 1.2.1.3 (page 17).

2.3.1.4 UniCon

UniCon has also been developed with the idea that connectors deserve first-class
status in software architecture specifications [Shaw et al., 1995].

Component support Component types in UniCon can be either primitive (e.g.,
user and memory in Figure 2.5) or composite (e.g., sharedData_access in Figure 2.5).
Every component is specified with a type, which is chosen among the pre-defined
types offered by UniCon. (e.g., sharedData, process, and filter). These pre-defined
types determine the interface of the components, i.e., its actions (named as players in
UniCon). Note that UniCon also has a general component type, allowing designers
to specify generic types without any restriction on interfaces. A primitive component
type can also include implementation details (e.g., location of source code). For
composite component types, the implementation details are essentially the means of
specifying its computation. As illustrated via sharedData_access in Figure 2.5, the
implementation part comprises (i) instances of component and connector types, (ii)
bindings between the interfaces of (sub) component instances and the interfaces of
the composite component type itself and (iii) connections between the interfaces of
the (sub) component instances and connector roles.

Connector support Connector types in UniCon (e.g., sharedData in Figure 2.5)
are introduced as first-class elements. A connector type is specified with an interaction
protocol, acting as a mediator of interaction among components. Protocols herein,
just like Wright connectors, consist essentially of roles. However, unlike Wright, Uni-
Con restricts protocols to be of certain types, e.g., Pipe, DataAccess, and Procedure-
Call, thus preventing designers from freely specifying their own (complex) types.

Behaviour Specification Unlike Darwin and Wright, UniCon does not allow
for formal behavioural specification of architectural elements. Nevertheless, UniCon
offers a set of built-in attributes for components and their interface (and also for
connector types and their roles). Through the attributes, designers can specify fur-
ther details, e.g., non-functional properties and constraints, about the architectural
elements.

Semantics of UniCon Providing no support for formal behavioural specification,
UniCon does not have formally defined semantics either. Their focus is rather placed

39

1 COMPONENT user
2 INTERFACE IS
3 TYPE Module
4 PLAYER user_i
5 IS GlobalDataUse
6 END user_i
7 END INTERFACE
8 IMPLEMENTATION IS
9 ...

10 END IMPLEMENTATION
11 END user
12
13 COMPONENT memory
14 INTERFACE IS
15 TYPE SharedData
16 PLAYER memory_i
17 IS GlobalDataDef
18 END memory_i
19 END INTERFACE
20 IMPLEMENTATION IS
21 ...
22 END IMPLEMENTATION
23 END memory
24
25 CONNECTOR sharedData
26 PROTOCOL IS
27 TYPE DataAccess
28 ROLE user IS User
29 MAXCONNS (1)
30 END user
31 ROLE memory IS Definer
32 MAXCONNS (1)

33 END memory
34 END PROTOCOL
35 IMPLEMENTATION IS
36 BUILT-IN
37 END IMPLEMENTATION
38 END sharedData
39
40 COMPONENT sharedData_access
41 INTERFACE IS
42 TYPE General
43 PLAYER user1
44 IS GlobalDataUse
45 END user1
46 PLAYER memory
47 IS GlobalDataDef
48 END memory
49 END INTERFACE
50 IMPLEMENTATION IS
51 USES user1 INTERFACE user
52 USES memory INTERFACE memory
53 USES sharedData
54 PROTOCOL sharedData
55 BIND user1 TO user1.user_i
56 BIND memory TO memory.memory_i
57 CONNECT user1.user_i
58 TO sharedData.user
59 CONNECT memory.memory_i
60 TO sharedData.memory
61 END IMPLEMENTATION
62 END sharedData_access

Figure 2.5: Specification of shared-data access in UniCon

upon early code generation from architecture specifications. Indeed, since connector
types are specified with built-in interaction mechanisms, UniCon enables their precise
mappings into source-code in the C language via some tool.

2.3.1.5 Rapide

Rapide is an architecture description language, with support for dynamic system
architectures and simulation of architectures [Luckham, 1996].

Component support A component type in Rapide is specified with interfaces,
which serve for either asynchronous (observing and generating events) or synchronous
communication (providing and requiring functions). The interfaces in Figure 2.6,
for instance, adopt asynchronous communication by defining actions through which
events are generated (out) or observed (in). Additionally to action specifications, the
interfaces also include behaviour specifications, representing the external behaviours
of the components.

Component types can be composite too, including as its computation a configura-
tion of components. Although in Figure 2.6, the architecture element is used to specify
a system architecture, one can also include architectures as component computations
too for their hierarchical specification.

Connector support Like Darwin, Rapide adopts an approach that considers
system architectures as collections of components which are wired together via mere
connections. So, unlike Wright, there is no first-class connector element offered, lead-
ing complex interaction patterns to be implicitly specified in component specifications.

On the other hand, Rapide introduces architectural constraints, through which
global interaction protocols for the interacting components can be specified. But,
unlike Wright, where connectors are independent elements, Rapide constraints are
embedded within an architecture specification, and thus cannot be re-used in different
architecture specifications.

Behaviour specification Rapide adopts event patterns to formally specify the

40

1 type UserInterface() is interface
2 action out get();
3 action out set();
4 behavior
5 ...
6 end User;
7

8 type MemoryInterface() is interface
9 action in get();

10 action in set();
11 behavior
12 ...
13 end Memory;
14

15 module User ()
16 return UserInterface is
17 --internal actions
18 ...

19 --internal behaviour
20 ...
21

22 module Memory ()
23 return MemoryInterface is
24 --internal actions
25 ...
26 --internal behaviour
27 ...
28

29 architecture sharedData_access is
30 UserIns : User();
31 MemoryIns : Memory();
32 connect
33 UserIns.get() ⇒ MemoryIns.get();
34 UserIns.set() ⇒ MemoryIns.set();
35 end architecture sharedData_access;

Figure 2.6: Specification of shared-data access in Rapide

behaviour of interfaces. As aforementioned, a component interface includes either
(i) in and out event actions or (ii) provided and required functions. The behavior
part of a component interface is specified as event pattern rules that are imposed on
its events or functions. Just like Wright protocols, these rules describe the expected
interface behaviour as a sequence of calls for event/functions.

Semantics of Rapide The event pattern language is also used for defining the
precise semantics of Rapide [Luckham and Vera, 1995]. Component semantics are
defined as a partially ordered set of events that can have either dependency (causality)
or timing relationships with each other.

Realisability As aforementioned, Rapide offers architectural constraints, which
are essentially global constraints imposed on the interaction of the components within
architecture specifications. These constraints are intended to coordinate the actions
taken by the components, ensuring their compliance to particular global ordering of
actions. Therefore, Rapide architectural constraints serve just as Wright glues and
allow potentially unrealisable specifications.

2.3.1.6 C2

C2 is a component and message based architectural style, with a particular focus on
the architectural descriptions of event-driven applications, where potentially complex,
distributed components operate concurrently and communicate via message exchange
[Medvidovic et al., 1996,Taylor et al., 1996].

Component support A component type in C2 (e.g., User and Memory in Fig-
ure 2.7) is specified with an interface and a computation. A component interface
specification is two-fold: a top_domain and a bottom_domain. The top_domain
represents requests, which are emitted by the component, and notifications, which
it reacts to. The bottom_domain represents requests, which can be received, and
notifications, which can be sent. For a component computation, it comprises a set
of methods, representing the inner functionality of the component, and a behaviour
part, coordinating the calls made to these methods.

Connector support C2 does not allow for specifying complex interaction mech-
anisms. However, it offers a connector element that can either route event messages
between components or broadcast messages from a component to multiple compo-
nents. Connectors allow also the filtering of messages via a set of built-in policies,

41

1 component User is
2 interface
3 top_domain is
4 out
5 get();
6 set();
7 in
8 get_responded();
9 set_responded();

10 bottom_domain is
11 out null;
12 in null;
13 parameters
14 null;
15 methods
16 ...
17 behavior
18 ...
19
20 component Memory is
21 interface
22 top_domain is
23 out null;
24 in null;
25 bottom_domain is
26 out
27 get_responded();
28 set_responded();
29 in
30 get();

31 set();
32 parameters
33 null;
34 methods
35 ...
36 behavior
37 ...
38
39 architecture sharedData_access is
40 components
41 top_most
42 Memory;
43 ...
44 internal
45
46 bottom_most
47 User;
48 component_instances
49 userIns instantiates User;
50 memoryIns instantiates Memory;
51 ...
52 connectors
53 connector sharedData is
54 message_filter no_filtering
55 architecture_topology
56 connector sharedData connections
57 top_ports
58 memoryIns;
59 bottom_ports
60 userIns;
61 end sharedData_access;

Figure 2.7: Specification of shared-data access in C2

i.e., no filtering, notification filtering, prioritised, and message sink.
A connector is specified with roles consisting of top- and bottom-domains, which

are used to specify the components it connects together.
Moreover, connectors in C2 are specified as part of the architecture element (e.g.,

sharedData connector of the sharedData_access in Figure 2.7), which is used to spec-
ify a configuration of components and connectors for a system. So unlike Wright
connectors, C2 connectors cannot be specified as abstractions and re-used in different
configurations. Within the body of architecture, the style of the connector is specified
that describes its policies for message filtering. Then, in its architecture_topology, the
bottom and top domains of the connector are associated with components.

Behaviour specification Behaviour specification in C2 is limited with com-
ponent behaviours. As aforementioned, C2 components can include computations,
specified as a set of methods and behavior. The method part is the list of procedures
that represents the internal functionality performed within a component. As to the
behavior part, it is specified as a collection of expressions that describes what message
causes what method procedure to be executed or message to be triggered.

Semantics of C2 The C2 style is formally specified using the Z notation [Spivey,
1992]. The formal definition of components, connectors along with their compositions
and communications are explained in detail in [Medvidovic, 1995].

2.3.1.7 MetaH

MetaH focusses on embedded real-time systems and supports the specifications of
their software and hardware architectures [Binns et al., 1996]. It is offered with
a powerful toolset, through which designers can specify their system architectures
either textually or graphically. Furthermore, MetaH’s toolset supports the analysis of
system architectures for various system issues, e.g., real-time schedulability, reliability,
security, and safety.

42

Component support Unlike other ADLs introduced so far, MetaH does not
allow designers to specify their own component types. Instead, a set of low-level
pre-defined types are offered. Software architectures are specified with subprogram
and packages component types, while hardware architectures with monitor, memory,
process, channel, and device types. Designers can use the pre-defined component
types and include interfaces inside their component type specifications. Interfaces
herein are first-class elements in MetaH that are specified externally and then used in
component specifications. Finally, the computations of components are specified as a
collection of attributes, which are used to describe the non-functional requirements,
e.g., schedulability and reliability details of components.

MetaH offers additional component types (i.e., modes and macros) for specifying
the configuration of components.

Connector support MetaH does not offer first-class connectors. Connectors are
viewed as connection links, which are used in configuration components to connect
the interfaces of their sub-components.

Behaviour specification MetaH supports specifying real-time scheduling be-
haviours of components using linear hybrid automata [Vestal, 2000]. It also offers a
construct for modelling error behaviours of systems.

Semantics of MetaH MetaH has precisely defined semantics that have been
implemented by its toolset for the schedulability, reliability, and security analyses of
system architectures.

2.3.1.8 ACME

ACME is intended as an interchange mechanism, used by designers to benefit from
the capabilities of different ADLs (e.g., static and dynamic analysis) [Garlan et al.,
1997,Garlan et al., 2000]. It provides its own structural notation, which can be further
annotated with ADL-specific notations. This allows designers to be free in specifying
their system behaviours in any ADL notations despite specifying the structure in
ACME. As illustrated in [Garlan and Wang, 1999], using tools ACME specifications
can then be transformed into specifications in those specific ADLs and thus further
analysed for particular issues addressed by the ADLs.

Component support A component type in ACME consists essentially of in-
terfaces. Furthermore, it can include property specifications. With properties, ADL-
specific annotations can be used to describe component computations and non-functional
requirements using the notations of different ADLs.

Moreover, ACME offers a representation element through which system config-
urations can be specified in terms of component and connector instances. These
representations can be used as part of components to make them composite.

Connector support Like Wright connectors, connector types in ACME consist
of roles, representing the interaction aspects of the component interfaces interacting
via the connectors. Connector types can include properties too, which function just
like those of components. So, further details about the component interactions can
be specified, such as interaction protocols and non-functional requirements.

As exemplified in Figure 2.8, both component and connector types are embodied
within ACME Family specification. A family represents an architectural style of a
modelled system, thus including the abstractions of its elements. Once specified,
the family style can then be used in specifying a System element, i.e., the system
configuration.

43

1 Family sharedData_access_family = {
2 Component Type user = {
3 Port user_i;
4 Property ...;
5 }
6 Component Type memory = {
7 Port memory_i;
8 Property ...;
9 }

10 Connector Type sharedData = {
11 Roles {user1Role, memoryRole}
12 Property ...;
13 }
14 }
15
16 System sharedData_access : sharedData_access_family = {
17 Component userIns : user;
18 Component memoryIns : memory;
19
20 Connector sharedDataIns : sharedData;
21
22 Attachments {
23 userIns.user_i to sharedDataIns.user1Role;
24 memoryIns.memory_i to sharedDataIns.memoryRole;
25 }
26 }

Figure 2.8: Specification of shared-data access in ACME

connector Shared_Data3 =
role Initializer=let A = set→ A ⊓ get→A ⊓ ℘

in set→A
role User = set→User ⊓ get→User ⊓ ℘
glue = let Continue=Initializer.set→Continue ◻User.set→Continue ◻

Initializer.get→Continue ◻User.get→Continue ◻ ℘
in Initializer.set→Continue ◻ User.set→Continue ◻ ℘

Figure 2.9: Wright connector for Shared-Data, reprinted from Figure 4 of [Allen and
Garlan, 1997]

Behaviour Specification ACME does not adopt any formalisms for specifying
behaviour of elements. However, properties of components and connectors can aid in
specifying behaviours using the notations of other ADLs. For instance, the sharedData
connector type of the sharedData_access_family in Figure 2.8 can be annotated with
a property that specifies its behaviour as a Wright protocol, given in Figure 2.9.

Semantics of ACME ACME provides precise semantics for its structural aspect
through the open semantic framework [Garlan et al., 1997].

2.3.2 Recent Second-generation ADLs

Experience with the first-generation ADLs led to the development of further second-
generation ADLs. As depicted in Table 2.1, while some of them extend the first-
generation ADLs, there are also those developed with their own unique features. In
the rest of this section, I discuss these second-generation ADLs that are popular in the
software engineering community. The discussion herein is based on the same features
as the discussion of the first-generation ADLs given above.

2.3.2.1 LEDA

LEDA is inspired from Darwin [Magee and Kramer, 1996] in its structure, consisting of
hierarchic components and the definition of the semantics using the π-calculus process
algebra [Canal et al., 1999]. Unlike Darwin, LEDA further uses π-calculus [Milner
et al., 1992] for specifying the behaviour of components and introduced constructs
that facilitate its adoption.

44

1 component User{ component Memory{
2 interface interface
3 user_i : UserRole; memory_i : MemoryRole;
4 spec is spec is
5
6 } }
7 //user interface //memory interface
8 role UserRole{ role MemoryRole{
9 spec is spec is

10
11 } }
12
13 component sharedData_access{
14 interface none;
15 composition
16 user : User;
17 memory : Memory;
18 attachments
19 user.user_i <> memory.memory_i;
20 }

Figure 2.10: Specification of shared-data access in LEDA

Component support Component types in LEDA are specified either as primitive
(e.g., User and Memory in Figure 2.10) or composite (e.g., sharedData_access in Fig-
ure 2.10). Regardless of being primitive or composite, a component type is specified
with interfaces and computation (i.e., optional). An interface is a first-class element,
which, once specified, can then be used externally in component specifications to
describe their interaction points. Computation of components is specified as a pro-
tocol, which coordinates the interface behaviours. Moreover, composite component
types further include composition and attachments, representing its computation as a
configuration of components, as illustrated via the sharedData_access in Figure 2.10.

Connector support Like Darwin, LEDA does not support connectors either.
Indeed, its only interaction mechanism is the simple attachments, specified within
composite component types for linking the component interfaces. Complex interaction
mechanisms (i.e., interaction protocols) can only be specified as part of components,
which makes components less re-usable and protocol dependent.

Behaviour Specification Behaviour specification for components in LEDA is
two fold: external (i.e., observable) behaviour and internal behaviour. The external
behaviour is specified through interfaces, which are specified externally as processes
in π-calculus. The internal behaviour is specified using the component computation,
which is specified internally as a π-calculus process.

Semantics of LEDA Just like its behavioural basis, the structural view of LEDA,
including the attachments between component interfaces, were formally defined in π-
calculus. So, LEDA specifications can be transformed into π-calculus models for the
formal verification of system behaviours.

2.3.2.2 Koala

Like LEDA, Koala is another architecture description language that is inspired from
Darwin. It focuses on the specification of embedded software systems, which are em-
ployed in consumer electronics product families [van Ommering et al., 2000]. Koala is
distinguished with its module construct for glueing the component interfaces without
having to specify a new coordinator component. Moreover, Koala differs also in its
improved parameterisation of components that facilitates the receiving of as many
configuration information as needed during their instantiation.

Component support As in Darwin, system architectures in Koala are specified
in terms of components. However, unlike Darwin, Koala offers first-class interface

45

1

2 interface data_interface {
3 void get();
4 void set();
5 }
6

7 component user { component memory{
8 requires provides
9 data_interface user_i; data_interface memory_i;

10 } }
11

12 component sharedData_access{
13 contains user userIns;
14 memory memoryIns;
15 connects userIns.user_i = memoryIns.memory_i;
16

17 }

Figure 2.11: Specification of shared-data access in Koala

elements, encapsulating methods (e.g., data_interface in Figure 2.11). So, interfaces
are then employed within components (user and memory in Figure 2.11), which either
require or provide their methods.

Component types in Koala can also be composite by including a computation (i.e.,
a configuration of components). As illustrated with sharedData_access in Figure 2.11,
instead of inst and bindings in Darwin, Koala introduces contains and connects

constructs for specifying the configuration of components in composite types.
Connector support Like Darwin, Koala does not support connectors in system

architectures either. Interactions between components are merely specified by con-
nects in composite component types. Being simple links, these cannot be used to
specify complex interaction protocols independently of components. Nevertheless, as
aforementioned, Koala offers module, which can be employed in a composite compo-
nent and connected with the interfaces of the interacting sub components to order
their the method-calls. So, modules in Koala can be used to specify interaction pro-
tocols for components.

Behaviour Specification Koala supports only a structural view of software ar-
chitectures and does not allow for behaviour specifications. Indeed, it places its main
emphasis on automatic code-generation from structural specifications, rather than
early formal analysis of behaviours.

Semantics of Koala The semantics of components in Koala were actually given
via their implementation in the C programming language. For every component type
specified, the Koala compiler produces a collection of C source and header files.

Realisability The modules specified within composite components act as glues,
coordinating the sub components of the composite components. So, this can cause
unrealisable specifications if the sub components are distributed.

2.3.2.3 SOFA

SOFA is inspired by the Wright ADL [Allen and Garlan, 1997], which promotes
formal behaviour specification for components and connectors to facilitate their formal
verification [Plasil and Visnovsky, 2002,Bures et al., 2006]. However, unlike Wright
adopting the CSP process algebra, SOFA adopts regular-like expressions.

Component support A component type in SOFA is specified with component
frame and a computation. A component frame represents the external view of a
component type that consists of required (requires) or provided (provides) interfaces.

46

1 interface getOrSet{
2 void get();
3 void set();
4 };
5

6 frame User { frame Memory{
7 requires: provides:
8 getOrSet user_i; getOrSet memory_i;
9 }; };

10

11 frame SharedData_access { architecture SharedData_access{
12 requires: inst User user_ins;
13 ... inst Memory memory_ins;
14 provides: bind user_ins:user_i to memory_ins:memory_i;
15 ...
16 }; };

Figure 2.12: Specification of shared-data access in SOFA

It should be noted that these interfaces are essentially the instances of interface ab-
stractions that are specified externally as first-class elements (e.g., getOrSet in Fig-
ure 2.12). For component computations, they are specified for composite components
and consist of component instances and connection links between required and pro-
vided interfaces of these component instances. As illustrated in Figure 2.12, there are
three component types specified for shared-data access: User, Memory, and Shared-
Data_access. While User and Memory consist solely of a frame, SharedData_access
has both a frame and computation (i.e., architecture).

Connector support SOFA offers pre-defined basic interaction mechanisms, i.e.,
procedure call, messaging, streaming, and blackboard [Bures and Plasil, 2004]. So, de-
signers can specify their component interactions using these basic interactions. More-
over, SOFA allows designers to specify their own connectors too. It provides connector
generation tools, through which designers can choose any of the pre-defined interaction
mechanisms and specify some non-functional properties for these mechanisms [Galik
and Bures, 2005,Bures, 2005]. Nevertheless, it is not possible to specify complex in-
teraction mechanisms (i.e., interaction protocols) for the interacting components via
the connectors (and the tools) in SOFA.

Behaviour specification Component behaviours are formally specified via pro-
tocols attached to their frames, computations, and interfaces. These protocols are
essentially the Behaviour Protocols (BP) [Plasil and Visnovsky, 2002], which are a
simplified form of CSP, with additional support for regular expressions. Using BP,
protocols are described as agents. An agent is simply an event processing unit, e.g.,
CSP process or Rapide’s event pattern. It orders the events (corresponding to inter-
face methods) emitted or received by the element, for which the agent is specified.

SOFA ignores the formal behaviour specifications when generating codes for con-
nectors. Indeed, its code generation ConGen [Galik and Bures, 2005, Bures, 2005]
states: “Also, we are rather interested in rich functionality than formal proving that
a connector has specific properties; thus, at this point we do not associate any formal
behavior with a connector.” [Bures, 2005, p. 14 – emphasis added]

Semantics of SOFA BP is also used to define the formal semantics of SOFA.
However, in defining the semantics, components are considered to communicate with
each other via link connections. So this means that the formal semantics of SOFA
does not consider connectors as first-class complex elements. Indeed, connectors are
specified as first-class elements just to allow their automatic transformation to imple-
mentation codes.

47

Realisability The protocol behaviour of a component computation can essentially
impose a global constraint on the configuration of components. As aforementioned,
global constraints lead to system specifications that cannot always be realised in a
distributed manner.

2.3.2.4 XADL

Previously, ACME [Garlan et al., 1997] was discussed as one of the first-generation
ADLs, which is essentially an interchange format for benefiting from the capabilities
of different ADLs. XADL [Dashofy et al., 2002] is another language having a similar
purpose as ACME. It offers a framework for designers to be able to use the features
of various ADLs that they need for their design purposes.

XADL is distinguished by freeing designers from having to use architectural con-
structs that they are unfamiliar with or they do not need. Indeed, it does not offer
certain specific constructs for architecture specifications (e.g., components, connec-
tors, and properties). Instead, designers are allowed to develop their own language
based on their own needs in a modular and extensible way. That is, XADL provides
the very basic elements for an architecture description in terms of XML schemas.
These basic schemas can be extended to new schemas by adding/removing new fea-
tures, which enables the creation of specific constructs fitting better the designers
own needs.

Component Support XADL offers a design-time schema, which can be used
by designers to specify their software architectures. The design-time schema includes
the commonly used architectural constructs, e.g., component, connector, interface,
and link, and allows designers to specify basic information about them, e.g., their
id, description, and type. So, designers can use the design-time schema to specify
their component types with their type, description, and interface(s). However, if the
existing features of the construct are not enough, designers can extend the design-
time schemas and add features meeting their particular needs. Indeed, designers can
add features for specifying behaviours in some formalisms, e.g., Wright’s interface
protocols.

Connector Support Just like component types, connector types are also sup-
ported by the design-time schema, specified with type, description, and interface(s).
So, designers can either use its connector construct as it is or extend it to add extra
features, e.g., Wright’s complex connector.

Behaviour Specification The design-schema offered by XADL does not have
any features for behaviour specification of elements. However, as aforementioned,
designers can extend it with behaviour specification constructs.

Semantics of XADL Since XADL’s main intent is to provide a means for de-
veloping ADLs in a re-usable and extensible way, XADL does not focus on formal
specification and analysis. Therefore, it lacks in a formally defined semantics. How-
ever, they already consider the code generation aspect of software architectures. To
this end, they provide designers with an implementation schema. It extends the
design-time schema and maps precisely the basic architectural elements into Java
classes.

Realisability Realisability may be a concern for XADL when an extended schema
adopts the features of connector-centric ADLs such as Wright. If an extended form
of connector types allows for a glue construct to coordinate the behaviours of the
components, this would naturally lead to potential unrealisability.

48

2.3.2.5 PiLar

PiLar ADL is known with its attempt at applying the idea of reflection [Maes, 1987]
to software architecture specification [Quintero et al., 2002]. To this end, it con-
siders architectural design at two levels, base and meta. The former represents the
specifications of components that do not control others and the latter represents the
specifications of those that do control the interaction of some components.

Component Support Component types in PiLar are essentially specified with
interfaces. If a component is of composite type, then, it further includes a compu-
tation for specifying a configuration of component instances, which are connected
via attachments. Moreover, components can have constraint elements too. The con-
straints are used to specify a set of rules for describing component behaviours (i.e.,
certain order of interface actions).

Connector Support PiLar views connectors as first-class elements. Neverthe-
less, connectors are specified using the component construct. Indeed, a connector
in PiLar consists of interfaces, representing the services of interacting components
and a glue constraint to coordinate the execution of these services. Once specified
and instantiated at configuration time, connectors can then be associated with the
attachments of composite components, to describe the interaction protocols for the
attached interfaces of their sub components.

Behaviour Specification As aforementioned, the behaviours of components and
connectors are specified via the constraint elements. The constraints are described
using a variant of the CCS process algebra [Milner, 1980].

Semantics of PiLar The semantics of PiLar are defined using π−calculus.
Realisability Just like Wright connectors, PiLar connectors have a glue constraint

too, which globally constrains the interacting components and thereby leading to
potentially unrealisable specifications.

2.3.2.6 RADL

RADL [Reussner et al., 2003] extends Darwin through the adoption of Design-by-
Contract (DbC) [Meyer, 1992].

Component Support Component types can be either basic or composite. Ba-
sic types are specified with interfaces. An interface can be either provided, offering
methods to their environment, or required, making method-calls. Note however that
unlike other ADLs, RADL constrains each basic type to have at least one required
and one provided interfaces.

Composite component types are specified with interfaces and also a computation.
A computation herein describes a configuration of sub component instances whose
interfaces are connected to each other via bindings. Besides bindings, RADL offers
mappings too, which allows an interface of a sub component to be connected with an
interface of the composite component (if both interfaces have the same type).

Connector Support Like Darwin, RADL does not offer first-class connector ele-
ments. One can only specify simple communication links via bindings to connect sub
components of composite component types. However, complex interaction protocols
for their sub components cannot be specified explicitly.

Behaviour Specification Component behaviours are specified as protocols, at-
tached to the component interfaces. Protocols herein are used to specify the sequence
of method operations performed via the interfaces. RADL supports their specifica-
tion using finite state machines (FSM), in terms of finite number of states and their

49

transitions.
RADL uses the DbC approach to check whether the components are composed

successfully to form a whole system. Whenever the required interface behaviour of
a component, specified in FSM, is satisfied (pre-condition), the provided interface
behaviour of the interconnected component must also be satisfied (post-condition).
Moreover, RADL introduced parameterised contracts, which are concerned with the
relations between the required and provided interface behaviours of individual compo-
nents. Essentially, the parameterised contracts are used in determining the reliability
of components and check that for a component to offer its services to the outside
(post-condition), the same component must be able to request services from other
components via its required interfaces (pre-condition).

Semantics of RADL The formal semantics of RADL is defined as a Markov
Model [Whittaker and Thomason, 1994], which is used to map a probabilistic value
to each state transition of protocols and contracts specified in FSMs. Therefore, one
of the main goals of RADL – i.e., the reliability analysis of software architectures –
is rendered possible.

2.3.2.7 CBabel

CBabel is another ADL, apart from RADL [Reussner et al., 2003], applying the
notion of Design-by-Contract to the level of software architectural design [Rademaker
et al., 2005]. CBabel focuses more on connectors in software architectures and their
comprehensive contractual specifications.

Component Support A component type in CBabel is specified with interfaces.
A component interface can be either input or output, where the former represents
the services offered to the component environment and the latter represents those
required from the environment. Component interfaces in CBabel can communicate
with each other either synchronously (two-way) or asynchronously (via oneway key-
word). Besides interfaces, a component can have local variables. As discussed shortly,
these variables are bound to the state variables of connectors at configuration time.
By doing so, connectors can access the component data and change them.

CBabel does not allow for composite component types; instead, configurations of
component instances are represented via another construct, application.

Connector Support Connectors in CBabel are specified with roles and state
variables. Roles represent the interaction aspect of the component interfaces. When
connectors are instantiated in the application elements, their roles are linked with the
interfaces of the participating components. State variables represent the shared data
variables among components, which can be accessed and changed by connectors. So,
just like interface-role associations, designers can associate in the application elements
the connector state variables with the component local variables.

Furthermore, a connector can also include coordination contracts for specifying
how the interaction between component interfaces occur over the connector. A coor-
dination contract can be in three forms, sequential, mutually exclusive, and guarded.
Sequential contracts are used to specify that messages written via an output interface
are always transferred to the linked input interface. Mutually exclusive contracts are
used to specify for any two input interfaces of a component that only one of them
can receive messages at a time. Lastly, guarded contracts are specified with a guard,
before, and after blocks. When a guard over the state variables is satisfied, the input
and output roles are allowed to interact. This then enables the execution of the before

50

block first. If the communication is synchronous, upon triggering a response received
by an output role, the after block is executed ultimately.

Behaviour Specification Although components have local variables, the func-
tional behaviours of components cannot be specified in CBabel. The local variables of
components are changed by the connectors, which specify the interaction behaviours
of components via coordination contracts.

Semantics of CBabel The formal semantics of CBabel are defined in Rewriting
Logic [Meseguer, 1990], where for each element a precise mapping to Rewriting Logic
is provided.

Realisability Guarded contracts in connectors may be used to specify global
constraints for any interconnected components and thus cause potentially unrealis-
able specifications. Indeed, the guard of guarded contracts can be specified over the
(shared) data variables of components, which can be updated too via the before or
after blocks of the guarded contracts if their guard is satisfied.

2.3.2.8 PRISMA

PRISMA is an Aspect-oriented ADL, which aims at combining component-based soft-
ware engineering with aspect-oriented software engineering in specifying software ar-
chitectures [Pérez et al., 2003,Pérez, 2006]. To this end, it offers a first-class aspect
element, which is used to specify functional or non-functional properties for compo-
nents and connectors (constraining the join of their interface operations).

Component Support A component is specified with interfaces and computa-
tions. Component interfaces can be either inport, providing services to their envi-
ronment, or outport, requesting services. A component computation is specified as
an aspect. An aspect can be used to specify various details about components, e.g.,
functional, distribution, non-functional aspects, etc.

Connector Support Inspired from Wright, PRISMA views connectors as first-
class elements. Connector types are specified with roles. Just like component inter-
faces, a connector role can be either inrole or outrole, which represent the interface
of the component interacting via the connector. Besides roles, connector types can
include a coordination aspect, through which a connector glue can be specified that
acts as a choreographer and coordinates the behaviour of the roles.

Behaviour Specification As aforementioned, the behaviour of components and
connectors are specified through aspects. An aspect can serve different purposes, such
as coordination aspects for connectors, functional aspects for components, and distri-
bution aspects for systems of distributed components. PRISMA offers templates for
specifying aspects and all other architectural elements [Pérez, 2006]. These templates
have been defined using an extended form of the OASIS language [Pastor et al., 1995].

Semantics of PRISMA The semantics of PRISMA were formally defined using
π-calculus and Modal Logic of Actions [Stirling, 1992].

Realisability Just like all ADLs which support connectors with glues, PRISMA
may also cause unrealisable specifications that cannot be implemented in a decen-
tralised manner.

2.3.2.9 COSA

COSA is another second-generation ADL, which is inspired from Wright [Allen and
Garlan, 1997]. It is distinguished with its effort towards combining the principles
of component-based software engineering with the characteristics of object-oriented

51

1 Class Configuration sharedData_access{
2
3 Class Component user{
4 Interface {
5 Port user_i {require-protocol}
6 }
7 Properties{}
8 }
9

10 Class Component memory{
11 Interface {
12 Port memory_i {provide-protocol}
13 }
14 Properties{}
15 }
16
17 Class Connector sharedData{
18 Interface {
19 Roles{userRole{userRole Role protocol},
20 memoryRole{memoryRole Role protocol}}
21 }

22 Glue{
23 Connection-type{
24 ...
25 }
26 }
27 Properties{}
28 }
29
30 Instance sharedData_config{
31 Instances{
32 userIns: user;
33 memoryIns: memory;
34 connIns: sharedData;
35 }
36
37 Attachments {
38 userIns.user_i to connIns.userRole;
39 memoryIns.memory_i to
40 connIns.memoryRole;
41 }
42 }
43 }

Figure 2.13: Specification of shared-data access in COSA

software engineering (e.g., inheritance) [Oussalah et al., 2004, Smeda et al., 2004,
Smeda, 2010].

Component support Component types in COSA (e.g., user and memory in Fig-
ure 2.13) are specified with interfaces and a computation. Furthermore, a component
type can include properties for specifying non-functional properties and a constraint,
which is again a property that is used to specify certain policies to be met by the
components.

While components can be composite too, consisting of component and connector
instances, COSA also offers first-class instance elements (e.g., sharedData_config in
Figure 2.13) for specifying configurations of components and connectors.

Connector support COSA offers first-class connector types, which are specified
with a collection of roles for participating component interfaces and a glue for repre-
senting a global interaction protocol (e.g., sharedData in Figure 2.13). Designers can
also specify some other interaction details as part of connectors, such as the type of
connections or the mode of connections. While the connection types can be either
communication, conversion, coordination, or facilitation, the connection-mode can be
synchronous or asynchronous connections.

COSA also introduces composite connector types. A composite connector is speci-
fied via a glue element, with which designers can specify a configuration of component
and connector instances. So with COSA, it is possible to specify complex connectors
modularly, by re-using the existing component and connector type instances.

Behaviour Specification Behaviours of elements are specified via a behavior
construct, attached to component interfaces, connector roles, and connector glues. It
includes the state and transition descriptions for a component. While the state de-
scription includes the possible states the component can hold at a time, each transition
specifies a change of component state when certain events occur satisfying certain con-
dition(s) [Smeda, 2010]. An event herein is either received or emitted via component
interfaces and includes an action that is executed as a result of its occurrence.

Semantics of COSA The formal semantics of COSA were defined in [Smeda,
2010] using the B method [Abrial, 2005].

Realisability Like Wright, COSA enforces a glue in connector specifications,
through which protocols of interaction among components are specified. Thus, COSA
too allows potentially unrealisable specifications.

52

2.3.2.10 ADLMAS

ADLMAS has been developed for specifying and analysing the static/dynamic be-
haviours of concurrent, distributed and synchronous multi-agent systems [Yu and Li,
2005]. While being considered as an ADL, ADLMAS offers a visual notation (instead
of a textual one as other analysed ADLs) having its root in Petri nets [Brauer et al.,
1987]. ADLMAS separates the architecture specification of multi-agent systems into
two parts: agent level and society level. The agent level is concerned with the be-
haviours of individual agents, and, the society level is concerned with the the overall
behaviour of the system where agents are composed into a whole.

Component support Components in ADLMAS serve the purpose of specifying
agents in a multi-agent system. So, it is understandably shaped by that domain. A
component specification in ADLMAS consists of (i) state information (referred to
as beliefs), (ii) constraints (referred to as goals), (iii) computation (referred to as
plan), and (iv) interfaces for interacting with the environment. The computation of
a component herein is specified in terms of (internal) actions that the component
performs to meet its constraints.

Connector support ADLMAS offers connecting agents as connectors, which
serve as routers for the interacting components (i.e., agents). By doing so, compo-
nents do not have to encapsulate the control path and need to know the providers of
the services they request. This is instead handled by the connectors that receive the
service requests from components and forward them to the components providing the
services. Connectors can also change the communication links between components
dynamically. However, using ADLMAS connectors, one cannot specify complex inter-
action mechanisms, i.e., the protocols of interactions for the interacting components.

Behaviour Specification ADLMAS is based on Object-Oriented Petri nets for
specifying the behaviours of architectural elements. So, the computations of compo-
nents and the message routing of connectors are all specified as Petri nets.

Semantics of ADLMAS The formal semantics of ADLMAS were defined using
the theories of BDI formalism (i.e., beliefs, desires, and intentions) [Rao and Georgeff,
1991].

2.3.2.11 SKwyRL

Like ADLMAS discussed above, SKwyRL has also been developed for multi-agent
systems, whose main focus is however more on the specification and analysis of security
issues for multi-agent systems [Mouratidis et al., 2005,Mouratidis et al., 2010].

Component support Just like ADLMAS, SKwyRL considers agents as compo-
nents, each specified in terms of computation (referred to as capabilities) and state
(referred to as beliefs). Moreover, component specifications in SKwyRL have some
security elements, which are security constraints and security mechanisms. While
the former is for specifying security related constraints on the component computa-
tion, the latter for specifying how these security constraints can be met (e.g., secure
protocols or certain sequence of actions to be followed).

SKwyRL also supports composite components for describing complex agents in
terms of the configurations of other agents.

Connector support SKwyRL follows Darwin in its support for connectors, thus
viewing connectors as links between components. So, complex interaction mechanisms
(i.e., interaction protocols) cannot be specified using SKwyRL connectors.

Behaviour Specification SKwyRL does not adopt any process algebras or other

53

formalisms (e.g., Petri nets) for specifying the behaviours of components. Instead, the
behaviour of a component is specified using its computation (i.e., capabilities), which
is essentially a collection of plans that the component can process in its environment.
Each plan describes a sequence of actions to be executed, where an action is an event
whose invocation may update the component state or even trigger other plans as well.

Semantics of SKwyRL The formal semantics of SKwyRL were defined using
the Z formal specification language [Spivey, 1992].

2.3.2.12 AADL

AADL is an architecture description language, which is well known with its provision
of syntactic and semantic constructs for specifying not only software architectures but
also hardware architectures of systems [Feiler et al., 2006]. AADL is inspired from
MetaH [Binns et al., 1996] in its main concepts. It further extends MetaH with its
error model annex and provides more comprehensive support for reliability modelling
and analysis [Vestal, 2005].

Component support Just like MetaH, AADL does not provide a generic type
for specifying component abstractions. Instead, component types are categorised into
three groups, each consisting of a collection of component types which can be instan-
tiated by designers to specify their system architectures. For specifying a software
architecture, component types can be either (i) thread, (ii) thread group, (iii) pro-
cess, (iv) data, or (v) subprogram. For specifying a hardware architecture, component
types can be (i) processor, (ii) memory, (iii) device, or (iv) bus. Lastly, for specifying
composite units of the above-mentioned components, component type can then be a
system type only.

Component types under these categories are essentially specified with interfaces.
A component interface has either ports or subprogram calls, where ports serve for
asynchronous events and data communications, and, subprogram calls for two-way
synchronous method communications. A component type in AADL can also include
the (i) extends functionality for inheriting from other types and (ii) properties func-
tionality for specifying non-functional requirements. Furthermore, component types
can have a computation that is specified with (i) subcomponents, (ii) calls and con-
nections to specify interactions between subcomponents, (iii) extends to inherit from
another implementation, and (iv) properties to specify non-functional requirements
for the subcomponents.

Connector support AADL does not offer first-class connector elements. How-
ever, it provides a pre-defined collection of interaction mechanisms: (i) port connec-
tions, (ii) component access connections, (iii) subprogram calls, and, (iv) parameter
connections.

Port connections are concerned with the interactions through component ports
by sending or receiving data/events asynchronously. Component access connections
are employed when a shared data is to be accessed by components. As to subpro-
gram calls and parameter connections, they relate to synchronous interaction between
components through subprogram calls.

Behaviour specification Behaviour specification in AADL is performed via a be-
havior annex attached to component specifications [França et al., 2007]. The behavior
annex is essentially an automaton.

Semantics of AADL AADL was not originally developed with a precise seman-
tics; instead, the semantics of its architectural constructs were described in natural

54

language. However, several attempts have been made in this sense later on, e.g., [Chk-
ouri et al., 2008,Ölveczky et al., 2010].

2.3.2.13 Archface

Archface is one of the most recent ADLs that is tailored to Java and allows designers
to integrate the architecture specifications of their systems within its Java implemen-
tation so as to minimise their inconsistencies [Ubayashi et al., 2010]. Archface is also
inspired from Aspect Oriented Programming [Kiczales and Hilsdale, 2001], inheriting
some notions from AspectJ [Kiczales et al., 2001], e.g., pointcut and advice, which
are employed as part of Archface’s notation.

Component support A component is specified with interfaces, each represent-
ing a single method communication that is either required from the component envi-
ronment or provided to its environment. Furthermore, component specifications can
include AspectJ pointcut declarations for the interface methods, such as “call (method
call), execution (method execution), and cflow (control flow)”.

Composite components are not supported by Archface. Configurations of compo-
nents are specified via the architecture construct.

Connector support Connectors in Archface are first-class elements, which are
specified as a collection of connections between the required and provided interfaces
of some interacting components. Each connection has an AspectJ advice that is
specified for the provided method of the connection. The advice for the provided
method describes that whenever the pointcut of the provided method is satisfied,
this is followed by the inter-connected required method whose pointcut is expected
to be satisfied subsequently. Note however that complex interaction protocols for
components (i.e., the order of method-calls or method executions) cannot be specified
using Archface connectors.

Behaviour specification Archface does not allow designers to formally specify
the behaviours of components. Instead, components are specified with pointcuts,
which can also describe the control flow for their interface methods via cflow. To
implement architecture specifications, the interface methods of components, which the
pointcuts are specified for, are implemented in Java. Connectors are not required to be
implemented in code. Archface’s compiler uses the advices of connector connections
along with the component implementations and specifications to generate an AspectJ
program.

Semantics of Archface The formal semantics of Archface are given by showing
how components and connectors are transformed into SPIN’s ProMeLa processes
[Holzmann, 2004]. So, this allows for the formal verification of software architectures
via the SPIN model checker.

2.3.2.14 CONNECT

One of the most recent advances in software architectural description languages has
come through the CONNECT EU project [Issarny et al., 2011]. Following the general
approach of Wright, CONNECT has made it easier to describe interaction behaviours
by adopting FSP [Magee et al., 1997] rather than the more complex CSP [Hoare, 1978].
They have also extended their ADL in order to be able to perform stochastic analyses
of systems.

CONNECT views software architectures as collections of connectors, which medi-
ate the interactions among components.

55

1 Port_user = (user.get → User | user.set → User).
2 Port_memory = (memory.get → Memory | memory.set → Memory).
3
4 UserRole =(user.get → UserRole | user.set → UserRole).
5 MemoryRole =(memory.get → MemoryRole | memory.set → MemoryRole).
6 Glue =(user.get → memory.get → Glue | user.set → memory.set → Glue).
7
8 ∣∣SharedData_access = (Port_user ||
9 Port_memory ||

10 UserRole ||
11 MemoryRole ||
12 Glue).

Figure 2.14: Specification of shared-data access in CONNECT

Component support Components are simply specified with interfaces represent-
ing the interaction protocols of the components.

Connector support Just like Wright connectors, connectors in CONNECT are
specified with roles and a glue, where the roles represent the participating components
(namely their interfaces) and the glue represents their coordination.

Behaviour specification The behaviour of a component is specified as a set of
FSP processes, each representing its distinct interface behaviour (e.g., Port_user and
Port_memory in Figure 2.14). For connectors, the behaviour of each role is specified
as an FSP process, and, the glue is also specified as an FSP process. Lastly, the
configuration of components and connectors in a model is specified as a composite
process (e.g., SharedData_access in Figure 2.14), which composes the processes of
the component ports with the processes of the connector roles and the connector glue
that coordinate the component ports. So, architecture specifications can be formally
verified using the LTSA model checker of FSP.

Semantics of CONNECT The semantics of CONNECT were defined by show-
ing how components and connectors are formally specified in FSP.

Realisability Just like Wright specifications, CONNECT specifications are po-
tentially unrealisable due to the requirement for a glue in connector specifications.

2.3.2.15 MontiArc

The MontiArc ADL has been developed for specifying the software architectures of
distributed interactive systems, which consist of autonomous distributed components
communicating via, e.g., signal passing, asynchronous events, sensor data, or some
complex data [Haber et al., 2012]. MontiArc is distinguished with its support for
the simulations of the distributed system specifications. It provides a code generator
(see its website [MontiArc, 2012]) for transforming architecture specifications into
a form that enables their event-based simulations via a simulation framework.

Component support Component types are specified with interfaces, through
which components can communicate asynchronous events with their environments.
An interface can be of in or out type, for receiving and sending events respectively.
Each interface may exactly have only a single event; so, it is necessary to create a
different interface per event.

Connector support MontiArc views connectors as simple communication links
between component interfaces. It offers the connect construct for connecting any two
interfaces of different components. It does not allow to specify complex interaction
mechanisms, i.e., the interaction protocols.

Behaviour specificationMontiArc offers invariants that can be specified within
components types for constraining the component behaviours. Component invariants

56

are specified either in OCL or Java. Indeed, architecture models with invariants can
be transformed into Java code using the MontiArc code generator, which can then
be simulated via the MontiArc simulation framework that validates the invariant
constraints.

Moreover, MontiArc has been extended as MontiArcAutomaton recently [Ringert
et al., 2013,Kirch et al., 2014]. It promotes formal behaviour specification using I/O
automaton [Ringert and Rumpe, 2011], i.e., an extended form of statecharts.

Semantics of MontiArc The semantics of MontiArc are formally defined using
streams [Broy and Stølen, 2001] and automata [Rumpe, 1996]. Also, supporting
formal behavior specifications, MontiArc’s extension MontiArcAutomaton has been
formally defined in FOCUS calculus [Broy et al., 1992] so as to translate specifications
into FOCUS models for formally verifying their behaviours.

ADL High-
level
components

User-
defined
complex
connectors

Formal
behaviour
specification

Formally
analysable

Always
realisable

Darwin Yes No FSP Yes Yes
Olan Yes No No No Yes

Wright Yes Yes CSP Yes Potentially
no

UniCon Yes No No No Yes

Rapide Yes No Event patterns Yes Potentially
no

C2 Yes No Method call ordering Yes Yes

MetaH
Built-in
low-level

components
No linear hybrid automata Yes Yes

ACME Yes Yes No No Potentially
no

LEDA Yes No π Calculus Yes Yes
Koala Yes No No No Yes

SOFA Yes No Behaviour Protocols
(simplified CSP)

Only
Components

Potentially
no

XADL Yes Yes No No Potentially
no

PiLar Yes Yes CCS Yes Potentially
no

RADL Yes No FSM Yes Yes

CBabel Yes Yes Rewriting Logic Yes Potentially
no

PRISMA Yes Yes OASIS Yes Potentially
no

COSA Yes Yes No No Potentially
no

ADLMAS Yes No Object-oriented Petri
nets

Yes Yes

SKwyRL Yes No No Yes Yes

AADL
Built-in
low-level

components
No automata Yes Yes

Archface Yes No No Yes Yes

CONNECT Yes Yes FSP Yes Potentially
no

MontiArc Yes No No No Yes
XCD

ADL
Yes Yes Design-by-Contract Yes Yes

Table 2.4: ADL analysis results

2.3.3 Summary of the ADL Analysis

Table 2.4 summarises the results of my ADL analysis and shows that none of the
considered ADLs provides designers with a developer-friendly notation (i.e., non-
algebraic), which ensures realisable and formally analysable designs.

Algebraic notations of the ADLs. The bulk of the current ADLs (e.g., Wright,
LEDA, Darwin, PiLar, PRISMA, CONNECT, and SOFA) employ a formal notation

57

for specifying the behaviours of architectural elements. Their formal notations are
usually based on some process algebras (e.g., FSP [Magee and Kramer, 2006], CSP
[Hoare, 1978], CCS [Milner, 1980], or π-calculus [Milner et al., 1992]), even though
other formalisms are also used (e.g., Z [Spivey, 1992]). Although it is important
that they provide a formal means of specifying behaviours of architectures, process
algebras, etc., are unfortunately not viewed favourably by practitioners [Malavolta
et al., 2012].

Limited support for user-defined, complex connectors. Support for user-
defined connectors seems to be another major concern over existing ADLs, e.g., Dar-
win, Rapide, LEDA, Koala, RADL, CBabel, AADL, etc. These ADLs view connectors
at best as simple interconnection mechanisms, e.g., procedure call and event broad-
casting, providing no support for complex interaction protocols, or worse as mere
connection links with no interaction information at all. With minimal support for
connectors, components have to incorporate specific interaction protocols, thus re-
ducing their re-usability and increasing their complexity. UniCon and C2 provide
only partial support for connectors too, by either restricting designers with simple
built-in connectors or restricting their existence as part of other elements (e.g., com-
ponents, architecture).

Potentially unrealisable designs. Realisability of system architectures is a
major issue with a number of the existing ADLs. As shown in Table 2.4, all ADLs
supporting user-defined connectors allow the specification of unrealisable architec-
tures. Wright, COSA, and CONNECT require architectural connectors to include a
glue element, that is, a centralised unit coordinating the behaviour of components
that interact through the connector. Likewise, Rapide’s global event pattern con-
straints, PiLar’s constraint construct, and PRISMA’s coordination aspects, all act
like a Wright glue. However, the glue is deeply problematic, as I have shown by
using it to specify Alur’s unrealisable protocol [Alur et al., 2003] in Section 1.2.1.3
(page 17). It should also be noted again that the realisability problem is undecidable
in general. This means that not only these ADLs do not guard designers against
specifying unrealisable protocols, but that there is no general method that one could
use to warn designers after the fact. Indeed, this may be the reason why recent ADLs
focusing on code generation such as AADL, LEDA, Koala, and SOFA do not offer
support for user-defined connectors.

Early vs Recent ADLs As discussed so far, the more recent ADLs have no major
difference with the earlier ones when compared against the properties of interest here,
except a few developed without any inspirations (e.g., CBabel, MontiArc, and PiLar).
This is because most of the recent ADLs have taken the basic structures more or less as
granted, either following Darwin’s component-only approach or Wright’s component-
and-connector one as depicted in Figure 2.1 (page 35), and focused more on other
issues such as how to better support code generation.

2.4 Informal Modelling Languages

Besides precise architecture description languages discussed previously in Section 2.3,
there are also other modelling languages existing, which offer designers a more friendly
but informal way of specifying software architectures. In the rest of this section, a
sub-set of them is discussed, which have gained high popularity among software engi-
neers. I particularly focus on identifying their support for architectural components,

58

connectors (i.e., interaction protocols), behaviour modelling, and formal semantics.

2.4.1 Unified Modelling Language (UML)

With the advent of OOSE paradigm, several object-oriented modelling languages
have been developed (e.g., Object Modelling Technique [Loomis et al., 1987] and
Statecharts [Harel, 1987]), adopting the principles of OOSE, i.e., data encapsula-
tion, inheritance, and polymorphism. In the nineties, to unify the capabilities of the
existing object modelling languages, Unified Modelling Language (UML) has been
developed [Rumbaugh et al., 1999]. UML has now become one of the most popular
modelling languages, offering designers with a comprehensive visual notation for both
high-level and low-level designs of software systems. Indeed, as stated in the survey
of Malavolta et al. [Malavolta et al., 2012], practitioners prefer UML over a number
of surveyed architecture description languages for specifying software architectures.

Component Support UML offers a component diagram for specifying the struc-
ture of software systems. Components in a component diagram are specified in terms
of port interfaces that can be either required (i.e., requiring services from the compo-
nent environment) or provided (providing services). UML supports composite com-
ponents too, which consist of the configuration of other components.

Connector Support UML does not support connectors, which are generally
viewed as association links between the interacting components [Ivers et al., 2004].
Complex interaction mechanisms (i.e., interaction protocols) cannot be specified with
association links.

Behaviour specification UML offers diagrams, such as state machine diagram
and sequence diagram. While state diagrams allow for specifying the behaviour of
components formally, sequence diagrams for specifying the interactions among com-
ponents in terms of method-call sequences.

Formal Semantics UML lacks in formally defined semantics for its notation.
Instead, its semantics has been defined informally in [Booch et al., 1997]. However,
there are several attempts made to date at formalising UML’s behaviour specification
diagrams, e.g., [Bernardi et al., 2002,Choppy et al., 2011].

2.4.2 Systems Modelling Language (SysML)

Systems Modelling Language (SysML) is an extended form of UML, which adapts
UML to the needs of system engineers [Friedenthal et al., 2008]. UML component
diagrams have been modified as block diagrams in SysML. Although both are used to
express the structural aspect, the latter is focused more on system engineering that
requires hardware components and flow ports for structural specifications. Further-
more, UML activity diagrams have also been modified with some new features, e.g.,
disabling mechanism for actions and discrete/continuous flow rate specifications.

SysML also offers completely new diagrams, such as requirements and parametric
diagrams. Requirements diagram allows system engineers to visually document their
requirements and establish the associations among the requirement artefacts and also
the associations with other system models. Parametric diagrams are used for mod-
elling constraints that can be used in analysing system-level issues (e.g., performance
and reliability).

Component Support Components are represented via blocks in SysML. Just like
UML, blocks can be connected via ports, which can be either required and provided

59

again. Furthermore, as aforementioned, SysML supports flow ports for specifying the
elements that can stream in/out of the block.

Connector Support Inheriting from UML, SysML suffers from the same issues
that are raised in UML. Connectors are again neglected, viewed merely as communica-
tion links. Thus, interaction protocols for components cannot be specified explicitly.

Behaviour Specification Just like UML, SysML allows designers to specify the
behaviours of blocks using, e.g., state machine diagrams and sequence diagrams.

Formal Semantics Like UML again, SysML is intended as an informal language,
which hinders the formal analysis of models.

2.4.3 Agent UML (AUML)

Agent UML (AUML) is another modelling language which extends UML for adapt-
ing it to agent-based software systems [Bauer et al., 2001]. AUML allows designers
to model their systems in terms of agents (i.e., component) and their interaction
protocols.

Component Support Components are represented as agent classes in AUML,
which are specified in terms of state and behaviour descriptions.

Connector Support AUML extends UML with protocol diagrams, which al-
low for the explicit specification of interaction protocols. A protocol diagram is an
extended form of the classic UML (message) sequence diagrams. It describes an exe-
cution of a message sequence for a set of roles, each played by an agent participating
in the protocol. Protocol diagrams also support the specification of multiple threads
of interaction for agents, one of which can be executed based on some input message.
Furthermore, a protocol diagram can re-use another protocol diagram by either nest-
ing its protocol or executing it in an interleaving manner with the current protocol
diagram. AUML improved the semantics of protocol messages too. So, each message
can be either an asynchronous event or a synchronous method (where a response is
awaited). They can also be operated in parallel, enabling an agent to send or receive
multiple messages concurrently.

Behaviour Specification Extending UML, AUML allows for the formal be-
haviour specification of agents via state machine diagrams.

Formal Semantics Like UML, AUML suffers from the problem of informal dia-
grams. AUML does not have formally defined semantics, which therefore prevents the
protocol diagrams from being formally analysed. So, design errors, e.g., deadlocking
interaction protocols, may not be detected early on at the specification stage.

Realisability Another problem with AUML derives from the global nature of
protocol diagrams. They allow designers to specify constraints for agents that order
their message operations globally. However, as discussed in Section 1.2.1.3 (page 17),
global constraints for agents cause potentially unrealisable specifications if the agents
are decentralised.

2.4.4 CORBA IDL

The Common Object Request Broker Architecture (CORBA) is a standard released
by OMG that aims at facilitating the construction of distributed component systems
[OMG, 1999]. CORBA introduces the notion of Object Request Broker, which allows
components of distributed systems to interact with each other no matter (i) what
operating systems they have, (ii) what programming languages they use, (iii) where
they are located in the universe, and (iv) what hardware they depend on [Pyarali and

60

Schmidt, 1998]. For instance, a client, using Java and Unix OS, can safely make a
function call to a remote server, implementing the function in C++ under Windows
OS, as if both the client and the server ran under the same process in the same
computer. Making a call to an object in the server, the client however needs to
know some details about the functions, e.g., function identifier, type, and parameters.
Therefore, OMG introduces an Interface Description Language (IDL) [Vinoski, 1997],
which can be used to define functions and attributes for server objects.

IDL provides a similar syntax to those of widely-used programming languages,
e.g., C++. Indeed, it supports all the features of the C++ preprocessor, common
data types (e.g., boolean and long), and also user-defined types with the struct and
enum keywords. The main construct of the IDL is module, specified to encapsulate
interface definitions. This way, interfaces can be grouped with each other according
to their relevance. A module interface comprises a set of operations and attributes.
Each operation herein (same as functions in C++) is specified in terms of its identifier,
return type, and the parameters. IDL also introduces the exception keyword that the
interface operations can specify, which might be thrown to the clients upon their
requests.

Component support CORBA IDL focuses on the communication of objects,
whose functions can be called remotely via IDL interfaces. However, it does not let
the communication of more complex units, e.g., components that consist of multiple
interfaces for requiring and/or providing functions from their environment. So, this
led to the development of CORBA Component Model (CCM), discussed in the next
part, which adopts the CBSE paradigm and thereby allowing the specification of
components with multiple IDL interfaces.

Connector support Connectors are not considered in CORBA.
Behaviour Specification Given that components are not supported, their be-

haviour specification is immaterial in CORBA.
Formal Semantics CORBA does not provide any formal semantics for its IDL.

2.4.5 CORBA Component Model (CCM)

As aforementioned, software communities are keen on developing complex software
systems out of re-usable components. This led the OMG to release a component-based
form of the CORBA specification called CORBA Component Model (CCM) [OMG,
2006]. CCM enables the large, complex applications to be deployed as a composition
of independent components, which can be accessed by distributed clients.

Component support CCM introduced Component Implementation Definition
Language (CIDL), which essentially extends the classic IDL’s notation with the com-
ponent construct. Components are specified in terms of port interfaces, which are the
points of interaction with other components. A port can be either receptacle (repre-
sented with uses keyword), containing the operations to be required from other com-
ponents, or facet (provides), containing the operations offered to other components.
Furthermore, CCM introduces two additional types: source (publishes), containing
the asynchronous events emitted to the outside, and sink (consumes), containing the
events to be received from the outside.

Connector support CCM does not support connectors as first-class elements.
Components are, therefore, composed to an entire system via simple links that con-
nect the compatible interfaces of components together. This is performed via the
CCM implementations (e.g., OpenCCM [Briclet et al., 2004] and CIAO [Wang et al.,

61

2003]), through which components are implemented, composed together via inter-
connections, packaged, and deployed for clients. So, since connectors are neglected,
complex interaction mechanisms (i.e., interaction protocols) cannot be separated from
component implementations, which makes components protocol-dependent.

Behaviour Specification The behaviour specification of components is not con-
sidered in CCM.

Formal Semantics CCM does not provide any formal semantics for components
or their composition.

2.4.6 ArchJava

ArchJava is a language, tailored to Java, which integrates the architecture specifica-
tion of a software with its Java implementation [Aldrich et al., 2002b]. By doing so,
it is aimed to facilitate the understanding of software implementations and maintain
the consistency between the software architectures and their implementation.

Component support Components in ArchJava are specified with port interfaces,
through which components interact with each other via method-calls. Each compo-
nent port has methods that are specified with either requires, provides, or broadcasts
keywords. Methods with requires are requested from the connected component port,
methods with provides are offered to the connected component, and lastly, methods
with broadcasts can be requested from multiple connected components. So, when the
ports of components are connected to compose a whole system, it is essential for con-
nection consistency that provided methods are always associated with either required
methods or broadcasts methods. This type-checking is performed via the first-class
connectors in ArchJava.

Connector support ArchJava has initially been developed without connectors,
where connect links were employed to establish the component port communications.
However, it has been extended later on with first-class support for connector ele-
ments [Aldrich et al., 2003]. Connectors herein use reflection to type-check that the
connector roles are associated with appropriate component ports but this considers
just their interfaces.

Behaviour Specification ArchJava is essentially an implementation-oriented
language, which therefore omits behaviour specification of components and connectors
(i.e., interaction protocols). So, formal analysis of system behaviours is not possible.
Instead, ArchJava aims at guaranteeing the "communication integrity" of their com-
ponent implementations. That is, component implementations can only communicate
with the components which they are connected in the respective architecture specifi-
cation.

Formal Semantics The formal semantics of ArchJava were defined as ArchFJ,
which is based on Featherweight Java [Aldrich et al., 2002a].

2.4.7 Summary

In this section, I analysed some of the popular informal modeling languages in terms
of their support for components, connectors (interaction protocols), formal seman-
tics, formal analysis, and realisability. The results of the analysis is presented in
Table 2.5. UML gained high popularity among practitioners, which provides a com-
prehensive visual notation for software design and is supported by huge number of
tools. However, UML lacks first-class support for complex interaction mechanisms
among components. Software architectures in UML are specified with components

62

Language High-
level
components

User-
defined
complex
connectors

Formal
behaviour
specification

Formally
analysable

Always
realisable

UML Yes No State Machine
Diagram No Yes

SysML Yes No State Machine
Diagram No Yes

Agent
UML

Yes Yes State Machine
Diagram No Potentially

no

CORBA Class
objects

No No No Yes

CCM Yes No No No Yes
ArchJava Yes Yes No No Yes

Table 2.5: The analysis results of the informal modeling languages

only, which also include their interaction protocols and thus hindering their reuse.
UML is also informal as it does not have formal semantics, hindering the formal anal-
ysis of specifications. SysML extending UML suffers from the same problems too.
AUML differs from UML and SysML with its protocol diagram that allows to specify
interaction protocols separately from components. Nevertheless, just like connector-
centric architecture description languages, AUML allows designers to specify global
constraints for components via the protocol diagrams and thereby leading to poten-
tially unrealisable specifications for decentralised systems. CORBA IDL and CORBA
Component Model (CCM) are not appropriate for architecture specifications either.
CORBA IDL adopts OOSE paradigm and thereby viewing components as class ob-
jects with provided method interface(s) only. CCM adopts CBSE paradigm and
supports components with interfaces for both method communications (i.e., required
or provided) and asynchronous event communications (i.e., emitted or consumed).
However, CCM does not support connectors; so, complex interaction mechanisms are
embedded inside component implementations which makes them protocol dependent
and hinders their re-use. Lastly, the ArchJava approach supports both components
and connectors in specifying software architectures; but, their behaviour specifica-
tions are ignored, so is the formal analysis for design correctness. Instead, ArchJava
focuses more on the implementation aspect of software development, e.g., consistency
checkings and communication integrity for component implementations.

2.5 Design-by-Contract based Techniques

Design-by-Contract (DbC) is an approach that has been proposed to increase the
reliability of software components specified in OOSE [Meyer, 1992]. DbC promotes
the contractual specification of software in a formal way on the basis of Hoare’s
logic [Hoare, 1969] and VDM’s rely-guarantee [Bjørner and Jones, 1978] specification
approach. Contracts serve essentially to constrain a client of a software system and
its supplier, interacting with each other on a method-call. It basically describes (i)
the obligations of the client for a successful interaction and (ii) the benefits that the
supplier guarantees after a successful interaction.

While DbC is introducing a formal aspect into the development of software in
practice, it does so in a way that appears more natural to developers, without asking
them to learn and use formal languages that they do not have much experience with.
For many developers it is simply a way to write good code – some see the specified
contracts as describing the test conditions that should be considered, as in test-driven
development [Janzen and Saiedian, 2005, Maximilien and Williams, 2003]. This is

63

a significant property of DbC, as formal methods have generally been seen as an
expensive technique, not always applicable in practice, and best applied by formal
methods experts. Indeed, as discussed in Section 2.3 (page 34), formal architecture
description languages could not enter the mainstream of practitioners as they require
the knowledge of process algebra formalisms.

Eiffel is the first object oriented programming language that applies the principles
of DbC [Meyer, 1988]. It introduced require and ensure clauses for the specifica-
tion of contracts for object methods. The requires states the pre-condition on the
method parameters which the clients are obliged to meet; the ensures states the
post-condition on the method result and on the component state. Upon satisfaction
of the required pre-condition for a method-call, the method supplier ensures via the
post-condition that the component returns the expected result and leaves the com-
ponent in a reasonable state. So, if both the pre- and the post-conditions are met
for a method-call, then, the method is considered as behaving correctly, in the way
specified via its contract.

Apart from its use in Eiffel, DbC has been incorporated in other languages as well,
such as Java through JML [Cheon and Leavens, 2002,Chalin et al., 2006,Burdy et al.,
2005] and C# through Spec# [Barnett et al., 2005b]. Furthermore, DbC has also
been adopted by high-level design approaches, through which designers can specify
their software architectures contractually. In the rest of this section, I discuss the
contractual specification languages and the contractual design approaches, showing
their positive and negative sides for architecture specifications.

2.5.1 DbC-based Techniques for Object Classes

Herein, I discuss three well-known contractual specification languages to understand
their application of contracts and compare them with each other too. I also discuss
their support for components, connectors, formal behaviour specifications, and formal
semantics.

2.5.1.1 Java Modelling Language (JML)

Java Modelling Language (JML) is a specification language that is tailored to Java
[Chalin et al., 2006]. JML is based on Design-by-Contract [Meyer, 1992], thus allowing
developers to specify the functional behaviour of Java class (or interface) methods
contractually.

1 /*@ public normal_behavior
2 @ requires arg>=0;
3 @ ensures \result * \result == arg;
4 @ also
5 @ public exceptional_behavior
6 @ requires arg<0;
7 @ signals_only WrongArgumentException;
8 @*/
9 int sqrt(double arg) throws WrongArgumentException{...}

Listing 2.1: JML specification for a square-root method

Method contracts in JML are specified essentially with requires pre-condition and
ensures post-condition. Listing 2.1, for instance, gives a contractual specification for
the sqrt method. It states that when the parameter argument passed is greater than
or equal to zero (line 2), the result to be return is ensured to be the square-root of
the argument (line 3). If the argument is less than zero (the second case in lines 5–7),

64

then the exceptional behaviour is satisfied, leading to theWrongArgumentException

being signalled. It should be noted that if the pre-conditions of different cases are
satisfied at the same time (i.e., overlapping pre-conditions), this is considered as
inconsistent specification.

Besides method contracts, JML allows for the specification of other aspects. For
instance, (i) invariants that can be used to specify constraints at the object or loop
level, (ii) subtype specifications for the contractual specification of sub-classes in-
heriting from a contractually specified super-class, (iii) non_null, assignable, and
modifiable keywords that can be attached to the instance variables declared in Java
classes, and (iv) abstract model fields for specifying abstractions over concrete Java
fields.

JML is supported by a number of tools, aiding in analysing the Java classes or
interfaces annotated with the JML specifications [Burdy et al., 2005]. Using the JML
compiler, one can check at runtime whether the JML conditions are violated by the
implementation of the Java methods or not. Alternatively, static checks are also
possible by using the extended static checkers implemented for JML.

There is also an extension of JML introduced in [Rodríguez et al., 2005] which
offers constructs for describing notions of concurrency, such as locking, data confine-
ment, and serialisability, that are essential for controlling concurrent access to the
methods. Some of the basic constructs are lock held by methods to perform opera-
tions, atomicity used in enabling the sequential execution of methods, when used as
part of method constructs to describe blocking conditions on method calls, etc.

Component support As discussed above, since JML is tailored to Java and
thus an object-oriented language, it views components as class objects that can only
provide methods to their environment.

Connector support Being object-oriented, JML does not support connectors
either.

Behaviour Specification As discussed above, the provided method behaviours
of components are formally specified using contracts.

Formal Semantics There have been different attempts made so far towards
defining the formal semantics of JML, e.g., [van den Berg and Jacobs, 2001,Darvas
and Müller, 2007], which aid in formally verifying JML specifications via theorem
provers.

2.5.1.2 Spec#

Spec# is another DbC-based specification language that is tailored to the C# lan-
guage [Barnett et al., 2005b]. Inspired from JML, Spec# essentially allows for speci-
fying the functional behaviour of C# methods with contracts.

1 int sqrt(double arg) throws WrongArgumentException
2 requires arg>0
3 otherwise WrongArgumentException;
4 ensures \result * \result == arg;
5 {...}

Listing 2.2: Spec# specification for a square-root method

Spec# does not offer annotations for specifying method contracts, as is the case
with JML. Instead, contracts, as shown in Listing 2.2, are specified as part of the
method signature itself.

65

The Spec# language is simpler than the JML language as Spec# consists of fewer
constructs. Indeed, the same behaviour of the square root method is specified both
in JML (Listing 2.1) and Spec# (Listing 2.2). While JML requires the separate
specification of normal and exceptional cases, the exceptional case is specified with
Spec# by simply attaching an extra otherwise clause to the requires. Note that
Spec# provides an otherwise keyword to specify an alternative behaviour which is
executed when the actual method behaviour’s pre-condition is not satisfied. So, unlike
JML, inconsistencies due to overlapping pre-conditions of normal and exceptional
cases cannot occur in Spec#.

Spec# is supported by a compiler that can be used via the Microsoft Visual Studio
toolset. The Spec# compiler is able to produce language independent code from the
specifications that can then be fed to program verifiers, e.g., Boogie [Barnett et al.,
2005a].

Like JML, Spec# also considers multi-threaded access to objects [Jacobs et al.,
2005]. To this end, Spec# has been extended with constructs, e.g., acquire and
release, which enable objects to be accessed and modified sequentially and thus pre-
vent race conditions.

Component support As discussed above, since Spec# is tailored to C# and
thus an object-oriented language, it views components as class objects that can only
provide methods to their environment.

Connector support Since Spec# is an object-oriented specification language, it
does not support connectors either.

Behaviour Specification As discussed above, the provided method behaviours
of components are specified formally using contracts.

Formal Semantics The formal semantics of Spec# were implemented by the
Boggie tool, mentioned above, using first-order logic. The tool transforms Spec#
specifications into first-order logic and passes them to some theorem provers for ver-
ifying the specifications.

2.5.1.3 Object Constraint Language (OCL)

Object Constraint Language (OCL) is another object-oriented language through which
constraints can be specified for the behaviours of class objects [OMG, 2012b]. Unlike
JML and Spec#, OCL is not tailored to any programming languages. Instead, it is an
OMG standard, proposed for UML class diagrams to enhance their preciseness with
more formal constraints.

1 context MathClass::sqrt(double arg)
2 pre ∶ arg >0
3 post ∶ result * result = arg

Listing 2.3: OCL specification for a square-root method

Since OCL is intended for UML class diagrams, it considers the specification of
constraints for classes at a higher level of abstraction than JML and Spec#. Indeed,
OCL’s notation is very poor compared with them. It offers two ways of supplementing
constraints to the classes in a UML diagram: (i) class invariants and (ii) method
pre- and post-conditions. Listing 2.3 shows how a pre- and post-condition can be
attached to a squareroot method of a classMathClass in a UML class diagram. One
cannot however specify with OCL lower level details, such as exceptional behaviour

66

Contractual
Approach

High-
level
components

User-
defined
complex
connectors

Formal
behaviour
specification

Formally
analysable

Always
realisable

JML Class
objects

No Contract Yes Yes

Spec# Class
objects

No Contract Yes Yes

OCL Class
objects

No Contract constraints Yes Yes

Table 2.6: The analysis results of the design-by-contract based specification languages

of methods4.
OCL is supported by various tools, which facilitate the integration of constraints

into UML class diagrams and their evaluation. As stated in [Chimiak-Opoka et al.,
2011], most of the tools offer a visual editor for constraint specification. While parsing
of constraints for syntactical correctness is offered by many of them, evaluation for
detecting possible constraint violations is offered by a limited number of them. Indeed,
as also stated in [Richters, 2001], OCL tools developed initially do not include in their
scope any logical consistency checking or code verification functionality. However,
some of the tools offer automatic code generation from constraints into languages,
e.g., Java and AspectJ.

Component support As discussed above, since OCL is an object-oriented lan-
guage, it views components as class objects that can only provide methods to their
environment.

Connector support Since OCL is object-oriented, it does not support connectors
either.

Behaviour Specification As discussed above, the provided method behaviours
of components can be specified formally using contract constraints (i.e., pre- and
post-conditions).

Formal Semantics OCL’s semantics were formally defined in its specification
document, given as an annex [OMG, 2012b]. Besides, there are also several attempts
made by others, some defining OCL in the form of operational semantics (e.g., [Cen-
garle and Knapp, 2001]) and some using theorem proving techniques to enable the
formal verification of OCL specifications, (e.g., [Brucker and Wolff, 2008,Kyas et al.,
2005]).

2.5.1.4 Summary

With the advent of languages, such as JML, Spec#, and OCL, DbC has proven to be
quite useful to developers for specifying and verifying the behaviour of object classes
and their methods. However, as DbC was developed for use in Object-Oriented Soft-
ware Engineering (OOSE), it was understandably shaped by that domain. Designers
need more comprehensive contractual approaches in order to be able to specify soft-
ware components. I discussed OOSE’s support for specifying software architectures in
Section 2.2.1 (page 28). So, naturally, OOSE based contractual languages suffer from
the same problems. These are, firstly, the languages discussed above all lack com-
plete support for component interfaces, omitting the interfaces for requiring services
and also those for publishing and consuming asynchronous events. Moreover, as also
presented in Table 2.6, none of the languages offer first-class support for interaction

4Specifying method exceptions for OCL has been addressed in [Soundarajan and Fridella, 1999]

67

protocols, which is crucial for modular, re-usable, and formally analysable software
architectures.

2.5.2 DbC-based Design Techniques for High-level Software
Designs

Besides DbC-based software modelling languages, there are also high-level design ap-
proaches that adopt DbC in their own way of specifying software systems. In this
section, I discuss some of the well-known contractual design approaches in terms
of their support for architecture specifications, namely for components, connectors,
formal behaviour specification, and formal semantics. I am also interested in un-
derstanding their support for (i) two-way method communications via provided and
required interfaces of components, (ii) one-way asynchronous event communications
via consumer and emitter interfaces of components, and lastly, (iii) the modular use
of contracts.

2.5.2.1 Beugnard et al.’s Approach

Beugnard et al. propose in [Beugnard et al., 1999] the first inspiring approach that
applies DbC to software components.

Behaviour Specification Beugnard et al. discuss different aspects of contracts,
i.e., basic contracts, behavioural contracts, synchronisation contracts, and quality
of service (QoS) contracts. Basic contracts represent the component interfaces that
consist of the signatures of the methods provided to the component environment. Be-
havioural contracts are obtained by attaching pre- and post-conditions to the meth-
ods specified as part of the basic contracts. They essentially represent the functional
behaviour of methods. Synchronisation contracts serve as interaction protocols for
component interfaces, used to specify the order of method-calls for the provided in-
terfaces of components. Beugnard et al. promote the specification of synchronisation
contracts using formal methods, such as path expressions [Campbell and Habermann,
1974]. Finally, QoS contracts enable the specifications of quality properties for com-
ponents.

Component Support While promoting the systematic application of contracts
at four different levels, Beugnard et al. narrow their focus to the provided methods
of components only. The explicit specification of methods that a component requires
from its environment is not considered. Nor is it considered the asynchronous event
communications among components and their contractual specification.

Connector Support As discussed above, components can have synchronisation
contracts to specify their interaction protocols. However, synchronisation contracts
cannot be separated from components as first-class elements. So, this makes compo-
nents protocol-dependent and hinders their re-use with different patterns of interac-
tions.

Formal Semantics Since Beugnard et al. focus on introducing their notion of
different contract types for components, practical issues such as defining the contract
semantics using some formalisms and enabling formal verifications are not considered.

2.5.2.2 Li et al.’s Approach

Li et al. [Lin et al., 2004] propose a component model ESIM for specifying embedded
software systems, which is influenced by Beugnard et al.’s work discussed previously.

68

Li et al.’s work is distinguished with its adoption of the pi−calculus [Milner et al., 1992]
formalism in specifying contracts, enabling the formal reasoning of specifications.

Component Support ESIM improves Beugnard et al.’s work by also supporting
the required interfaces for components. However, one-way asynchronous events are
ignored by ESIM too.

Behaviour Specification Basic contracts of Beugnard et al. are termed as syn-
tactic contract in ESIM, which are essentially used for checking (return) type compat-
ibility of methods for the inter-connected required and provided ports of components.
Behaviour contracts of interface methods (i.e., functional behaviour) are specified in
terms of pre- and post-conditions, both expressed as assertions. A synchronisation
contract is specified for a component via ESIM’s protocol construct. A protocol con-
sists of roles, each describing the interaction of the component with another compo-
nent in its environment. Each protocol role states the order of method-calls imposed
on the component interaction, specified formally in pi−calculus. However, protocols
cannot exist independently of components again, thus reducing the reuse of compo-
nents with different protocols. Note also that π−calculus based notation for protocols
may not necessarily be found familiar by practitioners.

Connector Support ESIM offers connectors too, but, they serve just as simple
links to connect interacting components.

Formal Semantics The formal semantics of ESIM were defined using the pi−calculus
type system [Pahl, 2001].

2.5.2.3 Schreiner et al.’s Approach

Schreiner et al. [Schreiner and Göschka, 2007] discuss a connector-centric approach
for the contractual specification of distributed embedded systems. This work aims
at improving Component-based Software Engineering with its connectors, which are,
just like components, considered as the explicit (i.e., physical) elements of software
systems.

Component Support Components are visually specified using UML’s compo-
nent notation. Each component consists of interfaces, which can be either required or
provided. However, components cannot have interfaces for communicating one-way
asynchronous events.

Connector Support Connectors are specified just like components (i.e., using
UML components), which can have interfaces too. Connectors each sit among the
interacting components and establish their communications by connecting its inter-
faces with the interfaces of the communicating components. However, connectors
herein cannot be used to impose interaction protocols for the components, focussing
instead on the specification of basic interaction mechanisms, i.e., procedure call, data
broadcast, blackboard access, or data stream.

Behaviour Specification Schreiner et al.’s work does not support the behaviour
specification of elements. Contracts herein are attached to component/connector
interfaces and encapsulate non-functional property specifications, e.g., worst-case ex-
ecution time and method response time. While components can include their own
non-functional properties in their contracts, these properties can be impacted by the
contracts of the connectors establishing their connections. For instance, a connector,
via its own interface contracts, may aim at increasing the worst-case execution time
of the interface methods that the connected components communicate for. Besides
component and connectors, one can attach contracts to system bus and specify infor-

69

mation, such as message transfer delays or memory requirements. When components
and connectors are composed to a system, the component and connector contracts
should satisfy the bus contracts and also the contracts of the connected component
interfaces (via connector interfaces) should be compatible.

Formal Semantics Schreiner et al. does not focus on the formal reasoning of
component/connector contracts. So, they do not provide any formal semantics for
their approach.

2.5.2.4 Enselme et al.’s Approach

Enselme et al. discuss in [Enselme et al., 2004] another approach that applies DbC to
the specification of component based systems. Enselme et al.’s work is distinguished
with its use of contracts for guaranteeing the compatibility of interacting components.

Component Support Components are specified with required and provided in-
terfaces, performing two-way method communications. Like other approaches dis-
cussed so far, Enselme et al. do not consider interfaces for asynchronous event com-
munications either.

Behaviour Specification Methods of required and provided component inter-
faces are attached with contracts to specify their functional behaviours. Just like
behaviour contracts of Beugnard et al., discussed above, method contracts herein are
specified with pre- and post-conditions.

Connector Support Enselme et al.’s approach does not offer connectors for the
first-class specification of interaction protocols for the components. Instead, they of-
fer interaction contracts that aim at ensuring the compatibility of components and
their successful composition to whole systems. An interaction contract is obtained
by combining the method contracts of required and provided interfaces that are in-
terconnected. For each method-call of a required interface, the interaction contract
uses its pre- and post-conditions, and further constrains them with the pre- and post-
conditions of the provided interface on the same method. By doing so, the satisfaction
of interaction contracts can guarantee that required interfaces interact with provided
interfaces successfully.

Formal Semantics The formal semantics of Enselme et al.’s approach were de-
fined using temporal logic of actions [Lamport, 1994].

2.5.2.5 OCoN

OCoN [Giese, 2000] is another contractual specification approach that is partially
inspired from Beugnard et al.’s work in its support for synchronisation contracts.
OCoN is distinguished with its Petri nets [Brauer et al., 1987] based contracts specified
using UML notations.

Component Support Components are specified using UML’s component nota-
tion. Each component consists of interfaces that either provide services or require
services from the component environment. Interfaces for asynchronous events are
neglected though.

Connector Support OCoN offers «contract» stereotype in UML, which can be
attached to component interfaces. A contract stereotype is used to specify an interac-
tion protocol for the services of the attached component interface, which is formally
specified using Petri nets. Furthermore, OCoN offers «synchronization» stereotype
that can be used to specify extra constraints for a contract by enabling the syn-
chronous execution of its protocol with the protocol(s) of other interfaces in the same

70

Contractual
design
approach

High-
level
components

User-
defined
complex
connectors

Formal
behaviour
specification

Formally
analysable

Always
realisable

Beugnard
et al.

Yes No Design-by-Contract No Yes

Li et al. Yes No Design-by-Contract Yes Yes
Schreiner
et al.

Yes No No No Yes

Enselme
et al.

Yes No Design-by-Contract Yes Yes

OCoN Yes Yes Petri Nets for
interaction protocols Yes Yes

Table 2.7: The analysis results of the DbC-based design approaches

component. Just like contract stereotype, the synchronization stereotype is also speci-
fied using Petri Nets. Note however that with Petri Nets, the specification of protocols
may be cumbersome for complex interactions.

Behaviour SpecificationWhile OCoN introduces Petri nets based specifications
of Beugnard et al.’s synchronisation contracts, it ignores the behaviour contracts of
Beugnard et al.’s work. Indeed, OCoN’s main focus is on specifying and verifying
the interaction protocols for components. The internal (i.e., functional) behaviours
of components are considered immaterial.

Formal Semantics The formal semantics of OCoN were defined in an extended
form of Petri Nets [Giese, 1999].

2.5.2.6 Summary

I discussed above some of the well-known contract-based design approaches. So, I
observed that none of these approaches is successful in applying DbC to software
architectures, failing to consider all aspect of software components and other issues
such as connectors. First, the current approaches consider method communications
only, neglecting asynchronous event communications. There are even those focussing
only on the provided methods of components, neglecting the methods that the compo-
nent require from their environment. Moreover, as shown in Table 2.7, the discussed
approaches ignore the first-class specification of interaction protocols as connectors.
OCoN [Giese, 2000] (i.e., discussed as the last) is the exception here, which however
lacks in support for the specification of components’ functional behaviours. Another
issue with the contractual approaches discussed is that the implicit or explicit (i.e.,
first class) specification of interaction protocols require the use of formalisms (e.g.,
π−calculus and Petri Nets), which are not always found familiar.

2.6 Other Formal Design Approaches

Besides design-by-contract based design approaches discussed previously, there are
also some other design approaches, suggesting their own unique way for the formal
specification of systems. In this section, I discuss the three approaches that, I believe,
gained wide acceptance and are viewed as important contributions to the field of
software engineering. These are Reo coordination model, Exogenous connectors, and
Fractal component model. The discussions herein are mainly based on their key
characteristics and the level of support they provide for components and complex
connectors (i.e., interaction protocols).

71

2.6.1 Reo

Reo has been developed as a coordination language, which promotes the composi-
tional construction of connectors out of simpler ones [Arbab, 2004]. Connectors are,
therefore, viewed as first-class elements and considered as the unit of coordination and
communication in a system. Indeed, Reo puts all its emphasis on connectors; and,
components are considered immaterial, which can be any entities communicating via
connectors.

A Reo connector can be either simple or complex. Simple connectors are channels,
which are used to specify the communication links between any two components. A
Reo channel has two ends, source and sink, where the source receives data from the
connected component and the sink writes data to it. Reo introduces two main channel
types, which are synchronous and asynchronous. These two types are further sub-
divided into various types, e.g., bounded and unbounded, enabling further specialised
versions of the types. Through composition operators, such as join, split, connect, and
hide, channels of these types can be composed into more complex interaction units,
i.e., the connectors. By adopting such a compositional way of specifying complex
interaction units, it is aimed in Reo to maximise the expressiveness of connectors in
specifying interaction protocols. Indeed, Reo guarantees that any interaction protocol
that can be expressed as a regular expression over the component I/O activities can
be specified in Reo as a composition of simple channels.

Initially, the semantics of Reo connectors were formally defined using coalge-
bra [Arbab and Rutten, 2002]. So, connectors can be reasoned about, e.g., their
equivalence with another connector and their behaviour to prove that it meets cer-
tain properties. Later on, Reo has also been semantically defined in [Mousavi et al.,
2004], showing how connector specifications can be transformed into Maude’s rewrit-
ing logic language [Clavel et al., 1999]. This allows model checking the behaviour of
Reo connectors via the Maude tools.

As aforementioned, Reo does not support specifying the behaviour of components,
focussing solely on their interactions. So designers cannot use Reo to specify and anal-
yse component behaviours for functional correctness. A more concerning issue is that
using Reo connectors, designers can specify global constraints for components, which
cannot always be realised for distributed components. As discussed in Section 1.2.1.3
(page 17), distributed components are autonomous and cannot observe the full sys-
tem state. Therefore, one cannot constrain them globally – only local component
constraints can be possible. Lastly, Reo connectors act as wrappers around the com-
ponents. So, whenever a component makes an action request that does not satisfy
the connector protocol, the request cannot be undone but just delayed. However,
such requests may cause unexpected component behaviours that are unaware of such
delays and may assume that everything is normal.

2.6.2 Exogenous Connectors

Exogenous connectors [Lau et al., 2005, Lau et al., 2006a] is a component model
which, just like Reo discussed above, focuses on the compositional specification of
connectors out of simpler ones. Exogenous connectors is distinguished with its clean
separation of computation (i.e., components) from control path (i.e., connectors).
By doing so, components are aimed to be loosely coupled, as they do not initiate
method-calls themselves but, instead, deal with their own functional behaviour. The
order of method-calls the components receive/make are coordinated completely by

72

the connectors. This not only facilitates the maintenance of components but also
maximises their reuse within different contexts requiring different interactions.

Exogenous connectors offers two types of connectors: method invocation connec-
tors and n-ary connectors. The former represents the basic form of interaction for
controlling the method-calls of an individual component. The latter is for specifying
complex interactions, which are constructed out of other connectors hierarchically in
n levels. For a system, in the bottom level, the system components are coordinated
by simple invocation connectors. These simple connectors can then be coordinated
by complex connectors at an upper level, which can again be coordinated by other
complex connectors at higher levels, and so forth, until the top nth level is reached
for the desired coordination of components.

The drawback of n-ary connectors is that connectors specified at each level are
essentially centralised controllers for the connectors they coordinate which are speci-
fied at one level below. These controllers are explicit and clearly visible – while this
centralises all behaviour, it avoids surprises. However, network overhead, reliability,
scalability, etc. analyses (what practitioners really care about [Malavolta et al., 2012])
based on the decentralised architectural design are now invalid. Implicit centralisa-
tion changes the system structure and its behaviour with respect to these properties
– it breaks what ArchJava calls “communication integrity” [Aldrich et al., 2002b]. Af-
ter all, if the architect wished for a centralised solution they should have specified it
explicitly by introducing a controller component in the system – that is the solution
at the architectural level for the requirement. If they did not do so it was probably
because they desired a decentralised solution, so as to get its benefits.

Unlike many design approaches and architecture description languages, exogenous
connectors separates the development life-cycle into two stages: design and execu-
tion. In the design stage, firstly the components are specified, analysed, and finally
implemented as Java classes. The component implementations are then stored in a
repository for a later re-use. In the execution stage, designers can retrieve and instan-
tiate those component classes from the repository and compose them via connectors
to build their system architectures. Note that just like components, connectors can
also be specified, analysed, implemented, and then stored in a repository for later
use [Elizondo and Lau, 2010].

The semantics of the exogenous connectors were initially defined using first-order
logic [Lau et al., 2006b]. Later on, the formal SPARK language [Barnes, 2003] has
been used to define the semantics of exogenous connectors [Lau and Wang, 2007].
So, specifications in exogenous connectors can be translated precisely into SPARK
models, which enables their formal verifications using SPARK’s verification tool.

2.6.3 Fractal Component Model

Fractal is a component model for the design, deployment, and management of dy-
namically re-configurable distributed systems [Bruneton et al., 2006].

Unlike Reo and Exogenous connectors discussed above, Fractal’s main element is
component that is specified hierarchically to describe the computational units in sys-
tems. Components are specified with two units: content andmembrane. A component
content includes a collection of sub-components. A component membrane includes
component interfaces, which are either external (i.e., visible to the component envi-
ronment only) or internal (i.e., visible to the sub-components only). The component
membrane also acts as a controller that (i) deals with the connections between the

73

interfaces of the sub-components and controls their behaviours (e.g., starting and
stopping the sub-component activities) and (ii) exports the sub-components’ inter-
faces as external interfaces.

Communications between component interfaces are enabled via bindings in Frac-
tal. A binding can be either primitive or composite. While a primitive binding is
used to connect any two components within the same location, a composite bind-
ing is constructed by composing a number of primitive bindings and thereby used to
connect any number of components together. Furthermore, with composite bindings,
distributed components that are placed in remote locations can be connected too.
Nonetheless, one may not use bindings to specify complex interaction mechanisms
(i.e., interaction protocols). The protocols of interactions are instead embedded as
part of the membrane controller. This not only makes components context-specific,
reducing their re-usability,but also prevents the same interaction protocols from being
re-used with different components.

An interesting feature of Fractal is its support for shared components. There
may be cases in systems where the same computational unit needs to be shared
among multiple components. Typically, such shared units are specified as components
that can interact via their interfaces with the components which need to share their
data. However, according to Fractal, this prevents the components from sharing the
state of the shared component, which must be the same for all, and thus breaks
their encapsulation. So, to maintain the encapsulation of the sharing components,
Fractal introduced shared components. A shared component can be specified as the
sub-component of multiple components that can also share the state of the shared
component now.

The Fractal component model has been implemented in Java in the Julia frame-
work. So, basically, three sets of Java objects are produced from each component: one
representing the objects whose classes implement the component interfaces, another
set for the membrane of the component, and, the last set for the component content.

The formal semantics of Fractal has been defined using Alloy [Jackson, 2002]
in [Merle and Stefani, 2008]. So, system specifications in Fractal can be mapped
precisely (manually though) to Alloy models, which can then be formally verified
using the Alloy analyser.

2.6.4 Summary

In this section, I discussed the three well-known formal design approaches in terms of
their support for architecture specifications; and, I presented the results of the analysis
in Table 2.8. Reo, the first approach discussed, is essentially a coordination language,
which focuses entirely on the coordination of components and the first-class specifica-
tion of interaction protocols. However, just like all connector-centric approaches, Reo
allows designers to specify global constraints for component interactions, which may
cause unrealisable specifications for decentralised components. Exogenous connectors
is another coordination-oriented approach. It implements arbitrary, user-defined con-
nectors by introducing additional centralised controllers for connectors. This however
prevents designers from specifying their systems in a decentralised manner and anal-
yse the system behaviours for issues, e.g., reliability and performance. Finally, unlike
Reo and Exogenous connectors, Fractal is a component based approach, focussing on
the specification of systems in terms of components. It does not support complex con-
nectors, viewing connectors just as communication links. So this makes component

74

Design
approach

High-
level
components

User-
defined
complex
connectors

Formal
behaviour
specification

Formally
analysable

Always
realisable

Reo No Yes No Yes Potentially
no

Exogenous
connec-
tors

Yes Yes No Yes Yes

Fractal Yes No No Yes No

Table 2.8: The analysis results of some other formal design approaches

specifications embed their interaction protocols, which leads to protocol-dependent
components that cannot be re-used easily in different contexts.

2.7 Summary

In this chapter, I discussed the work done on software architectures, including (i)
some well-known software engineering paradigms, (ii) the analytic study of more than
twenty different architecture description languages, (iii) some informal modelling lan-
guages, (iv) some Design-by-contract (DbC) based specification languages and high-
level design approaches, and lastly (v) some well-known formal design approaches. So,
according to my literature study, none of the architectural design approaches supports
the re-usable, realisable and formally analysable specifications of software architec-
tures using a non-algebraic notation. The studied software engineering paradigms fail
to support connectors for separating interaction protocols from components, except
SOSE. SOSE’s interaction mechanisms however either cause potentially unrealisable
specifications or centralise the behaviours of systems. As to the analysed architecture
description languages, those that support formal analysis require algebraic notations.
Those that support components and connectors cause potentially unrealisable specifi-
cations. Those that guarantee realisable specifications lack in support for connectors.
The informal modelling languages are not successful either. They do not have for-
mal semantics, hindering their formal analysability, and also view connectors just as
links, except Agent-UML that view connectors as interaction protocols. However,
Agent-UML protocols lead to potentially unrealisable specifications. The studied
DbC-based specification languages also ignore the first-class treatment of interaction
protocols. Another problem with the DbC-based languages is that they are object-
oriented languages and thus view components as class objects which can only have
provided interfaces. This situation is different in the high-level DbC-based design
approaches that do support higher-level generic components which can have both re-
quired and provided interfaces. However, these approaches still fail to apply DbC
to all aspects of software components, ignoring asynchronous event communications.
Most of them also neglect the first-class specification of interaction protocols. Lastly,
the formal design approaches that I studied either lack in support for connectors or
support them in a way that causes potentially unrealisable specifications or imposes
implicit centralisation via controllers.

75

Chapter 3

Contractual, Reusable,
Realisable Software
Architectures

3.1 Introduction

XCD, standing for Connector-centric Design, is a novel architecture description lan-
guage that has been developed to address three issues which have not been dealt with
together by the existing languages so far. These issues are (i) hindered re-usability
due to lack of support for complex connectors (ii) advanced formal notations that
require the use of process algebras, and (iii) unrealisable architecture specifications
due to connectors with global constraints.

XCD maximises re-usability in design by cleanly separating complex interaction
protocols from components as connectors. So, software architectures can be specified
in a highly modular and re-usable way. Indeed, while components mainly encapsulate
their functional behaviours, interaction protocols are not embedded within the com-
ponents any more and instead offered as connectors. This allows components to be
re-used easily within different configurations requiring different interaction protocols.
At the same time, the same connectors can also be re-used with a different set of
components in different configurations. Furthermore, the architectural exploration of
different design solutions is facilitated too. That is, designers can easily experiment
with different connectors for the coordination of the same set of components, with-
out modifying the components, and find the optimum solution that meets particular
interaction protocols.

Unlike existing architecture description languages, XCD does not require algebraic
behaviour specification. Instead, Design-by-Contract approach (DbC) [Meyer, 1992]
has been adopted in XCD. So, the behaviours of components and connectors in ar-
chitecture specifications are described via contracts, which are expected to be found
more familiar by practitioners than the process algebras. Indeed, as aforementioned,
widely used programming languages are supported by DbC-based specification lan-
guages, e.g., JML [Chalin et al., 2006] for Java and Spec# [Barnett et al., 2005b] for
C#. There have also been numerous attempts made so far that aim to apply DbC
concepts in test-driven development, e.g., [Briand et al., 2003,Rosenblum, 1995,Boy-
apati et al., 2002]. Moreover, DbC is also used for undergraduate teaching on how to
write quality software programs with formal methods [Kiniry and Zimmerman, 2008].

76

This reveals how practical DbC is found that can even be used by undergraduate
students.

XCD guarantees the realisability of software architectures by foregoing the specifi-
cations of global constraints. All current architecture description languages support-
ing connectors require glue, which is essentially a global constraint imposed on the
interaction of the components. However, such global constraints may only be specified
for centralised systems where components can observe each other‘s behaviours. For
distributed systems where components are autonomous and cannot know what each
other is doing, global constraints cannot exist. This therefore leads to situations where
systems can be specified and even verified but may not be realised in a decentralised
manner. So, to avoid this, in XCD, components can only be locally constrained via
connectors.

In this chapter, firstly, I discuss XCD’s main elements by introducing the structure
of components and connectors. I also show how component behaviours and the inter-
action protocols of connectors are specified contractually. Following that, I introduce
the semantics of components and connectors at a high-level in terms of Dijkstra’s
guarded command language [Dijkstra, 1975].

3.2 The Structure of XCD

Components and connectors are the two main elements of XCD, discussed in-depth
in the following three sub-sections. Besides components and connectors, XCD models
can also include enum type specifications and typedef elements. An enum type serves
just as a C++ enum type, which allows designers to specify user-defined types with
a range of constant values. The typedef element is inspired from the typedef in C++,
which is used to assign user-defined names to the data types.

3.2.1 Components

A component in XCD is a unit of computation in a system, e.g., client and server in a
client-server system or filter in a pipe and filter system. Figure 3.1 shows the generic
structure of an XCD component. A component type is structurally specified in terms
of three parts: (i) component parameters, (ii) data variables and helper functions,
and finally (iii) ports.

3.2.1.1 Component parameters

Component parameters are essentially considered as configuration parameters, which
is a sequence of data variable declarations that are assigned to argument values at
configuration time (i.e., when the components are instantiated to be composed for a
system). The component parameters can be referred in anywhere within the com-
ponent type specification, e.g., array size for ports and data variables, and contract
specifications.

3.2.1.2 Data variables and Helper Functions

A data variable in a component (line 2 in Figure 3.1) corresponds to instance vari-
ables in Java of some types, e.g., bool, byte, short, or int. Data variables are specified
either as single or an array of variables. Each instance of a component holds differ-
ent copies of them representing the state of the component. For instance, a server

77

1 component Name(type param,..)
2 type variable_id [ArraySize]?; // data variables
3 helper_function(){..}; // helper functions
4
5 provided port pName [ArraySize]? {
6
7 type method_id(type param,..);
8 }
9 required port pName [ArraySize]? {

10
11 type method_id(type param,..);
12 }
13 emitter port pName [ArraySize]? {
14
15 event_id(type param,..);
16 }
17 consumer port pName [ArraySize]? {
18
19 event_id(type param,..);
20 }
21 }

Figure 3.1: Generic component structure
Array notation is optional (indicated via ?) and used for specifying array elements.

1 all_received (int arg1, int arg2) {
2 return (p1_incURRcvd[arg1] && p1_incNARcvd[arg1]) ||
3 (p2_dblURRcvd[arg2] && p2_dblNARcvd[arg2]);
4 }

Listing 3.1: An example of a component helper function

component may have a boolean variable isInitialised that determines whether the
server is initialised or not. The component state is changed via the ports that can
request methods (or emit events) or accept requests (or receive events) from their
environment and manipulate the state according to their contracts.

A component specification may also include helper functions that are used in
method/event contracts of ports. Indeed, there may be situations where (i) contracts
of different methods/events share a common constraint expression, or, (ii) a contract
ends up being complex, constructed by joining several constraint expressions. In
those cases, one can employ helper functions to either re-use the same expression
with a meaningful name or simplify complex expressions by dividing them into helper
functions representing the sub-expressions. Helper functions are specified with an
identifier, list of parameters, and an expression to be represented, e.g., Listing 3.1.

3.2.1.3 Ports

Ports of a component represent the concurrently executing interaction points with its
environment, allowing the component to communicate with other components, e.g.,
receiving method-calls and emitting events. Each port can be one of four types, i.e.,
emitter, consumer, required, or provided. Ports can be specified either as (i) a single
port or (ii) an array of ports, which allows designers to create multiple instances of
the same port type.

Each provided port is defined through an interface comprising a set of methods,
just like object classes. At the same time, components also explicitly specify a set
of ports that they require for their successful behaviour. Each of these required ports
also defines an interface. This is in contrast to object classes that do not explicitly
specify which other classes or interfaces they need to use in order to provide their
functionality. Conceptually, one could think of component provided ports as objects
that the component contains and allows others to interact with, and of required ports
as pointers to objects that it needs to have assigned to the provided ports of some other

78

1 provided port Name [ArraySize]? {
2 @interaction{
3 waits: pre-condition;
4 /*****OR*****/
5 accepts: pre-condition;
6 }
7 @functional{
8 requires: pre-condition;
9 ensures: data-assignment; (OR throws: Exception;)

10 }
11 type method_id(type param,..); throw Exception
12 }
13 required port Name [ArraySize]? {
14 @interaction{waits: pre-condition;}
15 @functional{
16 promises: parameter-assignment;
17 requires: pre-condition;
18 ensures: data-assignment;
19 }
20 type method_id(type param,..);
21 }

22 emitter port Name [ArraySize]? {
23 @interaction{waits:pre-condition;}
24 @functional{
25 promises: parameter-assignment;
26 ensures: data-assignment;
27 }
28 event_id(type param,..);
29 }
30 consumer port Name [ArraySize]?{
31 @interaction{
32 waits: pre-condition;
33 /*****OR*****/
34 accepts: pre-condition;
35 }
36 @functional{
37 requires: pre-condition;
38 ensures: data-assignment;
39 }
40 event_id(type param,..);
41 }

Figure 3.2: Generic port structure
Array notation is optional (indicated via ?) and used for specifying array elements.

component. Just as is often the case with pointers, required ports may end up being
assigned to some provided port or not. Whether it is acceptable to have a non-assigned
required port can be specified in certain component models (e.g. OSGi [Tavares and
de Oliveira Valente, 2008,OSGi Alliance, 2012]) by declaring the required port as a
mandatory or an optional one. In CCM [OMG, 2012a] required ports are optional
ones and their connectivity is determined dynamically. Components in XCD also
offer ports that interact through asynchronous events. Those that publish events are
called emitter ports and those that subscribe to events are called consumer ports.
In CCM [OMG, 2012a], emitter ports are further subdivided into ports that emit
events to a single consumer and those that broadcast events to multiple consumers.
In XCD, there is no such a distinction, as I believe that components should not
consider this aspect of interaction. Asynchronous events (aka “interrupts”) are not
usually considered in DbC approaches, as they tend to focus on (possibly concurrent)
methods, i.e., well balanced pairs of request and response events – SCOOP [Morandi
et al., 2010] is a notable exception.

Methods of required and provided ports or events of emitter and consumer ports
are each associated with interaction and functional contracts. These two types of
contracts promote modular specification of method and event behaviours encapsu-
lated within ports. While the functional contract describes the functional behaviour,
i.e., the conditions necessary to be fulfilled that can cause the component state to
be changed, the interaction contract describes in which states of the component the
method/event can be processed. Figure 3.2 gives the structure of interaction and func-
tional contracts for methods and events of different port types. Interaction contracts
have delaying pre-condition (waits); however, for provided and consumer ports, the
contract may alternatively have an accepting pre-condition (accepts) that accepts
a call or immediately rejects it without any delays. Functional contracts differ by the
port type. Indeed, functional contracts for provided and consumer ports are speci-
fied with a pre-condition (requires) and data-assignments (ensures) where the
satisfaction of the pre-condition ensures that the component state is updated using
the data-assignments. Note that provided port methods may alternatively throw an
exception (throws) for abnormal cases. For required and emitter ports, functional
contracts are further enriched with parameter-assignments (promises) too. A de-
tailed discussion of contractual behaviour specification can be found in Section 3.3.

79

?x2 + x x2 + x x2?x2

Figure 3.3: Component method chaining

1 provided port Name{

2 // Method request: Event Consumption

3 @interaction_req {
4 accepts: pre-condition;
5 //OR
6 waits: pre-condition;
7 }
8 @functional_req {
9 requires:pre-condition;

10 ensures:data-assignments;
11 }

12 // Method response: Event Emission

13 @interaction_res {
14 waits: pre-condition;
15 }
16 @functional_res {
17 promises:result-assignment;
18 ensures: data-assignments; //(OR throws : exception;)
19 }
20 type method_id(type param,..) throws exception;
21 }

Figure 3.4: Generic structure of a provided port with a complex method

It should also be noted that provided ports operate their method-calls atomically
by-default. That is, upon receiving a method-call, its contracts are processed, and
then, the response is sent back indivisibly as a single action. As will be mentioned
shortly, provided ports may have complex methods too that are, by contrast, operated
non-atomically, waiting for other port(s) of the component to perform some relevant
operations and sending the response afterwards. Emitter and consumer ports operate
their event actions atomically too. However, required ports operate their method-
calls non-atomically. Methods are called as one atomic action, and their response is
received as another atomic action.

3.2.1.4 Complex Methods of Provided Ports

Figure 3.3 shows a simple example where one component requests the result of x2 +x
from another, which in its turn asks a third component for the value of x2 so as to be
able to compute the final value. This is the case where complex, non-atomic provided
port methods are needed. With atomic provided port methods, once a method request
is accepted, the response follows immediately, and, the only one capable of modifying
component data values are the method’s data-assignments. This is clearly not the case
in general. In order to be able to model cases like these of Figure 3.3 it is necessary to
break a method request-response protocol further into its two constituent events and
no longer consider a provided method as an atomic action. In XCD, such provided
methods are called complex methods. A complex method is specified in two separate
atomic blocks, where the first block serves for receiving the request event for the
method and the second for emitting the response event.

As shown in Figure 3.4, for a complex method, two pairs of interaction-functional
contracts are specified, one corresponding to the request and the other to the response
event for the complex method. A complex-method request event consumption has

80

1 connector usertype (roleName[ArraySize]?{pv_prov, pv_req, pv_cons, pv_em},...) {
2
3 role roleName {
4
5 type variable_id [ArraySize]?; // data variables
6 helper_function() {...} // helper functions
7
8 provided port_variable pv_prov [ArraySize]? {
9 type method_id(type param,..);

10 }
11 required port_variable pv_req [ArraySize]? {
12 type method_id(type param,..);
13 }
14 consumer port_variable pv_cons [ArraySize]? {
15 event_id(type param,..);
16 }
17 emitter port_variable pv_em [ArraySize]? {
18 event_id(type param,..);
19 }
20 }
21 //link connectors
22 connector link1(roleName{pv_prov}, ...);
23 //complex connector instances
24 connector usertype2 insName(roleName{pv_prov,pv_req,pv_cons,pv_em},...);
25 }

Figure 3.5: Generic connector structure
Array notation is optional (indicated via ?) and used for specifying array elements.

a contract like normal consumer port events. The complex-method response event
emission also has another contract like a normal emitter port event, but now its
promises cannot assign parameters. Instead, promises can be used herein to
assign the result to be responded. Moreover, an exception may also be thrown via
throws, which can be used as alternative to the ensures.

3.2.2 Connectors

Connector is the other first-class element of XCD apart from components. They are
employed in system specifications to specify the communications among components
and their interaction protocols. Figure 3.5 shows the generic structure of an XCD

connector. So, a connector type is structurally specified in terms of three parts:
connector parameters, roles, and connector instances.

It should be noted here that there is no glue element in XCD connectors, nor any
other way to specify global state or constraints – everything is local and thus directly
realisable, unlike the connector-centric ADLs discussed in Section 2.3.

3.2.2.1 Roles

Every connector in XCD includes a role specification for each component interact-
ing via the connector. Each role represents an interaction protocol for a component,
serving to constrain its interaction behaviour. The component cannot process meth-
ods/events via its ports until the role interaction protocol is satisfied.

A role is specified just like components, consisting of data variables that keep track
of the protocol’s local state, helper functions for simplifying protocol constraints, and
a set of port variables to be assumed by the role component’s ports. Just like a
component port, a role port-variable is one of four types and includes event/method
actions that represent those of the associated port. The generic structures of role
port-variables are depicted in Figure 3.6. As shown there, port-variable events and
methods are attached only with interaction contracts. Role port-variables cannot
have functional contracts since roles cannot access to component’s action parameters
and results. Note however that unlike port interaction contracts, role port-variables’

81

1 provided port_variable
2 pvName [ArraySize]? {
3 @interaction{
4 waits: pre-condition;
5 ensures: data-assignments;
6 }
7 type method_id(type param,..);
8 }

1 provided port_variable
2 pvName [ArraySize]? {
3 @interaction_req{
4 waits: pre-condition;
5 ensures: data-assignments;
6 }
7 @interaction_res{
8 waits: pre-condition;
9 ensures: data-assignments;

10 }
11 type method_id(type param,..);
12 }

(a) Provided port-variables - simple method (b) Provided port-variables - complex method

1 required port_variable pvName [ArraySize]? {
2 @interaction{
3 waits: pre-condition;
4 ensures: data-assignments;
5 }
6 type method_id(type param,..);
7 }

(c) Required port-variables

1 emitter port_variable
2 pvName [ArraySize]? {
3 @interaction{
4 waits: pre-condition;
5 ensures: data-assignments;
6 }
7 event_id(type param,..);
8 }

1 consumer port_variable
2 pvName[ArraySize]?{
3 @interaction{
4 waits: pre-condition;
5 ensures: data-assignments;
6 }
7 event_id(type param,..);
8 }

(d) Emitter port-variables (e) Consumer port-variables

Figure 3.6: Generic port-variable structures
Array notation is optional (indicated via ?) and used for specifying array elements.

interaction contracts can have ensures data-assignments to update the role state
data.

3.2.2.2 Connector parameters

Connectors in XCD are initialised with the components and their ports whose interac-
tions they control. Components are passed as parameter arguments to the connectors
during their instantiations, which establishes the associations between components
and roles. Therefore, a connector type includes a distinct parameter for each of its
roles, which is enriched with the role port-variables. For instance, the signalPro-
tocol connector specified in Figure 3.7 has two connector parameters (line 1) each
representing a distinct role and its port-variable.

A connector parameter can be an (role) array too, in which case an array of
components can be passed each playing an instance of the same role.

3.2.2.3 Connector instances

Besides roles, a connector type specification includes some link connector instances.
Link connectors are provided by XCD, which are the essential part of connector types.
They represent point-to-point communications between the ports of the components,
i.e., either procedure call for required and provided port communications or uni-cast

82

1 connector signalProtocol(train{operation}, controller{operation}){
2 role train{
3 bool signalReceived :=false;
4 required port_variable operation{ void start(); void stop(); }
5 }
6 role controller{
7 provided port_variable operation{ void start(); void stop(); }
8 }
9 //links

10 connector x1(train{operation}, controller{operation});
11 //complex connector instance
12 connector sub_signalProtocol x2(train{operation},controller{operation});
13 }

Figure 3.7: Sample connector type specification

for emitter and consumer communications. For instance, in the signalling protocol
connector specified in Figure 3.7, a single link for a procedure call is specified (line
10), connecting the component ports associated with the role train’s operation port-
variable and the role controller ’s operation.

A connector type can also include the instances of user-defined complex connec-
tors. By doing so, components can be further constrained via the role protocols
of the instantiated connectors. This allows designers to specify their complex con-
nectors in a highly modular way, re-using the protocols of existing connectors. In
Figure 3.7, the signalProtocol has a complex connector instance (line 12) that is of
sub_signalProtocol. The components and their ports associated with the connector
roles are passed to that as well, for constraining them further via the role protocols
of sub_signalProtocol.

1 component usertype ((datatype param)*) {
2
3 (component usertype compIns(arg,..);)+
4
5 (connector usertype connIns(compIns{portName,..},..);)+
6 }
7
8 component usertype configuration1(arg1,..);

Figure 3.8: Generic composite component structure

3.2.3 Composite Components

The structure of components has already been introduced in Section 3.2.1. There,
I focused on primitive components that always have ports to interact with their
environment. XCD further introduces composite components that, instead of ports,
are specified with sub component and connector instances. Figure 3.8 gives the generic
structure of composite component types.

3.2.3.1 Component instances

The sub component instances of a composite component type derive from the com-
ponent types specified within the same context (i.e., the system specification). These
component types can be either primitive or composite. Primitive component types
can always be instantiated within composite component types, as, by definition, they
have ports to interact with their environment. For composite component types, they
may export their sub component ports to their environments that have not been con-
nected through their sub connectors. This is so that a composite component can be
viewed as a primitive component capable of interacting with its environment once

83

instantiated in another composite type.

3.2.3.2 Connector instances

Just like sub component instances, sub connector instances of composite types are
created from the connector types specified in the same context. Essentially, connectors
are instantiated to connect the ports of the component instances in a composite
component and coordinate their interaction via role interaction protocols. This is
performed by associating components with the connector roles and their ports with the
role port-variables. As aforementioned, this association is established via parameter-
assignment, where components and their ports are passed to the connector parameters
that represent the roles the components play.

3.2.3.3 Global composite component instance

A composite component type may be instantiated globally as shown in line 8 of
Figure 3.8. Such an instance represents the architectural configuration for a sys-
tem specification. However, the composite component type to be instantiated as a
configuration must be closed, i.e., it does not have sub component instances with
unconnected ports.

3.3 Contractual Behaviour Specification

So far I have discussed the structures of components, connectors, and their compo-
sition (i.e., configuration). The structural view of software architectures introduces
essentially what parts components and connectors are constructed with, and how
components are connected with each other via connectors. This information is indeed
enough for analysing system configurations for various static issues for determining
any inconsistencies and incompleteness. For instance, one can easily detect whether
the ports of components are consistently connected with each other (i.e., required-
provided and emitter-consumer). It can also be detected whether the connected ports
have exactly the same methods/events. However, for reasoning about the correctness
of systems, the structural view is not enough. For instance, a component may not
operate its methods/events in the correct order, hindering its interaction with other
components in its environment. Moreover, deadlock may occur when all the interact-
ing components get blocked waiting for each other to complete their operation, which
can never happen. Another property that needs to be checked is race-conditions,
which occurs when concurrently executing ports of the component attempt at chang-
ing the component state at the same time thus causing inconsistent state. So, to
detect such issues in software architectures, the behavioural view is also needed, to
describe the functional and interaction behaviour of components and interaction pro-
tocols of connectors. XCD adopts Design-by-Contract (DbC) [Meyer, 1992] for formal
behaviour specification of components and connectors. To maximise modularity, con-
tracts are separated into functional and interaction contracts, where the former is
used for specifying the functional behaviours of components and the latter for speci-
fying their interaction behaviours. As discussed in Chapter 4, behaviour specifications
in XCD can then be mapped to formal models in SPIN’s ProMeLa language. So, this
enables the formal verification of architecture behaviours via the SPIN model checker.
In the rest of this section, I discuss the contractual specification of component and
connector behaviours.

84

3.3.1 Components

Provided and required ports comprise two-way “synchronous” method actions, while
consumer and emitter ports comprise one-way “asynchronous” event actions. An
action of a port is attached with functional and interaction contracts, describing
their functional and interaction behaviours respectively.

Below, I discuss firstly how functional contracts are specified for methods of re-
quired and provided ports, which is followed by the discussion of contracts for the
events of emitter and consumer ports. After that, the interaction contracts for meth-
ods and events are considered.

3.3.1.1 Functional Contracts for Methods

A method’s functional contract is specified in terms of constraints on the method
behaviour. When multiple constraints are desired, they are joined via the otherwise
keyword. So, whenever a method is operated, only one of the constraints is processed
that is chosen non-deterministically. Each constraint is composed of a set of clauses,
i.e., either requires, ensures, or promises. While requires clause represents a pre-
condition, ensures represents data-assignments and promises represents parameter-
assignments.

1 // Provided: // Required:
2 @functional { @functional {
3 requires: x == 0; promises: x := d3;
4 ensures:\result:=0; d2:=pre(d1)+3; otherwise:
5 otherwise: promises: x := d4;
6 requires: x > 0; requires:!(\exception==DomainEx);
7 ensures: \result :=

√
x; ensures:d5:=\result; d4:= d2 + 1;

8 otherwise: otherwise:
9 requires: x < 0; requires: \exception==DomainEx;

10 throws: DomainEx; ensures: d6 /in [d3, d3*4+2];
11 } }
12 int sqrt(int x) throws DomainEx; int sqrt(int x) throws DomainEx;

Listing 3.2: Provided/Required port method functional constraints

Provided port methods. In DbC, contracts are, in general, considered in the
form of pre- and post-conditions, e.g., JML contracts or Beugnard et al.’s behavioural
contract [Beugnard et al., 1999]. Provided port methods in XCD are also contractually
specified in a similar way. The only difference is, as aforementioned, the replacement
of post-conditions with data-assignments, as illustrated on the left-side of Listing 3.2).

A functional constraint on a provided method consists of a pre-condition (requires)
and data-assignments (ensures). Whenever a method of a provided port is called,
one of its functional constraints is chosen whose requires pre-condition on the
parameter and component data values is satisfied. Then, the chosen constraint’s
ensures data-assignment is applied, assigning values to component data variables.
Moreover, unless the method type is void, ensures also includes an assignment for
the result to be sent back to the caller. Note that exceptional situations can also be
specified, in which case ensures is replaced with throws for specifying the exception
to be thrown (e.g., line 10 in Listing 3.2).

In ensures data-assignments (and promises parameter-assignments discussed
shortly), each variable can be assigned in two ways. First, a data or parameter
variable can be assigned an expression, e.g., d4 ∶= d2 + 1;, which guarantees that the
variable holds the assigned value expression. Second, a variable can be assigned to a
set expression, e.g., d6 /in [d3, d3∗4+2];. This allows d6 to be assigned to a randomly

85

chosen value within the range specified. Note that data-assignments of contracts are
processed at the post-state, i.e., when the method/event operation is to be completed.
However, using the pre operator, designers can refer to the pre-state values of the data
variables, i.e., when the component is ready to perform method/event operation. For
instance, in "d1 ∶= 4; d2 ∶= pre(d1) + 3", while the post-state value of d1 is assigned
as 4, its pre-state value is used in assigning d2.

Required port methods. Required port methods (e.g., right-side of Listing 3.2)
do not have an equivalent in object class definitions and, as such, classic DbC does not
consider them. These correspond to actions that the component enacts itself, instead
of actions that it reacts to (as is the case for provided ports). XCD introduces a com-
prehensive and modular specification of required method contracts, allowing designers
to express how method-calls are made and how their responses affect component state.

A required port performs three subsequent operations for each of its methods: as-
signing values to the parameters of the method call, making the call, and then updat-
ing the component data according to the method call results/exceptions. So, its func-
tional constraint comprises (i) parameter-assignments (promises) for its method call
and (ii) a set of pre-condition (requires) and data-assignments (ensures) pairs
for the response. One of the requires–ensures pairs is chosen non-deterministically
whose pre-condition on the received result/exception is satisfied.

Unlike provided methods, a required port method is non-atomic and consists of two
states 1. At the first state it selects parameter values (i.e., applying its promises)
and makes the method call. At the second state it (i) receives the method call
results (/result) or exception (/exception) (ii) and updates the component data ac-
cording to the ensures establishing appropriate assignments given the requires
pre-condition on the component data and the received results/exception being satis-
fied.

3.3.1.2 Functional Contracts for Events

Components in XCD provide explicit support for event communications too, via their
emitter ports, emitting events, and consumer ports, receiving the events from emitters.
The behaviour of events are specified via contracts. The functional contracts for
events are similar to the method contracts discussed so far. They differ due to the
fact that events are used for one-way communication, while methods for two-way, i.e.,
request-response.

Consumer Events. Consumer port events (e.g., left-side of Listing 3.3) behave sim-
ilarly to provided port methods. A functional constraint for a consumer event consists
of requires pre-condition and ensures data-assignment. Just like multiple pro-
vided methods constraints, multiple event constraints are also joined via otherwise.
One of functional constraints for a consumer event is chosen non-deterministically
whose requires pre-condition is satisfied. Then, the ensures data-assignments
of that constraint is applied to update the component state. However, unlike the
data-assignments in provided method contracts, the data-assignments in consumer
port events cannot assign result, due to supporting one-way communication.

Emitter Events. Emitter port events (e.g., right-side of Listing 3.3) behave simi-
larly to required port methods. A functional constraint for an emitter event consists

1Non-atomicity can apparently lead to race-conditions – these are considered later.

86

1 // Consumer: // Emitter:
2 @functional { @functional {
3 requires: x <= 0; promises: x = d3;
4 ensures: d1 := 0; ensures: \nothing;
5 otherwise: otherwise:
6 requires: x > 0; promises: x = d4;

7 ensures: d2 :=
√
x; ensures: d5:=3;

8 } }
9 notify(int x); notify(int x);

Listing 3.3: Consumer/Emitter port method functional constraints

of promises parameter-assignments and ensures data-assignments pairs. Just like
required methods, emitter events can have multiple functional constraints too, joined
via the otherwise keyword. So, for an emitter event, one of its functional constraints
is chosen non-deterministically. An emitter port firstly applies the promises of the
chosen functional constraint, assigning values to the parameters of an event emission,
then makes the emission and finally applies the ensures data-assignments of the cho-
sen constraint, changing the component state. Note that since emitter ports cannot
receive back responses from consumer ports, one may not describe pre-condition(s) on
a response (as is the case with required ports via requires pre-condition). Instead,
in emitter port event constraints, there are only ensures data-assignments.

3.3.1.3 Interaction Contracts

So far functional contracts have been introduced that are used to describe the func-
tional behaviour of port methods/events. However, it is not yet defined how one
can describe in which states of the component a method/event may be processed.
Without specifying such acceptable states of a component, components are, by defini-
tion, allowed to process their methods/events at all states. It is ignored that designers
may have some expectations from the environment of their components and thus wish
their components to behave in a certain order. Therefore, XCD introduces interaction
contracts for methods and events, which allow to describe the acceptable states for
components. An interaction contract for a method or an event has precedence over
its functional contract, and thus, the former needs to be satisfied before processing
the method or event via the latter.

An interaction contract for a method/event comprises a single interaction con-
straint, which can be either of two types, i.e., await or accepting. An await constraint
comprises a waits clause. It is a conditional expression on the component data and
the method/event parameters, which serves to delay the method/event action until it
is satisfied. An accepting constraint comprises an accepts clause, representing a con-
ditional expression whose satisfaction leads the method/event actions to be processed
immediately. Otherwise, chaos occurs, putting the component at a state in which it
does not know what to do. It should be noted that interaction constraints cannot
change component state.

Provided port methods and consumer port events can use either type of the con-
straints. Indeed, designers may want their components to delay calls until some
condition holds (waits). Alternatively, they may want the calls to be accepted or re-
jected immediately without any delays (accepts). The situation is however different for
required port methods and emitter port events. When the interaction contracts can-
not be satisfied, this is not interpreted as chaotic behaviour. Instead, the component
must at some later point try requesting the method or event again. So, the required
and emitter ports can have only await interaction constraints for their methods and

87

1 component Thread {
2 boolean started := false; // component data.
3 boolean died := false;
4
5 provided port p {
6 @interaction{accepts: ! started; }
7 @functional {
8 requires: true;
9 ensures: started := true; }

10 void start();
11
12 @functional {ensures: \result := started; died:=false;}
13 boolean isAlive();
14
15 @interaction { waits: died; }
16 void join();
17 // ... other methods
18 };
19 };

Figure 3.9: Java Thread with XCD contracts

events respectively, delaying their requests until some condition holds.
Examples of such interaction contracts abound in everyday life. A washing ma-

chine manufacturer can either warn users against opening the door while the machine
is operating (accepts: ! operating) or add a safety mechanism that delays the door
opening (waits: ! operating). The former interaction contract makes no guarantees
whatsoever if someone attempts to open the door during operation – water may be
spilt outside and the user can be even electrocuted because of it. In fact, such bad
behaviour due to a component’s interaction contract violation appears in the stan-
dard libraries of mainstream languages already. In Java, RuntimeExceptions are used
extensively to represent such situations. Unlike other exceptions, they are not sup-
posed to be caught by code. In fact, they are not even supposed to be declared by the
methods that may throw them – they are what is known as “unchecked exceptions”.
The method Thread.start() can throw such an exception when called on a thread that
has been started already. Using XCD interaction contracts, this can be specified as
in line 6 of Figure 3.9. Note that a method may have no interaction contract, e.g.
isAlive (lines 12–13). Sometimes it may have no functional contract instead, like join

that can be specified entirely through an interaction contract (lines 15–16).
Another example of interaction contract violations in Java is SocketException,

which is thrown when a socket’s setSocketFactory is called more than once. Excep-
tion InternalError as well, thrown by wait/notify when the thread is not the current
owner of the object’s monitor. And of course, a NullPointerException, which is thrown
when an object reference has not been initialised properly. All these are examples
of erroneous interaction protocol usage. None of them is supposed to be caught (or
even declared) – instead they are supposed to terminate a program immediately. By
introducing the separate interaction protocol contract (@interaction) construct, such
interface protocols become easier to express and their importance is highlighted. Func-
tional contracts also become easier to express. Indeed, if one considers the functional
contract of method start at lines 7–9 of Figure 3.9, he/she sees that the requires clause
does not consider the state of variable started. It assumes that the call has already
been accepted, at which point it has no functional constraint to impose.

3.3.2 Connectors

So far it has been introduced how component behaviours are described in terms of
functional and interaction contracts attached to their port methods/events. While
functional contracts describe the conditions necessary to be satisfied for updating com-
ponent state, interaction contracts describe when methods/events can be processed

88

1 connector program_X_thread(
2 threadRole{pv_thread},
3 parentThreadRole{pv_prog}){
4 role threadRole {
5 boolean started := false;
6
7 provided port_variable pv_thread {
8 @interaction {
9 waits : ! started;

10 ensures : started:= true;
11 }
12 void start();
13
14 boolean isAlive();
15 void join();
16 };

17 role parentThreadRole {
18 boolean started := false;
19
20 required port_variable pv_prog {
21 @interaction {
22 waits : ! started;
23 ensures : started:= true;
24 }
25 void start();
26
27 @interaction {
28 waits : started;
29 ensures :\nothing;
30 }
31 boolean isAlive();
32
33 void join();
34 };
35 connector link1(
36 threadRole {pv_thread},
37 parentThreadRole {pv_prog});
38 }

Figure 3.10: Specification of a connector between Java Thread and a user program

and when they cannot. However, when components are brought together in a certain
context to be used in constructing a system architecture, their successful composition
may not necessarily be possible. That is, a component may be used wrongly and thus
receive a request from another component when it cannot accept the request (i.e.,
its accepting interaction constraint is violated) putting the component in a chaotic
state. Or, the request received may be delayed indefinitely (i.e., its await interaction
constraint is not satisfied) until some condition holds. Even if there is no usage errors
or indefinite delays, components may still need to follow certain protocols in their
environment to meet some system requirements. So, to specify interaction protocols
for some interacting components that (i) avoid their wrong use and any indefinite
delays or (ii) ensure some properties, XCD introduces first-class connector elements.
Given its structure in Section 3.2.2, connectors include a set of roles each played by
a component. These roles each include a set of port-variables corresponding to the
ports of the component playing the role. Through the role port-variables, interac-
tion contracts are specified for port actions, further-constraining their behaviours for
meeting interaction protocols.

3.3.2.1 Role Interaction Contracts

Role interaction contracts essentially guarantee that the component playing the role
operate its methods/events in a particular order. Interaction contracts are attached
to the methods/events in role port-variables, and, they are specified in the same form
regardless of the port type. A role interaction contract is composed of a single con-
straint that includes a pair of waits pre-condition and ensures data-assignments.
So roles can only delay some component port action, until the point where it is ac-
ceptable by the protocol/connector they are a part of. Role port variable actions
have no functional contracts, as they cannot influence the outcome of an action or the
component’s private data. Instead, their protocol contracts use their ensures data-
assignments, to update the role’s local protocol state upon the action’s completion.

For instance, Figure 3.10 gives the specification of a connector that controls the
interaction between two components, abstracting a multi-threaded program and a
Java Thread class instance (specified in Figure 3.9). The connector has two roles,
threadRole (lines 4–16) and parentThreadRole (lines 17–34), played by the thread

89

1FORALL c ∈ Model . Components
2 proce s s c . . . {
3 // i n i t i a l i z a t i o n o f data
4 Star t :
5 do
6 FORALL p ∈ c . EmitterPorts
7 FORALL e ∈ p . Events
8 // see Figure 3.12a
9 FORALL p ∈ c . RequiredPorts

10 FORALL m ∈ p .Methods
11 // see Figure 3.12b
12 FORALL p ∈ c . ConsumerPorts
13 FORALL e ∈ p . Events
14 // see Figure 3.12c
15 FORALL p ∈ c . ProvidedPorts
16 FORALL m ∈ p .Methods
17 // see Figure 3.12d and and Figure 3.16b
18 FORALL cm ∈ p .ComplexMethods
19 // see Figure 3.15a and Figure 3.15b
20 [] t rue → sk ip ; // do nothing
21 od
22 }

1 // a l l a s s o c i a t ed
2 // Role I n t e r a c t i o n Const ra in t s
3 RICs (port p , ac t i on a) {
4 pvs = p . a s s o c i a t edPor tVa r i ab l e s ;
5 r e turn ⋃pv∈pvs pv . a . RICs ;
6 }

(a) Component (b) RICs for action a of a port p

Figure 3.11: Semantics of components

component and any multi-threaded program respectively. The threadRole guarantees
that the associated thread component cannot receive method start via its port if
the thread has started already. So, this prevents the thread from exhibiting chaotic
behaviour (line 6 of Figure 3.9). The parentThreadRole further guarantees that the
associated program component will not request isAlive before requesting the start
method.

As aforementioned, when connectors are instantiated, the components playing
their roles are passed to them via their parameters (e.g., lines 2–3 in Figure 3.10). A
component may play multiple roles and be passed to multiple connector instances. So,
each component instance is provided with all these roles it is playing in an architecture,
just like human actors are provided with the roles and corresponding scripts they
play in a dramatic play. Component instances use the role(s) interaction contracts
to further constrain their own interaction contracts and are responsible for updating
the role variables along with their own.

3.4 High-level Semantics of XCD

So far the structural and behavioural views of XCD have been introduced. Although
the previous sections include some informal definitions of the XCD elements, it has
not been described yet how each XCD element must be interpreted. Therefore, in
this section, I describe the meaning of the XCD components and connectors at a high
level of abstraction, to give the reader an initial flavour about the way XCD elements
are interpreted.

The detailed, low-level semantics can be found in Section 4.4 where I show how
XCD specifications are transformed into models in SPIN’s ProMeLa formal language
[Holzmann, 2004].

90

3.4.1 Primitive Component Semantics

Each primitive component instance playing a set of connector roles in its environ-
ment is semantically equivalent to a concurrent process. The behaviour of such a
process is described here as shown in Figure 3.11a, using essentially the repetitive
(do[]od) and selection (if[]fi) constructs that are inspired from Dijkstra’s guarded
command language [Dijkstra, 1975]. It initialises its data and then enters a loop,
executing the actions of its ports (lines 6–19) or performing a skip action (line 20).
The behaviours of port actions are shown in Figure 3.12 for emitter, consumer, re-
quired, and provided ports. Note that provided ports are considered in further detail
in Figures 3.16a,3.16b,3.15a,3.15b, taking into account their complex methods.

Provided and required ports (Figure 3.12d and 3.12b) employ a pair of channels
(request and response) to realize the method call interaction protocol, while emitter
and consumer ports (Figure 3.12a and 3.12c) employ a single channel (stream). Chan-
nels are essentially (finite) buffers of messages and a send action adds another message
into them. Finally, a readCond action retrieves a message in a non-deterministic order,
with the constraint that the message parameters satisfy a predicate, which is passed
as the fourth parameter of the action (see lines 2–4 of Figure 3.12c).

In Figure 3.11b, I also defined a function RICs(p, a). For a port p and its action a,
it retrieves a collection of the role interaction constraints that the role port-variables
associated with the port p impose on the action a. This collection of role interaction
constraints is used in describing the port action behaviours in the rest of this section.

3.4.1.1 Emitter events

The behaviour of an emitter event is described in Figure 3.12a as a set of guarded
atomic blocks, where each block corresponds to its distinct functional constraint. One
of the functional constraints of an event is chosen non-deterministically, whose atomic
block is then processed. Firstly, the parameters of the event are assigned using the
chosen functional constraint’s parameter-assignment (promises) in line 4. Then, having
assigned the parameter arguments, it is checked in lines 6–7 to determine whether
the event’s interaction constraint guards (waits) and those of the roles played by the
component are satisfied together. If unsuccessful, the control is passed back to the
component, possibly retrying at a later point (line 8). If successful, the component
data are assigned using the chosen functional constraint’s data-assignments (ensures)
in line 19, and, the role data are updated using the role interaction constraint’s data-
assignments (ensures) in lines 20–21. Finally, the event is emitted along with their
promised parameters over the port event stream channel (line 22).

3.4.1.2 Required methods

Required port method behaviour is described in Figure 3.12b as a set of guarded
atomic block pairs, where each pair corresponds to the method’s distinct functional
constraint. The first atomic block of a constraint is for the request of a method (lines
2–11) and the other atomic block for its response received (lines 13–25). For a required
method, one of the functional constraints is chosen non-deterministically, whose re-
quest block is then processed firstly. The request atomic block in lines 2–11 is enabled
if no method request is currently active (line 3). If successful, the parameters of the
method are assigned initially using the the chosen functional constraint’s promises (line
4). Then in lines 6–7, the block verifies that the method’s port interaction constraint
guards (waits) and those of the roles that the component plays are satisfied together.

91

1FORALL f c ∈ e . FCs
2 [] atomic {
3 t rue →
4 assign_params (f c . promises) ;
5 i f
6 [] ⋀ic∈e.ICs i c . wa i t s
7 ∧ ⋀re∈RICs(p,e) re . wa i t s → sk ip
8 [] e l s e → goto Star t
9 f i ;

10

11

12

13

14

15

16

17

18

19 assign_data (f c . ensure s) ;
20 FORALL re ∈ RICs (p , e)
21 assign_data (re . ensure s) ;
22 send (p . stream , e , e . params) ;
23

24

25 }

1FORALL f c ∈ m.FCs
2 [] atomic {
3 p . activeM = NULL →
4 assign_params (f c . FCpromises) ;
5 i f
6 [] ⋀ic∈m.ICs i c . wa i t s
7 ∧ ⋀rm∈RICs(p,m) rm . wait s → sk ip
8 [] e l s e → goto Star t
9 f i ; p . activeM := m;

10 send (p . request , m, m. params) ;
11 }
12

13 [] atomic {
14 readCond (p . response , m, m. r e su l t ,
15 p . activeM = m) →
16 i f
17 FORALL f c re∈ f c . RequiresEnsuresSet
18 [] f c re . r e q u i r e s →
19 assign_data (f c re . en sure s) ;
20 FORALL rm ∈ RICs (p , m)
21 assign_data (rm . ensure s) ;
22 p . activeM := NULL;
23 / / [] e l s e → Incomplete FCs ; ERROR
24 f i
25 }

(a) Emitter port p’s event e (b) Required port p’s method m

1 [] atomic {
2 readCond (p . stream , e , e . params ,
3 ⋀ic∈e.ICs i c . a ccept s ∧ i c . wa i t s
4 ∧ ⋀re∈RICs(p,e) re . wa i t s)
5 → i f
6 FORALL f c ∈ e . FCs
7 [] f c . r e q u i r e s →
8 assign_data (f c . ensure s) ;
9 FORALL re ∈ RICs (p , e)

10 assign_data (re . ensure s) ;
11

12 / / [] e l s e → Incomplete FCs ;ERROR
13 f i
14 }
15 [] readCond (p . stream , e , e . params ,
16 ⋁ic∈e.ICs ! i c . a ccept s
17 ∧ ⋀re∈RICs(p,e) re . wa i t s)
18 → chaos ; ERROR

1 [] atomic {
2 readCond (p . request , m, m. params ,
3 ⋀ic∈m.ICs i c . a ccept s ∧ i c . wa i t s
4 ∧ ⋀rm∈RICs(p,m) rm . wait s)
5 → i f
6 FORALL f c ∈ m.FCs
7 [] f c . r e qu i r e s →
8 assign_data (f c . ensure s) ;
9 FORALL rm ∈ RICs (p , m)

10 assign_data (rm . ensure s) ;
11 send (p . response , m, m. r e s u l t) ;
12 / / [] e l s e → Incomplete FCs ; ERROR
13 f i
14 }
15 [] readCond (p . request , m, m. params ,
16 ⋁ic∈m.ICs ! i c . a ccept s
17 ∧ ⋀rm∈RICs(p,m) rm . wait s)
18 → chaos ; ERROR

(c) Consumer port p’s event e (d) Provided port p’s method m

Figure 3.12: Semantics of a port p’s actions
ICs represents interaction constraint of an action, while FCs represents functional constraints of an action.
RICs is a function described in Figure 3.11b. RequiresEnsuresSet in line 17 of Figure 3.12b represents the
requires-ensures pairs of a functional constraint on a required method. Lastly, assigns_data is a function
that receives an assignment-sequence and applies them for the event/method.

If they do, it notes that the method is currently active on this port (line 9) and emits
the method request over the channel p.request (line 10). Otherwise, the control goes
back to Start to try again requesting the method later on (line 8).

The response atomic block of the chosen functional constraint (lines 13–25) is
enabled when there is a response for the method. If successful, one of the requires-
ensures pairs of the functional constraint is chosen nondeterministically whose requires

pre-condition is satisfied. Then, the component data are updated using the respective
ensures data-assignment (line 19). Similarly, the data of the roles that the component
plays are updated with the role interaction constraint’s ensures (lines 20–21). If none
of the requires-ensures pairs are satisfied, this indicates an error – the functional

92

constraint pre-conditions are incomplete.

3.4.1.3 Consumer events

Each consumer event is described in Figure 3.12c as two guarded blocks. The top
atomic block (lines 1–14) is executed atomically, which is enabled when there is an
event message in the consumer’s channel whose parameters (along with the current
component state) satisfy the port interaction constraint guards (waits) and the role
interaction constraint guards are satisfied too. Then, if there exists a functional
constraint chosen nondeterministically whose requires pre-condition is satisfied (line
7), the component data are updated in line 8 using the constraint’s ensures data-
assignments (followed by the role data-assignments in lines 9–10). If none of the
functional constraints are satisfied, this is considered an error due to their incomplete
pre-conditions.

The bottom atomic block (lines 15–18) is enabled if an event message is read from
the consumer channel that violates the accepting interaction constraints of the event
(if any specified) while the role interaction constraints of the event being satisfied.
This leads to an error due to causing chaos for the consumer, which is used wrongly
by an emitter.

Obligations for successful emitter-consumer interactions. Emitter ports must
use the consumers correctly, without causing the violation of accepts interaction con-
straints of any consumer events. Moreover, the consumers must also guarantee that
the functional constraint requires pre-conditions for their events are always complete.

Given an emitter port em and a consumer port cons that interact for the event
e, firstly, the em port assigns the event e’s parameters using its promises functional
constraint. Next, as stated in the following formula, whenever the em port’s waits

interaction constraints (if any) and its role interaction constraints are satisfied for the
event e (line 1), the event e is emitted to the cons port with its promised param-
eters2. Then, whenever the cons port’s waits interaction constraint (if any) and its
role interaction constraints are satisfied for the received event e (line 2), (i) the cons
port’s accepts interaction constraint for the event e must be satisfied (if any specified
instead of waits) (line 3) and (ii) at least one functional constraint requires of the cons
port must be satisfied (line 3).

ic.waitsem,e ∧ ⋀
ric∈RIC

ric.waitsem,e ⇒

((ic.waitscons,e ∧ ⋀
ric∈RIC

ric.waitscons,e)⇒

[ic.acceptscons,e ∧⋁
k

fck.requires
cons,e])

(3.1)

3.4.1.4 Provided methods

Just like consumer events, provided port methods are also each interpreted as a pair
of guarded blocks shown in Figure 3.12d. Its top atomic block (lines 1–14) behaves
like that of a consumer event. Provided methods assign the result value as well and
send it as a response to the caller’s required port (line 11).

2The predicate logic formula does not include promises as it is not a predicate but just a sequence
of assignments.

93

Its bottom block (lines 15–18) is again enabled when there is a method request
read from the channel that violates the accepts interaction constraint of the provided
port while the role interaction constraint(s) of the method being satisfied. This leads
to chaos for the provided port.

Obligations for successful required-provided port interactions. Just like
the interactions of emitter-consumer ports, required ports must use the provided
ports correctly. However, this time, it is not enough to guarantee that the functional
constraint pre-conditions of the provided ports (requires) are complete, but also those
of the required ports must be complete (unlike emitters).

Given a required port req and a provided port prov that interact for the method m,
firstly, the req port assigns the method m’s parameters using its promises functional
constraint. Next, as stated in the following formula, whenever the req port’s waits

interaction constraints (if any) and its role interaction constraints are satisfied for the
method m (line 1), the method m is requested to the prov port with its promised
parameters. Then, whenever the prov port’s waits interaction constraint (if any) and
its role interaction constraints are satisfied for the received method m (line 2), (i)
the prov port’s accepts interaction constraint for the method e must be satisfied (if
any specified instead of waits) and (ii) at least one functional constraint requires of the
prov port must be satisfied, which allows the method response to be sent back to the
req port (line 3), and finally (iii) at least one functional constraint requires of the req
port must be satisfied on the received response’s result (line 3).

ic.waitsreq,m ∧ ⋀
ric∈RIC

ric.waitsreq,m ⇒

((ic.waitsprov,m ∧ ⋀
ric∈RIC

ric.waitsprov,m)⇒

[ic.acceptsprov,m ∧⋁
k

fck.requires
prov,m ∧⋁

i
⋁
j

fcij .requires
req,m])

(3.2)

3.4.1.5 Complex provided methods

As already discussed in Section 3.2.1.4, provided ports may also include complex
methods, which are interpreted differently from simple methods. A complex provided
method corresponds to two atomic blocks; one for consuming the request event for the
method and the other for emitting the response event to the caller. It is interpreted in
two alternative ways depending on the corresponding method of the role port-variable
that the provided port assumes.

Figure 3.15a shows the behaviour of a complex provided port (given its generic
structure in Figure 3.13) when combined with a complex method of a role port-
variable (its structure in Figure 3.14). So, the request event of the port method is
constrained via the request event of the role method (and the same occurs for the
response event). Its top atomic block (lines 1–14 of Figure 3.15a) and the middle
block (lines 15–18) that treat the method request event behave just like those for
consumer events given in Figure 3.12c (page 92). The response event in the bottom
atomic block (lines 21–35) behaves like that of emitter events given in Figure 3.12a
(page 92). However, unlike emitter event blocks, a complex method’s response block
is activated if the request event has already been processed (line 22 of Figure 3.15a).
Also, in the complex method response block, the promises (line 24 of Figure 3.15a)

94

1 provided port Name{

2 //Method request:Event Consumption

3 @interaction_req {
4 accepts: pre-condition;
5 //OR
6 waits: pre-condition;
7 }
8 @functional_req {
9 requires:pre-condition;

10 ensures:data-assignments;
11 }

12 //Method response:Event Emission

13 @interaction_res {
14 waits: pre-condition;
15 }
16 @functional_res {
17 promises:result-assignment;
18 ensures: data-assignments; (OR throws ∶ Exception;)
19 }
20 type method_id(type param,..); throw Exception
21 }

Figure 3.13: Generic structure of complex
methods in provided ports – reprinting Fig-
ure 3.4

1 provided port_variable pvName{
2 @interaction_req{
3 waits: pre-condition;
4 ensures: data-assignments;
5 }
6 @interaction_res{
7 waits: pre-condition;
8 ensures: data-assignments;
9 }

10 type method_id(type param,..);
11 }

Figure 3.14: Generic structure of complex
methods in role port-variables – reprinting
Figure 3.6b

can instead be used to assign the method result to be sent back to the caller – unlike
emitter events using it for parameter assignments.

If the corresponding method of the role port-variable is not complex, the atomic
actions are produced as in Figure 3.15b. It differs from the translation of complex
port method combined with a complex role method, given in Figure 3.15a, in some
aspects. Firstly, the port method’s request event is further guarded by the simple role
method’s interaction constraints waits (line 4) – not its request event constraints
as the role method is simple now. Secondly, the role data are not updated in the
request event (lines 9–10 are empty). Instead, they are now updated using the simple
role method’s interaction constraint when the port method’s response is ready to be
processed and sent back to the caller, i.e., at the response event block (lines 30–31).
Finally, the response event of the port method is no longer further guarded by a role
method’s response interaction constraints, as the simple role method cannot have a
separate interaction constraint for a response (line 27 is empty).

The last case that is considered is when a simple (i.e., atomic) provided method of
a component port is combined with a complex role method (i.e., non-atomic). Given
a simple provided port method executed atomically, designers are not recommended
to constrain their behaviour via non-atomic complex role methods. Indeed, the latter
considers separate processing of request and response of a method, which cannot
actually occur as the port method is simple. However, I still consider their association
by making some changes on the port method translation. To discuss comparatively,
Figure 3.16a repeats the atomic action produced from the association of a simple
provided method with a simple role method (i.e., already given in Figure 3.12d),
while Figure 3.16b gives the atomic action produced from the association of a simple
provided method with a complex role method. So, the port method in the latter case
guarded by both the role method’s request event and response event whose interaction
constraints need to be satisfied together (lines 4–5 of Figure 3.16b). Second, the role
data are updated using role method’s request event interaction constraint which is
followed by that of its response event (lines 10–13 of Figure 3.16b). These are discussed
with more details in the ProMeLa translations of XCD, given in Section 4.4.7.4.

It is also possible that a simple provided port method can be associated with

95

1 [] atomic {
2 readCond (p . request , cm, cm. params ,
3 ⋀ic∈cm.ICsreq i c . wa i t s ∧ i c . a ccept s
4 ∧ ⋀rm_req∈RICsreq(p,cm)rm_req . wai t s)
5 → i f
6 FORALL f c ∈ cm. FCsreq
7 [] f c . r e qu i r e s →
8 assign_data (f c . ensure s) ;
9 FORALL rm_req ∈ RICsreq (p , cm)

10 assign_data(rm_req.ensures);

11 p . activeM = cm;
12 / / [] e l s e → Incomplete FCs ; ERROR
13 f i
14 }
15 [] readCond (p . request , cm, cm. params ,
16 ⋁ic∈cm.ICsreq ! i c . a ccept s
17 ∧ ⋀rm_req∈RICsreq(p,cm)rm_req . wai t s)
18 → chaos ; ERROR
19

20 FORALL f c ∈ cm. FCsres
21 [] atomic {
22 p . activeM=cm
23 →
24 assign_data (f c . promises) ; // r e s u l t
25 i f
26 []⋀ic∈cm.ICsres i c . wa i t s
27 ∧ ⋀rm_res∈RICsres(p,cm) rm_res.waits

28 →
29 assign_data (f c . ensure s) ;
30 FORALL rm_res ∈ RICsres (p , cm)
31 assign_data (rm_res . ensure s) ;
32 p . activeM = nu l l ;
33 send (p . response , cm, cm. r e s u l t) ;
34 / / [] e l s e → Incomplete FCs ; ERROR
35 f i
36 }

1 [] atomic {
2 readCond (p . request , cm, cm. params ,
3 ⋀ic∈cm.ICsreq i c . wa i t s ∧ i c . a ccept s
4 ∧ ⋀rm∈RICs(p,cm)rm . wait s)
5 → i f
6 FORALL f c ∈ cm. FCsreq
7 []m. r e qu i r e s →
8 assign_data (cm. ensure s) ;
9

10

11 p . activeM = cm;
12 / / [] e l s e → Incomplete FCs ;ERROR
13 f i
14 }
15 [] readCond (p . request , cm, cm. params ,
16 ⋁ic∈cm.ICsreq ! i c . a ccept s
17 ∧ ⋀rm∈RICs(p,cm)rm . wait s)
18 → chaos ; ERROR
19

20FORALL f c ∈ cm. FCsres
21 [] atomic {
22 p . activeM=cm
23 →
24 assign_data (f c . promises) ; //result
25 i f
26 []⋀ic∈cm.ICsres i c . wa i t s
27

28 →
29 ass ign_data (f c . ensure s) ;
30 FORALL rm ∈ RICs (p , cm)
31 assign_data (rm . ensure s) ;
32 p . activeM = nu l l ;
33 send (p . response , cm, cm. r e s u l t) ;
34 / / [] e l s e → Incomplete FCs ;ERROR
35 f i
36 }

(a) Complex port method – Complex role
method

(b) Complex port method – Simple role
method

Figure 3.15: Semantics of complex methods in provided ports

multiple provided methods of different role port-variables which can be either simple
or complex. The same occurs for complex provided port methods too. In such cases,
the atomic actions for the provided port methods are updated for each role method,
further constrained with the role method’s interaction constraint and also updating
the role data in the way described so far.

3.4.2 Connector Semantics

The meaning of a component has already been described as a concurrent process
that executes an infinite loop for processing the behaviours of their port methods and
events. For connectors, their meaning is defined through their effect on the behaviour
of the components. As shown in Section 3.4.1, a component process includes variables
for storing not only the component data but also the data of the roles the component
plays in its interactions with its environment. So, this allows the component process
to control and manipulate its role states. Component port method/event actions are
enabled to be executed when their guard statements are satisfied. These guards derive
from both the port interaction constraints on the method/event and the role port-
variable interaction constraints on it (waits). By doing so, an action can be executed
only when the role interaction protocols are satisfied too. Upon executing an action,

96

1 [] atomic {
2 readCond (p . request , m, m. params ,
3 ⋀ic∈m.ICs i c . a ccept s ∧ i c . wa i t s
4 ∧ ⋀rm∈RICs(p,m) rm . wait s)
5

6 → if
7 FORALL f c ∈ m.FCs
8 [] f c . r e qu i r e s →
9 assign_data (f c . ensure s) ;

10 FORALL rm ∈ RICs (p , m)
11 ass ign_data (rm . ensure s) ;
12

13

14 send (p . response ,m,m. r e s u l t) ;
15 / / [] else→ Incomplete FCs ; ERROR
16 fi
17 }
18 [] readCond (p . request , m, m. params ,
19 ⋁ic∈m.ICs ! i c . a ccept s
20 ∧ ⋀rm∈RICs(p,m) rm . wait s)
21 → chaos ; ERROR

1 [] atomic {
2 readCond (p . request , m, m. params ,
3 ⋀ic∈m.ICs i c . accept s ∧ i c . wa i t s
4 ∧ ⋀rm_req∈RICsreq(p,m) rm_req . wai t s

5 ∧ ⋀rm_res∈RICsres(p,m) rm_res.waits)

6 → if
7 FORALL f c ∈ m.FCs
8 [] f c . r e qu i r e s →
9 assign_data (f c . ensure s) ;

10 FORALL rm_req ∈ RICsreq (p , m)
11 assign_data (rm_req . ensure s) ;
12 FORALL rm_res ∈ RICsres (p , m)

13 assign_data(rm_res.ensures);

14 send (p . response ,m,m. r e s u l t) ;
15 / / [] else→ Incomplete FCs ; ERROR
16 fi
17 }
18 [] readCond (p . request , m, m. params ,
19 ⋁ic∈m.ICs ! i c . a ccept s
20 ∧ ⋀rm∈RICs(p,m) rm . wait s)
21 → chaos ; ERROR

(a) Simple port method – Simple role method
(reprinting Figure 3.12d)

(b) Simple port method – Complex role
method

Figure 3.16: Semantics of simple methods in provided ports

components update the states of the roles by using the roles’ interaction constraint
ensures data-assignments (along with the updates of the component state itself).

3.4.3 Composite Component Semantics

Composite component types are specified essentially to group the interacting com-
ponents and associate them with the roles of the connectors. Just like primitive
components, the behaviour of a composite component is also considered as a con-
current process. However, this time the process does not have an infinite loop as the
composite components cannot have ports, nor any data variable declarations. Instead,
the process of a composite component is a unit of composition, instantiating and exe-
cuting the processes corresponding to its sub components and thereby allowing their
concurrent interaction with each other.

So, let us assume that activate() is an operator that receives a component as
its parameter and runs the process of that component concurrently with the other
running processes up to that point. Then, the process of a composite component cc
consisting of sub components c1,..,cn and some connectors, which are initialised with
the sub components to impact their behaviours, can be defined as follows.

1 proce s s cc . . . {
2 a c t i v a t e (c1) ;
3 .
4 .
5 .
6 a c t i v a t e (cn) ;
7 }

Figure 3.17: Composite component semantics

97

3.5 Summary

In this chapter, I introduced the XCD language for the contractual specification
of reusable and realisable software architectures. XCD extends Design-by-Contract
(DbC) for specifying software architectures contractually without having to learn and
use process algebras. XCD also offers first-class connector elements for specifying
interaction protocols separately from components; so, components can easily be re-
used in different contexts. To guarantee the realisability of software architectures,
XCD connectors cannot impose global protocols on the components – all protocol
constraints are local in XCD.

I started XCD’s introduction with its structural description. I initially discussed
each constituting element of primitive components, which are (i) component param-
eters, (ii) data variables and helper functions, and (iii) ports with four different
types, where required and provided ports are used for method communications and
emitter and consumer ports used for asynchronous event communications. Next, I
discussed the constituting elements of connectors, which are (i) connector parameters
for associating components with connector roles, (ii) connector roles for specifying
component protocols, (iii) link connectors for specifying the connected component
ports. Lastly, I discussed the structure of composite components, which consists of
(i) component instances and (ii) some connector instances that establish the com-
munications between the component instances and impose (local) protocols on them.
The structural definitions of components and connectors are followed by XCD’s ex-
tension of DbC for specifying the behaviours of components and connectors. Herein,
I showed how designers can specify the behaviours of provided port methods and re-
quired methods contractually; and, I showed the contractual specifications of emitter
and consumer events too. I also introduced the contractual specification of connector
protocols. Finally, I ended the chapter with the high-level semantics of XCD, defined
using Dijktstra’s guarded command language. So, the reader could have initial ideas
on e.g., how component behaviours are interpreted that are also impacted by the
connector protocols, the concurrent execution of component ports, and the sequence
of operations that each different port type performs for processing its method/event.

98

Chapter 4

Formal Representation of XCD

4.1 Introduction

In Chapter 3, the XCD language has been introduced in terms of several aspects, which
are respectively its (i) structure, (ii) contractual behaviour specifications, and (iii)
high-level semantics. Now, in this chapter, I give the detailed formal representation
of XCD. I start with XCD’s syntax, introducing the grammatical rules for specifying
syntactically correct software architecture specifications in XCD. Following that, I
give the well-definedness rules, which need to be followed for valid XCD specifications.
Finally, I give the formal semantics of XCD by showing how syntactically correct and
well-defined XCD specifications can be transformed precisely into formal models in
SPIN’s ProMeLa language [Holzmann, 2004].

4.2 XCD Syntax

I defined XCD’s formal syntax using Extended Backus-Naur Form (EBNF) notation.
In this section, I concisely discuss the EBNF grammar of the XCD syntax. I show
what exactly each XCD element consists of and whether their constituting parts are
optional, mandatory, and repetitive. In the next two sections, I use the syntactic
structure of elements to define their well-definedness and precise translation into for-
mal models in SPIN’s ProMeLa language [Holzmann, 2004].

In the rest of this section, I introduce the syntax of the XCD language in a hi-
erarchical way, firstly giving the syntax of the root element (i.e., for matching an
entire architectural model), then the syntax of its main elements (i.e., component and
connector types), and so on. The syntax description of each XCD element consists
of the corresponding grammar rules. These rules include some XCD keywords that
are highlighted in bold. Strings are specified with double quotes, optional rules with
[...] , repetitions with {...} , concatenations with comma, and comments with (∗...∗) .
The rules are also grouped with (...) . Note that EBNF comments are used in the
syntax descriptions to give more descriptive names to some element sets or sequences
(i.e., ordered), matched by the repetitive syntax rules, e.g., emitterEventSet describ-
ing a set of matched emitter events, ConstantSeq describing a sequence of matched
enum constants. These comment names can then be used in the discussions of XCD’s
well-defined, valid specifications and formal semantics that are given in the next two
sections. Lastly, the ID pre-defined syntax rule is used in the syntax descriptions to
represent the names of the elements typed by designers. Each ID token has a super-

99

(a) Class diagram of a Model

1 Model =
2 { (EnumSet
3 | TypedefSet
4 | PrimitiveCType |XType | CompositeCType) } ,
5 CompositeCInstance ;
6 EnumSet = {Enum} ;
7Enum=enum , IDenum , "{" , IDconstant ,{ IDconstant } , (∗ConstantSeq ∗) " } ; " ;
8 TypedefSet = {Typedef } ;
9 Typedef = typedef , IDnew , IDactual , " ; " ;

(b) Grammar rules of a Model

Figure 4.1: Structure of a Model

script describing what ID represents, e.g., IDCTypeName representing a component type
name. For simplicity, IDs are referred to by their superscripts in the discussions of
valid specifications and formal semantics.

4.2.1 Model Syntax

The Model rule in lines 1–5 of Figure 4.1b matches the entire XCD specification
of a system. As also depicted in its class diagram in Figure 4.1a, an architecture
model requires a set of (i) primitive and composite component type specifications,
(ii) connector type specifications, (iii) typedef and enum element specifications, and
lastly (iv) a composite component instance specification (i.e., the configuration).

Note that typedef and enum elements are specified globally in XCD, just like
component and connector specifications. The rules for specifying enum and typedef
are given respectively in lines 7 and 9 of Figure 4.1b.

4.2.2 Composite Component Syntax

The CompositeCType rule in lines 1–3 of Figure 4.2b matches a composite component
type specification of an XCD model. A composite component may have zero or more
parameters, which are used to pass configuration information when it is instantiated.
Its class diagram is depicted in Figure 4.2a, consisting of a set of composite/primitive
component instance and connector instance specifications that are matched by the
rules defined in lines 4–12. An instance of a component type is specified with a type
ID, an instance ID, an optional array size, and zero or more argument expressions
(lines 5–6 and 8–9). For a connector instance, it is also specified respectively with a
type ID, an instance ID, an optional array size, and arguments (lines 11–12). How-
ever, a connector argument is more complex than a component argument, matched
separately by the rule in lines 14–17. It can be either (i) an expression (just like
component arguments) or (ii) an ID of a component (or component array), playing
a connector role, and a sequence of IDs for its ports (or port arrays). Lastly, in lines
18–19, the rules for matching data types and array size are given respectively.

100

(a) Class diagram of a composite component type

1 CompositeCType = component IDtype , " (" , {DataType , IDparameter } , ")" ,
2 "{" , CompositeCInstanceSet , Pr imit iveCInstanceSet ,
3 ComplexXInstanceSet , "}" ;
4 CompositeCInstanceSet =CompositeCInstance , {CompositeCInstance } ;
5 CompositeCInstance=component , IDtypename , IDinstancename , [ArraySize] ,
6 "(" ,{ Express ion } , ") ; " ;
7 Pr imit iveCInstanceSet=Primit iveCInstance , { Pr imit iveCInstance } ;
8 Pr imit iveCInstance=component , IDtypename , IDinstancename , [ArraySize] ,
9 "(" ,{ Express ion } , ") ; " ;

10 ComplexXInstanceSet = ComplexXInstance , {ComplexXInstance } ;
11 ComplexXInstance=connector , IDtype , IDinstancename , [ArraySize] ,
12 "(" , XInstanceArgumentSeq , ") ; " ;
13 XInstanceArgumentSeq = XInstanceArgument , {XInstanceArgument}
14 XInstanceArgument = Express ion
15 | IDcomponent [ArraySize] ,
16 "{" IDport [ArraySize] ,
17 {IDport [ArraySize] } , (∗ portSeq ∗) "}" ;
18 DataType = int | byte | short | bool | bit ;
19 ArraySize = " [" , Express ion , "] " ;

(b) Grammar rules of a composite component type

Figure 4.2: Structure of a composite component type

4.2.3 Primitive Component Syntax

The PrimitiveCType rule in lines 1–2 of Figure 4.3b matches a primitive component
type specification. Just like composite types, a primitive component may have zero
or more configuration parameters. Its class-diagram is depicted in Figure 4.3a; a
component includes in its body a set of data variables, helper functions, and ports.
While a primitive component must have at least one port of any type, it may be state-
less (i.e., without any variables). Lines 5–14 in Figure 4.3b give the rules matching
respectively the emitter, consumer, required, and provided types of component ports.
Port signature consists respectively of its type, its ID, and an optional array specifier.
Indeed, a port of a component may be an array of ports when the component needs
multiple copies of it. A port includes in its body at least one method/event that it
can operate in the component environment.

In lines 17–18, the rule for matching a helper function is defined, which may have
parameters and simply returns an expression followed by a return keyword. In line
20, the rule for matching a data variable is given. It requires a data type and an
assignment matched by the rule in lines 21–22. The assignment provides an initial
value for the data variable. It can be either (i) an expression assigning a single value
to the variable, or, (ii) a set expression assigning a non-deterministic value within the
specified range.

101

(a) Class diagram of a primitive component type

1 PrimitiveCType = component , IDtype , "(" {DataType , IDparameter } , ")" ,
2 "{" , Var iab leSet , HelperFunctionSet , PortSet , "}" ;
3 PortSet = Port , {Port } ;
4 Port = EmitterPort | ConsumerPort | RequiredPort | ProvidedPort ;
5 EmitterPort = emitter , port , IDport , [ArraySize] ,
6 "{" , EmitterEvent , {EmitterEvent } , (∗ emitterEventSet ∗) "}" ;
7 ConsumerPort = consumer , port , IDport , [ArraySize]
8 "{" , ConsumerEvent , {ConsumerEvent } , (∗ consumerEventSet ∗) "}" ;
9 RequiredPort = required , port , IDport , [ArraySize]

10 "{" RequiredMethod , {RequiredMethod} (∗ requiredMethodSet ∗) "}" ;
11 ProvidedPort = provided , port , IDport , [ArraySize]
12 "{" (ProvidedMethod | ComplexProvidedMethod) ,
13 {(ProvidedMethod | ComplexProvidedMethod)} ,
14 (∗ providedMethodSet , complexProvidedMethodSet ∗) "}" ;
15
16 HelperFunct ionSet = {Helper_Function } ;
17 Helper_Function = IDfunction , " (" , {DataType , IDparameter } , ")" ,
18 "{" ,return , Express ion , " } " ;
19 Var iab l eSet = {Var iab le_Dec larat ion } ;
20 Variab le_Dec larat ion = DataType Assignment ;
21 Assignment = IDvar ":=" Express ion " ;"
22 | IDsetvar /in RangeExpression " ;"

(b) Grammar rules of a primitive component type

Figure 4.3: Structure of a primitive component type

4.2.3.1 Port Methods and Events Syntax

The rules for matching methods and events of component ports are defined in lines
1–8 of Figure 4.4b. As depicted in their class diagram given in Figure 4.4a, events
and methods each consist of an interaction contract (IC_*), a functional (FC_*)
contract, and a signature. However, while a method and an event must include a
signature, they do not have to include either type of the contracts. Contracts are
defined as optional by the method/event rules.

In lines 9–11, the rules that match signatures are given. Note that unlike event
signatures, methods require a return type for a result, and, their signature may include
a list of exceptions that can be thrown by the methods.

4.2.3.2 Port’s Interaction Contract Syntax

In lines 1–6 of Figure 4.5b, the interaction contract rules are defined, which are used
by the port method and event rules given in Figure 4.4b. The rule in line 1 is used by
emitter port events and required port methods, the rule lines 2–3 by consumer port
events and provided port methods, and the two rules lines 4–6 by the request and re-
sponse events of complex provided methods respectively. As its class diagram depicts
in Figure 4.5a, every interaction contract consists of a single interaction constraint of
either await type or accepting type. Emitter events, required methods, and response

102

(a) Class diagram of a component port

1 EmitterEvent = [IC_waits] , [FC_emitter] , EventSignature ;
2 ConsumerEvent = [IC_waits_accepts] , [FC_consumer] , EventSignature ;
3 RequiredMethod = [IC_waits] , [FC_required] , MethodSignature ;
4 ProvidedMethod = [IC_waits_accepts] , [FC_provided] , MethodSignature ;
5 ProvidedComplexMethod =
6 [IC_waits_accepts_req] , [FC_complexProvided_req] ,
7 [IC_waits_res] , [FC_complexProvided_res] ,
8 MethodSignature ;
9 EventSignature = IDaction ,

10 "(" , {DataType , IDparameter } , (∗paramSeq ∗) ") ; " ;
11 MethodSignature = DataType , EventSignature , [(throws {IDexception }] ;

(b) Grammar rules of a component port

Figure 4.4: Structure of a component port

(a) Class diagram of interaction contract types

1 IC_waits = @interaction , "{" , waits ∶ , Express ion , "}" ;
2 IC_waits_accepts = @interaction , "{" ,
3 (waits ∶ , Express ion | accepts ∶ , Express ion) , "}" ;
4 IC_waits_accepts_req = @interaction_req , "{" ,
5 (waits ∶ , Express ion |accepts ∶ , Express ion) , " } " ;
6 IC_waits_res = @interaction_res , "{" , waits Express ion , "}" ;

(b) Grammar rules for interaction contract types

Figure 4.5: Structure of port interaction contracts

events of complex provided methods cannot have accepting type of interaction con-
straint (lines 1 and 6), while consumer events, provided methods, and request events
of complex provided methods can have either one of them (lines 2–3 and 4–5).

4.2.3.3 Port’s Functional Contract Syntax

In lines 1–13 of Figure 4.6b, the functional contract rules are given, which are used
in the method and event rules defined previously. As depicted in its class diagram
given in Figure 4.6a, every functional contract contains a set of functional constraints,

103

(a) Class diagram of functional contract types

1 FC_required = @functional , "{" , RequiredFConsSet , "}" ;
2 RequiredFConsSet = FCons_promReqEns , {otherwise , FCons_promReqEns } ;
3 FC_emitter = @functional , "{" , EmitterFConsSet , "}" ;
4 EmitterFConsSet = FCons_promEns , {otherwise , FCons_promEns } ;
5 FC_provided = @functional , "{" , ProvidedFConsSet , "}"
6 ProvidedFConsSet = FCons_reqEns_ResExc , {otherwise , FCons_reqEns_ResExc } ;
7 FC_consumer = @functional , "{" , ConsumerFConsSet , "}" ;
8 ConsumerFConsSet = FCons_reqEns , {otherwise , FCons_reqEns } , "}" ;
9 FC_complexProvided_req = @functional_req , "{" , RequestEventFConsSet , "}" ;

10 RequestEventFConsSet = FCons_reqEns , {otherwise , FCons_reqEns } ;
11 FC_complexProvided_res = @functional_res , "{" , ResponseEventFConsSet , "}" ;
12 ResponseEventFConsSet = FCons_promEns_ResExc ,
13 {otherwise ∶ , FCons_promEns_ResExc } ;
14
15 FCons_promEns = promises ∶ , AssignmentSeq , ensures ∶ , AssignmentSeq ;
16 FCons_reqEns = requires ∶ , Express ion , ensures ∶ , AssignmentSeq ;
17 FCons_reqEns_ResExc = requires ∶ , Express ion ,
18 [ensures , AssignmentSeq_res | throws ∶ , IDexception] ;
19 FCons_promEns_ResExc = promises ∶ , AssignmentSeq ,
20 [ensures ∶ , AssignmentSeq_res | throws ∶ , IDexception] ;
21 FCons_promReqEns = promises ∶ , AssignmentSeq ,
22 {FCons_reqEns} (∗ r equ i r e sEnsu r e sSe t ∗) ;
23
24 AssignmentSeq = {Assignment} ;
25 AssignmentSeq_res = AssignmentSeq
26 [\result , ":=" , Express ion
27 | \result , \in , " [" , Express ion , " ," , Express ion , "] "] ;

(b) Grammar rules for functional contract types

Figure 4.6: Structure of port functional contracts

which are matched by the rules defined in lines 15–22. Functional constraints vary
depending on the port type. Multiples of them can be specified for an event/method
contract, which are then joined via otherwise keyword (see lines 2, 4, 6, 8, 10, and
13). Note that complex methods have two functional contracts matched by the rules
in lines 9–13. The rule in line 9 matches the functional contract for the request event
of a complex method consumed from its environment, and, the rule in line 11 matches
the functional constract for the response event emitted. The request event contract
consists of consumer event constraints, while the response event contract consists
of an extended form of emitter event constraints (see lines 19–20) that allow the
specification of the method result in ensures and alternatively the throws for specifying
any exception to be thrown.

The requires pre-condition of functional constraints is matched as an expression
(see lines 16 and 17), which will be introduced shortly. The ensures and promises
clauses of the functional constraints are matched as a sequence of assignments in lines
15–22 (see Figure 4.3b in page 102 for the assignment rule). Note that the ensures for
a provided method (line 18) and complex provided method’s response event (line 20)

104

(a) Class diagram of a connector type

1 XType = connector , IDtype , " (" , XTypeParameterSet , ")" ,
2 "{" , RoleSet , XInstanceSet , "}" ;
3 XTypeParameterSet = XTypeParameter , {XTypeParameter } ;
4 XTypeParameter = DataType , IDname

5 | IDrole , " [] " , "{" ,
6 IDportvar , [ArraySize] ,
7 {IDportvar , [ArraySize] } , (∗ portvarSeq ∗) "}" ;
8 Role = role , IDname , "{" ,
9 VariableSet , HelperFunctionSet , PortVar iableSet , " } " ;

10 PortVar iab leSet = PortVariable , { PortVar iab le } ;
11 PortVar iab le = EmitterPortvar | ConsumerPortvar |
12 RequiredPortvar | ProvidedPortvar ;
13 EmitterPortvar = emitter , port_variable , IDportvar , [ArraySize] , "{"
14 EmitterPortVar_Event , {EmitterPortVar_Event } , (∗ emitterEvents ∗) "}" ;
15 ConsumerPortvar = consumer , port_variable , IDportvar , [ArraySize] , "{"
16 ConsumerPortVar_Event , {ConsumerPortVar_Event} (∗ consumerEvents ∗) "}" ;
17 RequiredPortvar = required , port_variable , IDportvar , [ArraySize] , "{"
18 RequiredPortVar_Method {RequiredPortVar_Method} (∗ requiredMethods ∗) "}" ;
19 ProvidedPortvar = provided , port_variable , IDportvar , [ArraySize] , "{"
20 (ProvidedPortVar_Method | ProvidedPortVar_ComplexMethod) ,
21 {ProvidedPortVar_Method | ProvidedPortVar_ComplexMethod } ,
22 (∗ providedMethods , complexProvidedMethods ∗) "}" ;
23 XInstanceSet = XInstance {XInstance } ;
24 XInstance = LinkXInstance | ComplexXInstance ;
25 LinkXInstance = connector , IDinstance , " (" ,
26 IDl , "{" , IDportl , "}" ,
27 IDr , "{" , IDportr , "}" , ") ; " ;

(b) Grammar rules for a connector type

Figure 4.7: Structure of a connector type

are matched via an extended form of the usual assignment rule (see lines 25–27), which
allows assignment sequences to further include method result assignment. Moreover,
since provided methods and complex method’s response events can have exceptional
behaviours, their functional contract can have a throws clause as alternative to the
ensures (lines 18 and 20). Using throws, designers can specify the exception to be
thrown, in which case no data assignment takes place.

4.2.4 Connector Syntax

The XType in lines 1–2 of Figure 4.7b matches a connector type specification. As
depicted in its class diagram given in Figure 4.7a, a connector type consists of con-
nector parameters, roles, and instances of some connectors. A connector parameter is
matched by the rule defined in lines 4–7. It may be specified either as a configuration
parameter (just like those of component types) or as a role parameter (lines 5–7),
through which a component is associated with the connector role. Note that a role

105

(a) Class diagram of role port-variable actions

1 EmitterPortVar_Event = [IC_waits_ensures] , EventSignature ;
2 ConsumerPortVar_Event = [IC_waits_ensures] , EventSignature ;
3 RequiredPortVar_Method = [IC_waits_ensures] , MethodSignature ;
4 ProvidedPortVar_Method = [IC_waits_ensures] , MethodSignature ;
5 ProvidedPortVar_ComplexMethod = [IC_waits_ensures_req] ,
6 [IC_waits_ensures_res] ,
7 MethodSignature ;

(b) Grammar rules for role port-variable actions

Figure 4.8: Structure of role port-variable actions

parameter can also be an array ("[]") to associate an array of components (or their
port arrays) with the instances of the role. In lines 8–9, the rule for matching a con-
nector role is given with zero or more data variables and helper functions, and at least
one port-variable. In lines 13–22, the rules for matching different types of role port-
variables are defined. Role port-variables can be specified as arrays corresponding to
the port arrays of the associated components. Finally, in line 24, the rule for matching
a (sub) connector instance of a connector type is given. A connector instance can be
either complex connector, matched by the ComplexXInstance rule in Figure 4.2b (page
101), or a link connector, matched by the rule in lines 25–27. In the latter case, each
link is initialised with a pair of role port-variables that it connects.

4.2.4.1 Port-variable Method and Event Syntax

The methods and events of role port-variables are matched by the rules given in lines
1–7 of Figure 4.8b. As depicted in its class diagram given in Figure 4.8a, methods
and events here each consist of an interaction contract and a signature, where the
former is again optional.

4.2.4.2 Role Port-variable’s Interaction Contract Syntax

The rules given in lines 1–6 of Figure 4.9b match interaction contract of methods and
events in role port-variables. While the rule in lines 1–2 are matched via the actions
of emitter, consumer, required and provided role port-variables, the rules in lines 3–6
are matched via the complex methods of provided role port-variables (namely, the
request and response events respectively). As depicted in its class diagram given in
Figure 4.9a, a role interaction contract consists of a single constraint of await delaying
pre-condition and ensures data-assignment sequence. Note that unlike component
interaction constraints, role interaction constraints also include an ensures clause for
specifying the role data-assignments.

106

(a) Class diagram of a role interaction contract

1 IC_waits_ensures=@interaction , "{" ,
2 waits ∶ , Express ion , ensures ∶ , AssignmentSeq , " } " ;
3 IC_waits_ensures_req=@interaction_req , "{" ,
4 waits ∶ , Express ion , ensures ∶ , AssignmentSeq , " } " ;
5 IC_waits_ensures_res=@interaction_res , "{" ,
6 waits ∶ , Express ion , ensures ∶ , AssignmentSeq , " } " ;

(b) Grammar rules for role interaction contract

Figure 4.9: Structure of role interaction contracts

1 Term = INTEGER|" true " |" f a l s e " | \nothing | \result | \exception | ID | "@" ;
2 Express ion= Term
3 | IDfunction , " (" , { Express ion } , ")"
4 |UNARY_OP, Express ion (∗UNARY_OP: ++,−−∗)
5 | Express ion , BINARY_OP, Express ion (∗BINARY_OP: + ,− ,∗ ,/ ∗)
6 | Express ion , "?" , Express ion , " : " , Express ion
7 ;
8 RangeExpression= " [" , Express ion , (∗ leftBoundExpr ∗) " ,"
9 Express ion , (∗ rightBoundExpr ∗) "] " ;

Figure 4.10: Grammar rules for expressions

4.2.4.3 Expressions

Figure 4.10 gives the rules for specifying expressions. Expressions are used in the
syntax rules discussed so far, to represent any values typed by designers, e.g., con-
tract pre-condition values (waits and requires), the assigned values to the variables
in contract assignment sequences (promises and ensures), parameter arguments for
components and connectors, etc. XCD supports both basic expressions (matched by
the rules in lines 2–7) and range expressions (lines 8–9). While the former represents
a single value specified using logical and arithmetic operators, the latter a range of
values bounded by two (basic) expressions.

The term rule in line 1 of Figure 4.10 is the basic unit of an expression. It matches
an ID (e.g., variable ID and enum constant ID), a numeric value, or a boolean value.
It can also match reserved keywords of XCD, e.g., /result for a method result and
/exception for a method exception due to abnormal behaviour. Another reserved
keyword is /nothing, which is used for parameter-assignments (promises) and data-
assignments (ensures) of contracts, to indicate that they do not assign anything.
For instance, in Figure 4.11, /nothing is used to describe that the method pump has
no parameters to promise and the component state is not updated via ensures.

Furthermore, a term can also be an @ symbol, which has been introduced to
represent the index of the executing element in an array of elements. It can be used
either in contract specifications or connector instance specifications. When used inside
contracts, the @ symbol represents the array index of the executing component port in
a port array. For instance, in lines 3–6 of Figure 4.12, a port array is specified that has
two ports. The @ symbol herein returns the index of the executing port and is used in

107

1 required port gas{

2 @functional{
3 promises: \nothing;

4 requires:!(/result==chosenAmount);

5 ensures: /nothing; }

6 Amount pump();

7 }

Figure 4.11: The use of /nothing in contracts

1 component Pump(ID N:=2){

2 bool pumpReleased[N]:=false;

3 provided port oil[N]{

4 @interaction{waits:pumpReleased[@]==true;}
5 Amount pump();

6 }

7 }

8 component GasStation(ID N := 2){

9 component Customer custIns[2]();

10 component Cashier cashierIns(N);

11 connector Customer2Cashier conn1[2](custIns[@]{pay}, cashierIns{customer[@]});

12 }

Figure 4.12: The use of @ symbol in contracts and connector instances

Function signature Information
<T> ctype(ID) It receives a component type name and returns its specification.
<T> ptype(ID) It receives a component port name returns its specification.

Expression numOfConnections(<T>) It receives a component port specification and returns the number
of connections the port has in its environment.

ID[] pvNameSet(PortVariableSet) It receives a set of role port-variable specifications and returns an-
other set which consists of the names of the port-variables.

ID rolePv(ComplexXInstance, ID)
It receives a connector instance and a component port name spec-
ifications, and returns the connector’s role port-variable that is as-
sumed by the component port.

ID[] pactionSet(<T>)
It receives a component port specification and returns its method-
/event names.

ID[] pvactionSet(<T>)
It receives a role port-variable specification and returns its method-
/event names.

<T1>[] roleEventSet(<T2>) It receives a port event specification and returns the event specifica-
tions of the role port-variables assumed by the port.

<T1>[] roleMethodSet(<T2>) It receives a port method specification and returns the method spec-
ifications of the role port-variables assumed by the port.

<T>[] roleCMethodSet(
ComplexProvidedMethod)

It receives a complex port method specification and returns the
method specifications of the role port-variables assumed by the port.

Return and parameter types of functions are defined using the syntax rule names, to show what
XCD element the functions receive and return. The type T is used to specify generic types
that cannot be represented with a certain specific rule name, e.g., ctype function’s return type
which can be either PrimitiveCType or CompositeCType. Lastly, the square brackets ([])
are used in return types of some functions to represent an array of elements that is returned.

Table 4.1: Functions used in defining XCD’s well-definedness rules

the port method’s interaction contract (line 4), so as to reach a particular slot of the
pumpReleased data (e.g., when the first port is executed, the first slot of pumpReleased
is accessed). When @ symbol is used in connector instance specifications, it represents
the index of the executing connector in an connector array. In line 11 of Figure 4.12,
an instance of a connector array is specified that has two connectors. The @ symbol
herein returns the index of the executing connector, which is used to initialise the
connector with the specific component (or its port) of the component array (or its
port array).

4.3 Rules for Valid XCD Specifications

In Section 4.2, I introduced the syntax of the XCD language. In order for architecture
specifications to be transformed into formal models in SPIN’s ProMeLa language
[Holzmann, 2004], it is necessary to define precisely the underlying semantics. For

108

instance, a connector cannot establish a link between two incompatible types of ports
(e.g., required–required or emitter–emitter), or, the event emitted by an emitter port
cannot be unknown to the interconnected consumer port. So in this section, such rules
are defined in logic formulas that are required to be satisfied by designers for the well-
definedness of their XCD specifications. Note that in the rules’ logic formulas, the
architectural elements of XCD are referred to in the form of their syntactic structures
introduced in Section 4.2, which are navigated through dot notation. Moreover, there
may be underlined functions employed in the formulas. These functions are intended
to help reader easily understand and follow the formulas. Each function receives an
XCD specification of an element (e.g., component port and method/event) or simply a
name of an element; and it represents either (i) some data obtained after making some
calculations, e.g., numOfConnections(< T >) receiving a component port specification
and returning the number of its connections, or (ii) some particular (i.e., relevant)
part of the XCD specification, e.g., ctype(ID) receiving a component type name and
returning its specification. Table 4.1 gives the documentation of such functions.

4.3.1 Well-definedness of Contracts

As discussed in Section 3.3 (page 84), functional and interaction contracts are used
to specify the behaviours of methods and events. However, if the contracts are not
specified in a semantically correct way, the methods and events may not behave
correctly. This may prevent designers from analysing their system behaviours or,
worse, mislead them due to the analysis of wrong behaviours hiding the actual errors.

Completeness of Functional Contracts. The syntax description of functional
contracts is given in Section 4.2.3.3. Functional contracts of port events and methods
may have multiple constraints, which must be well-defined. The functional constraint
pre-conditions must always be complete which consider all possible cases that may
occur. That is, as stated in the following formula 4.1, for each port method and
event that a component in a system can operate, there must always be at least one
functional constraint whose requires pre-condition is satisfied. This guarantees
that components can always perform their functional behaviour successfully, updating
their state via the functional constraint’s ensures data-assignments. Note that
functional contracts for emitter events are complete by definition as their constraints
cannot have pre-conditions, and therefore, the functional constraints’ ensures are
applied directly.

1LET
2 consumerEvents (comp) = {port . ConsumerPort . consumerEventSet
3 | port ∈ comp . PortSet }
4 requiredMethods (comp) = {port . RequiredPort . requiredMethodSet
5 | port ∈ comp . PortSet }
6 providedMethods (comp) = {port . ProvidedPort . providedMethodSet
7 | port ∈ comp . PortSet }
8 consumerFCs (comp)={e . FC_consumer . ConsumerFConsSet
9 | e∈consumerEvents (ctype(comp . typename))}

10 requiredFCs (comp)={m. FC_required . RequiredFConsSet
11 | m∈requiredMethods (ctype(comp . typename))}
12 providedFCs (comp)={m. FC_provided . ProvidedFConsSet
13 | m∈providedMethods (ctype(comp . typename))}
14 IN

109

∀ comp ∈ CompositeCType.PrimitiveCInstanceSet ∶

⋁
fc∈consumerFCs(comp)

fc.requires ∧

⋀
fc∈requiredFCs(comp)

⋁
subfc∈fc.requiresEnsuresSet

subfc.requires ∧

⋁
fc∈providedFCs(comp)

fc.requires

(4.1)

Completeness of Interaction Contracts. Unlike functional contracts, the com-
pleteness of interaction contracts for component ports and role port-variables is im-
material. Indeed, they do not necessarily have to be satisfied at all times. An in-
teraction contract serves to guarantee that components operate their actions in the
expected order. This is performed via the await constraints of interaction contracts
that delay the action executions until the component state where awaits constraints
are acceptable (i.e., satisfied). Moreover, the violations of accepting interaction con-
straints for consumer events and provided methods aid in determining the wrong use
of events/methods – i.e., unexpected order.

Contract data-assignments. Guaranteeing the completeness of functional con-
straint pre-conditions (requires) is not enough for the well-definedness of method-
/event contracts. It is also necessary to guarantee the well-definedness of (i) the
parameter-assignments (promises) and the data-assignments (ensures) of func-
tional constraints and (ii) the data-assignments of role interaction constraints.

Let us start with the data-assignments and consider a data-assignment sequence
vi := ei, where 1 ≤ i ≤ n, n ≥ 1, and, vi and ei are a data variable and an expression
respectively. A data-assignment sequence as a whole is well-defined iff the left hand
side vi is a component or role data variable, and, the right hand side ei of each
assignment is an expression constructed according to the following rules and whose
type can be mapped to type of the variable vi. Expression ei can be either (i) a
constant value, (ii) a pre-state value of any data variables (specified as pre(d)), (iii)
a post-state value of a variable whose assignment (if any) precedes the current variable
in the data-assignment sequence, (iv) or a function (e.g., +,−, /,∗) of expressions. Note
that a term, defined below, can also be a method/event parameter for the expressions
of data-assignments. So, an expression assigned to a data variable can be specified
over the parameter variables as well (e.g., d1 ∶= d2+par1∗3 where d2 is a data variable
and par2 is a parameter for the method/event whose contract applies the assignment).

Expression:
1. a function (e.g.., +,−,∗, /,>,<,==, ! =,&&, and ∣∣) of ex-

pressions x1,⋯, xm where m ≥ 0.

2. a term t

Term
1. a constant, e.g. some boolean or integer value.

2. a (known) variable, i.e., one of:

(a) a vj , where j < i

(b) a (pre-state) value of some data dk

If ei of a data-assignment-sequence (vi := ei) is a range of expressions, then,
it is always well-defined. This is to do with my implementation of ranges using

110

ProMeLa’s select operator, as discussed in the next section (Section 4.4.8). The
select operator is used as select(vi ∶ eleft−bound.. eright−bound), which assigns a
value to vi non-deterministically within the specified range of left-bound and right-
bound expressions. However, the select does not require its left-bound expression
to be less than or equal to the right-bound expression. Indeed, Listing 4.1 is the
expanded ProMeLa code from the select operator. It shows that when the left-
bound expression is even greater, the code breaks and the left-bound expression is
chosen to be assigned to vi.

1 vi = eleft−bound;

2 do

3 :: vi < eright−bound → vi ++

4 :: break

5 do

Listing 4.1: ProMeLa code expansion for the ProMeLa’s select construct

A data-assignment sequence may not necessarily assign all the data variables of a
component. In this case, those data that are omitted are not updated. Note also for
the provided methods which have return types that their contract data-assignments
should assign the method result (/result). Otherwise, the result is assigned to a
non-deterministic value within the range of the result type.

Contract parameter-assignments. Functional contracts of emitter events and
required methods have promises parameter-assignments too, promising parame-
ters for their event and method requests respectively. Just like data-assignments,
parameter-assignments must also be well-defined.

I use the previously described Expression and Term rules for also defining the well-
definedness of parameter-assignments. So, let us consider a parameter-assignment se-
quence vi := ei, where 1 ≤ i ≤ n, n ≥ 1 vi is a parameter variable, and ei an expression
assigned to the parameter. A parameter-assignment sequence is well-defined iff the
left hand side of each parameter-assignment is a parameter and the right hand side
ei is an expression (complying with the Expression rule) which must be either (i) a
constant, (ii) pre-state value of any data-variables, (iii) a parameter variable whose
assignment precedes the current variable vi in the sequence, or, (iv) a function (e.g.,
+,−, /,∗) of expressions. Note that the promises parameter-assignments of an even-
t/method may omit some parameters. In such a case, those parameters not assigned
explicitly are assigned a non-deterministic value within their range (e.g., any values
within [−231−1,231−1] for an int parameter) before those that are assigned explicitly.
So, the implicitly assigned parameters can be used in the explicit assignment of the
parameters.

4.3.2 Well-definedness of Components and Connectors

Component and connector types that are specified for modelling a software architec-
ture must be well-defined according to the rules discussed below.

4.3.2.1 Well-definedness of Connector Types

The structure and behaviour of connectors are given in Section 3.2.2 (page 81) and
Section 3.3.2 (page 88) respectively. So, a connector type is essentially specified
with a set of (i) parameters for receiving components at instantiation time1, (ii)

1 A connector can have data type parameters too, but, this is omitted in the discussion here.

111

roles for describing the interaction protocols for components, (iii) link connectors for
specifying the communication links between component ports, and, (iv) instances of
complex connectors for re-using their interaction protocols. For a connector type to be
well-defined, these structural units constituting a connector type must be well-defined
as discussed in what follows.

Consistency between connector parameters and connector roles. Given its
formal syntax in Section 4.2.4 (page 105), connectors are specified with a set of pa-
rameters, consisting of a unique parameter for each connector role. The connector
parameter for a role is specified with the role name and the names of the port-variables
for that role. When the connector is instantiated, each connector parameter is asso-
ciated with a component. By doing so, the role name of the parameter is associated
with the name of the component, and, the port-variable names are associated with
the port names of that component.

The following formula 4.2 must be satisfied for connector parameters to guarantee
that each role of a connector can be successfully played by a component when the
connector is instantiated. It states that for each role of a connector type, there must
be exactly one parameter specified in that connector type. This parameter must
consist of the identifier for the role and the identifiers for its port-variables.

∀ role ∈XType.RoleSet ∶
∃! param ∈XType.XTypeParameterSet ∶
param.role = role.name ∧
param.portvarSeq = pvNameSet(role.PortV ariableSet)

(4.2)

Figure 4.13 gives the specification of the client2server connector, whose parame-
ters are consistent with its roles. Indeed, it has one parameter corresponding to the
client role and another to the server role. Both of the connector parameters have
service and initialisation port-variable names, corresponding to the actual role port-
variables. Figure 4.14 gives another client2server specification whose parameters are
inconsistent with its roles this time. While the client and server roles both have the
conn port-variable, the name of the conn is not in the parameters of the connector.
Instead, an unknown port-variable name initialisation is specified in the connector
parameters for the roles.

1 connector client2server(client{service,initialisation}, server{service,initialisation}){

2 role client{

3 required port_variable service{void request();}

4 emitter port_variable initialisation{initialise();}

5 }

6 role server{

7 provided port_variable service{void request();}

8 consumer port_variable initialisation{initialise();}

9 }

10 connector link1(client{service}, server{service});

11 connector link2(client{initialisation}, server{initialisation});

12 }

Figure 4.13: Consistent connector parameters with the connector roles

Type compatibility between the linked role port-variables. A link connector
is initialised with a couple of role port-variables, to establish the communication

112

1 connector client2server(client{service,initialisation}, server{service,initialisation}){

2 role client{

3 required port_variable service{void request();}

4 required port_variable conn{void open(); void close();}//missing in the parameter

5 }

6 role server{

7 provided port_variable service{void request();}

8 provided port_variable conn{void open(); void close();}//missing in the parameter

9 }

10 connector link1(client{service}, server{service});

11 connector link2(client{conn}, server{conn});

12 }

Figure 4.14: Inconsistent connector parameters with the connector roles

links between the component ports that are associated with the role port-variables at
instantiation time.

Formula 4.3 must be satisfied for each link connector to guarantee that only the
compatible types of role port-variables can be linked via connector types. That is,
a link connector may receive via its parameters either (i) a pair of required and
provided role port-variables for establishing their method communications or (ii) a
pair of emitter and consumer role port-variables for establishing their asynchronous
event communications.

∀ x ∈XType.XInstanceSet ∶
x.LinkXInstance ≠ null ∧
ptype(x.LinkXInstance.portvarl) = Required⇔

ptype(x.LinkXInstance.portvarr) = Provided ∧
ptype(x.LinkXInstance.portvarl) = Provided⇔

ptype(x.LinkXInstance.portvarr) = Required ∧
ptype(x.LinkXInstance.portvarl) = Emitter⇔

ptype(x.LinkXInstance.portvarr) = Consumer ∧
ptype(x.LinkXInstance.portvarl) = Consumer⇔

ptype(x.LinkXInstance.portvarr) = Emitter

(4.3)

Considering the connector type specification in Figure 4.13, one can easily ob-
serve that its linked port-variables are compatible according to the above rule. While
the link1 in line 10 connects the required port-variable service of the client role
with the provided port-variable service of the server role, the link2 in line 11 con-
nects the emitter port-variable initialisation of the client with the consumer port-
variable initialisation of the server. On the other hand, Figure 4.15 gives another
client2server connector specification, where the link connectors are initialised with
the role port-variables of incompatible types. The link1 in line 10 links the required
client port-variable to the consumer server port-variable, and link2 in line 11 links
the emitter client port-variable to the provided server port-variable.

4.3.2.2 Well-definedness of Composite Component Types

The structure of composite components is given in Section 3.2.3 (page 83). A compos-
ite component type is therefore specified as a collection of component and connector
instance specifications. A composite component type exports the ports of its sub-

113

1 connector client2server(client{service,initialisation}, server{service,initialisation}){

2 role client{

3 required port_variable service{void request();}

4 emitter port_variable initialisation{initialise();}

5 }

6 role server{

7 provided port_variable service{void request();}

8 consumer port_variable initialisation{initialise();}

9 }

10 connector link1(client{service}, server{initialisation});//incompatible port-variables

11 connector link2(client{initialisation}, server{service});//incompatible port-variables

12 }

Figure 4.15: Incompatible types of the linked role port-variables

1 component client(){

2 required port servicePort{void request();}

3 emitter port initialisationPort{initialise();}

4 }

5 component server(){

6 provided port servicePort{void request();}

7 consumer port initialisationPort{initialise();}

8 }

9 component clientServer_config(){

10 component client clientIns();

11 component server serverIns();

12 connector client2server connIns(clientIns{servicePort,initilisationPort},

13 serverIns{servicePort,initialisationPort});

14 }

Figure 4.16: Compatibility between component port and role port-variables

1 component client(){

2 emitter port servicePort{void request();} //Incompatible port with role port-variable

3 emitter port initialisationPort{initialise();}

4 }

5 component server(){

6 consumer port servicePort{void request();}//Incompatible port with role port-variable

7 consumer port initialisationPort{initialise();

8 }

9 component clientServer_config(){

10 component client clientIns();

11 component server serverIns();

12 connector client2server connIns(clientIns{servicePort,initilisationPort},

13 serverIns{servicePort,initialisationPort});

14 }

Figure 4.17: Incompatibility between component port and role port-variables

components that are unconnected; so, the component component can be used just
like primitive components and represent the computational units of systems. If all
the ports of the sub-components are connected, then, such a composite component
describes a configuration of the specified system. In either case, sub components are
passed via parameters to the sub-connectors, which describe their interaction pro-
tocols. However, components, passed to connectors, must meet the following rules;
so that the connectors can successfully establish the communication links among the
components and constrain their interactions.

Compatibility between component port and role port-variable. As dis-
cussed in Section 4.3.2.1 (page 111) for the well-definedness of connector types, a
connector type must have a unique parameter for each of its roles. The parameters
of a connector are then assigned with the components when the connector is instan-
tiated. Each connector parameter also includes a sequence of port-variables for each
role, which are assigned with the respective ports of the components assigned to the

114

1 connector client2server(client{service,initialisation}, server{service,initialisation}){

2 role client{

3 required port_variable service{void request();}

4 emitter port_variable initialisation{initialised();}

5 }

6 role server{

7 provided port_variable service{void request();}

8 consumer port_variable initialisation{initialised();}

9 }

10 connector link1(client{service}, server{service});

11 connector link2(client{initialisation}, server{initialisation});

12 }

13 component client(){

14 emitter port servicePort{void request();}

15 emitter port initialisationPort{initialise();}

16 }

17 component server(){

18 consumer port servicePort{void request();}

19 consumer port initialisationPort{initialise();}

20 }

21 component clientServer_config(){

22 component client clientIns();

23 component server serverIns();

24 connector client2server connIns(clientIns{servicePort,initilisationPort},

25 serverIns{servicePort,initialisationPort});

26 }

Figure 4.18: Consistent actions of component ports with the role port-variables

role. By doing so, connectors can instantiate their role port-variables with the ports
of some components and impose protocol constraints on the port actions. However,
as stated in the following formula 4.4, the component ports and their associated role
port-variables must be compatible in their types. A required port of a component, for
instance, must not be associated (via connector parameter passing) with a provided
role port-variable.

∀connector ∈ CompositeCType.ComplexXInstanceSet ∶
∀arg ∈ connector.XInstanceArgumentSeq ∶
∀componentPort ∈ arg.portSeq ∶
ptype(componentPort) = type(rolePv(connector, componentPort))

(4.4)

Figure 4.16 illustrates the compatibility of component ports with role port-variables.
In lines 1–4 and 5–8, the client and server component type specifications are given
respectively. In lines 9–14, a composite component type specification is given that
instantiates the client and server components and passes them to the instance of the
client2server connector, whose specification is given in Figure 4.13 (page 112). So,
via parameter passing, the required servicePort and emitter initialisationPort of the
client component are associated with respectively the required service and emitter
initialisation port-variables of the client role. Likewise, the provided servicePort

and consumer initialisationPort of the server component are associated with respec-
tively the provided service and consumer initialisation port-variables of the server
role. In Figure 4.17, I changed the component specifications to illustrate an incom-
patible association of role port-variables with the component ports. Now, the client
has two ports of emitter types, and, the server has two ports of consumer types. So,
when they are passed to the client2server connector again, the emitter servicePort
of the client conflicts with the required service of the client role, while the consumer
servicePort of the server with the provided service of the server role.

115

Consistency between component port actions and role port-variable ac-
tions. When a connector is initialised with components, it is not enough to guaran-
tee only that the component ports each have the same type as that of the associated
role port-variable. The set of actions that the role port-variable has must also be a
subset of the actions that the component port has. So, the previous formula 4.4 is
updated as the following formula 4.5.

∀connector ∈ CompositeCType.ComplexXInstanceSet ∶
∀arg ∈ connector.XInstanceArgumentSeq ∶
∀componentPort ∈ arg.portSeq ∶
ptype(componentPort) = ptype(rolePv(connector, componentPort)) ∧
pvactionSet(rolePv(connector, componentPort)) ⊆ pactionSet(componentPort)

(4.5)

Figure 4.18 illustrates the consistency of component port actions with the associ-
ated role port-variable actions. Therein, the client component’s servicePort and the
client role’s service both have the method request, and, the client’s initialisationPort
and the client role’s initialisation both have the event initialise. Likewise, the server
satisfies the same consistency. However, if the servicePort of the client and server
components had the methods open and close (instead of request) as depicted in Fig-
ure 4.19, this would cause inconsistencies with the role port-variables and prevent the
actual port actions of the components to be constrained via the role port-variables.

1 component client(){

2 emitter port servicePort{void open(); void close();}//WRONG - Inconsistent port actions

3 emitter port initialisationPort{initialise();}

4 }

5 component server(){

6 consumer port servicePort{void open(); void close();}//WRONG - Inconsistent port actions

7 consumer port initialisationPort{initialise();}

8 }

Figure 4.19: Inconsistent component port actions with the port-variable actions of
the connector roles given in Figure 4.18

One-to-one or one-to-many ports. A component port may have no associations
with the role port-variables of connectors. As aforementioned, such unconnected
component ports are exported as the ports of the composite component type in which
the component is instantiated. Otherwise, a component port must be associated with
at least one role port-variable of some connector. The number of associations a port
may have essentially depends on its type. So, as stated in the following formula 4.6,

• if the port is of an emitter or required type, it must be passed to at most one
connector. That is, an emitter/required port may only send requests to a single
port.

• if the port is of a consumer or provided type, it can be passed to more than
one connector. That is, a consumer/provided port may receive requests from
multiple emitter/required ports in their environments.

116

1 component clientServer_config_CORRECT(){

2 component client clientIns();

3 component client clientIns2();

4 component server serverIns();

5 connector client2server connIns(clientIns{servicePort,initilisationPort},

6 serverIns{servicePort,initialisationPort});

7 connector client2server connIns(clientIns2{servicePort,initilisationPort},

8 serverIns{servicePort,initialisationPort});

9 }

10 component clientServer_config_WRONG(){

11 component client clientIns();

12 component server serverIns();

13 component server serverIns2();

14 connector client2server connIns(clientIns{servicePort,initilisationPort},

15 serverIns{servicePort,initialisationPort});

16 connector client2server connIns2(clientIns{servicePort,initilisationPort},

17 serverIns2{servicePort,initialisationPort});

18 }

Figure 4.20: Number of associations for component ports

∀ component ∈ CompositeCType.PrimitiveCInstanceSet,
port ∈ ctype(component.typename).PortSet ∶
IF port.EmitterPort ≠ null ∨ port.RequiredPort ≠ null
0 ≤ numOfConnections(port) ≤ 1

(4.6)

In Figure 4.20, the number of associations a component port may have is illus-
trated. There, I specified two composite component types. They include the instances
of client and server components, and connectors for their interactions, whose specifica-
tions are given in Figure 4.18 (page 115). While the client has one required servicePort
and one emitter initialisationPort, the server has one provided servicePort and one
consumer initialisationPort. So, in the top composite component (lines 1–9), the
ports of the server are passed to two different connector instances, allowing for their
interactions with the ports of two different clients. This is indeed well-defined because
the consumer and provided ports of the server can receive requests from the emitter
and required ports of multiple clients respectively. However, the bottom composite
component (lines 10–18) is not well-defined. Therein, the ports of the same client –
which are emitter and required types – are passed to two separate connectors.

Lastly, it should be noted that emitter ports in XCD cannot broadcast/multi-cast
events to multiple consumer ports at a time. This is firstly because XCD’s semantics
are defined using SPIN’s ProMeLa language, which does not support broadcasting/-
multicasting either. ProMeLa supports only the point-to-point communication via
its channels. Broadcast/multi-cast communication could, however, be simulated us-
ing the point-to-point channels of ProMeLa. I did not simulate broadcasting/multi-
casting as part of XCD’s semantics as I believe that broadcasting/multi-casting events
may hinder the formal verification of system behaviours. Indeed, emitting the same
event to multiple recipients cannot be performed atomically in ProMeLa as atomic-
ity is broken during the channel operations2. The non-atomic emission of events to
multiple recipients, however, increases the possible action interleaving among the ex-
ecuting processes, so do the state space that are required for the system verification.
This means that the full verification of system models may not necessarily be possible

2See the ProMeLa manual for atomic blocks : http://spinroot.com/spin/Man/atomic.
html

117

http://spinroot.com/spin/Man/atomic.html
http://spinroot.com/spin/Man/atomic.html

due to the state space explosions, thus preventing designers to detect design errors.
Moreover, broadcasting/multi-casting may potentially introduce unexpected compo-
nent behaviours, when it is simulated using point-to-point channels. In an attempt at
emitting an event to multiple recipients via the point-to-point channels sequentially,
one of the event emissions in the sequence may get blocked due to, e.g., the recipient’s
buffer overflow or event contract violations. This then prevents the emission of the
event to the other recipients in the sequence, which may cause the recipients to wait
indefinitely.

Function signature Information

String channelID(<T>) It receives a port specification and returns the name of the ProMeLa
channel used by that port for sending/receiving event requests.

String
requestChannelID(<T>)

It receives a component port specification and returns the name
of the ProMeLa channel used by that port for sending/receiving
method requests.

String
responseChannelID(<T>)

It receives a component port specification and returns the name
of the ProMeLa channel used by that port for sending/receiving
method response.

String responseChannelID_-
cond(RequiredPort)

It receives a required port specification and returns the name of
the ProMeLa channel array, which is created for that port for the
conditional receipt of messages.

String[]
eventMessageStructure(<T>)

It receives a port specification and returns the data type sequence
of event messages conveyed via the port’s ProMeLa channel.

String[] methodRequestMes-
sageStructure(<T>)

It receives a component port specification and returns the data
type sequence of method request messages conveyed via the port’s
ProMeLa channel.

String[] methodResponseMes-
sageStructure(<T>)

It receives a component port specification and returns the data
type sequence of method response messages conveyed via the port’s
ProMeLa channel.

String[]
eventMessage(<T>)

It receives a port event specification and returns the data sequence
of ProMeLa messages for that event.

String[]
methodRequestMessage(<T>)

It receives a port method specification and returns the data sequence
of ProMeLa messages for the request of that method.

String[]
methodResponseMessage(<T>)

It receives a port method specification and returns the data sequence
of ProMeLa messages for the response of that method.

String[]
updatedVarSet(AssignmentSeq)

It receives an ensures data-assignments and returns the set of data
variables which are updated by the ensures.

String[]
usedVarSet(AssignmentSeq)

It receives an ensures data-assignments and returns a set of data
variables which are used in the ensures’s assignment expressions.

String pre_state(ID)
It receives a data variable name and returns the name of the variable,
produced in the ProMeLa mapping, that stores the pre-state value
of the data.

String pre_state_copy(<T>,
ID)

It receives a component port specification (T) and a data vari-
able name, and returns the name of the variable, produced in the
ProMeLa mapping, that stores the copy of the data’s pre-state value.

String post_state(ID)
It receives a name of a data variable and returns the name of the
variable, produced in the ProMeLa mapping, that stores the post-
state value of the data.

String
activeMethod(RequiredPort)

It receives a required port specification and returns the name of the
variable, produced in the ProMeLa mapping, that stores the active
method of the required port.

String
requestedMethod(ProvidedPort)

It receives a provided port specification and returns the name of
the variable, produced in the ProMeLa mapping, that stores the
complex provided method which has been requested already.

String bufferType(<T2>)
It receives a port specification and returns the type of the port buffer,
produced in the ProMeLa mapping, for storing the received channel
messages.

String bufferID(<T>) It receives a port specification and returns the ID of the port buffer,
produced in the ProMeLa mapping, for storing the channel messages.

boolean isEventBufferFull(
ConsumerPort)

It receives a consumer port specification and returns whether the
port buffer, produced in the ProMeLa mapping, is full of consumer
events or not.

void push(<T>, Expression[])
It receives a port specification (T) and a method/event message. It
pushes the message into the port buffer, produced in the ProMeLa
mapping.

String[] pop(<T>)
It receives a port specification and returns a method/event message
that is popped nondeterministically from the buffer, produced in the
ProMeLa mapping.

String initialValue(
Variable_Declaration)

It receives a variable declaration specification and returns the initial
value of the variable specified by the designer.

String[] omittedParameterVars
(<T>,AssignmentSeq)

It receives a method/event action (T) and its promises parameter-
assignment sequence, and returns the method/event parameters that
are not assigned.

String[] reverseOrder(
ConstantSeq)

It receives a sequence of enum constants and returns the same se-
quence in the reverse order.

118

int min(DataType)/
int max(DataType)

They receive a data type specification and returns the minimum and
maximum number that a variable of that type can hold.

Table 4.2: Functions used in the formal translations of XCD into ProMeLa

Four different Java return types are used for the functions, String, int, boolean, or void, where String
represents the ProMeLa codes returned. Parameter types of functions are specified using syntax rule
names to show what XCD element the functions receive. Type T is used to specify generic parameter
types that cannot be represented with a certain specific type, e.g., eventMessage function’s parameter
type which can be either EmitterEvent or ConsumerEvent. Lastly, the square brackets ([]) are used
within the return/parameter types of functions to represent an array of elements that are
returned/received.

4.4 Formal Semantics of XCD– Mapping XCD to SPIN’s

ProMeLa

To enable the formal verification of software architectures, I translate XCD specifi-
cations into formal models in ProMeLa, which is the language of the SPIN model-
checker [Holzmann, 2004]. A brief summary of the ProMeLa language can be found
in Appendix A. A ProMeLa process is produced from each component instance of a
system architecture. As I consider only static architectures, the number of compo-
nent instances is fixed. If the component instance is of primitive type, the process
behaviour is specified as an iterative execution of component’s port behaviours, each
processing its method/event operations under the component and role constraints
specified. For a composite component, again a single process is created, which instan-
tiates its sub-component instance processes.

In the rest of this section, I elaborate on the precise translation of XCD specifica-
tions into ProMeLa models. To aid in understanding the entire translation algorithm,
the whole algorithm is divided into a number of sub-algorithms, each handled by a
distinct routine. Each routine is essentially responsible for the translation of a certain
part of an XCD specification. A routine receives as parameters the relevant part of
an XCD specification in the form of its syntactic structure depicted in Section 4.2
(page 99), which are navigated through dot notation. Note also that for simplicity,
I use the same element names given in their syntax description in Section 4.2, e.g.,
IC_Waits representing an await interaction contract for a port action and PrimitiveCType

a primitive component type specification. For some element sets or sequences that
are matched by the repetitive rules, I use the rules’ syntax comment descriptions
((∗...∗)) to refer to the whole set or sequence, e.g., emitterEventSet representing the
set of emitter events matched via the EmitterPort rule given in Section 4.2.3. For the ID
rules used in the syntax descriptions to represent any identifiers typed by designers,
they are referred to as their superscripts (e.g., IDtypename referred to as typename).

To enhance understanding, some translation routines are defined using some func-
tions that are underlined 3 (e.g., numOfConnections(port)). These functions each
accept a parameter, which is the specification of an architectural element, and re-
turn either (i) a specific ProMeLa code for the parameter or (ii) a result of a cal-
culation required in the translation process. For instance, numOfConnections(port)
returns the number of connections that its provided (or consumer) port parameter
is involved in; channelID(port) returns the ID of the ProMeLa channel associated
with its provided/consumer port parameter; eventMessageStructure(port) returns the
ProMeLa message structure of a ProMeLa channel associated with that port again;
and, updatedVarSet(AssignmentSeq) returns the assigned data variables by the con-

3Functions are underlined so as to distinguish them from translation routines.

119

tract data-assignment (ensures) parameter. The full documentation of such functions
is given in Table 4.2 (page 119). Furthermore, the translation routines also employ the
functions documented in Table 4.1 (page 108), which are essentially used to represent
particular parts of an XCD specification.

1 Model2Promela (Model model)
2 FORALL globalEnum ∈ model . EnumSet
3 EnumType2Promela (globalEnum)
4 FORALL globalTypedef ∈ model . TypedefSet
5 Typedef2Promela (g loba lTypedef)
6 CompositeComponent2Promela (model . CompositeCInstance) ;

Listing 4.2: Translating an entire XCD model

4.4.1 Translating an XCD Architecture Model

The routine Model2Promela in Listing 4.2 receives the specification of the whole XCD

architecture (model), following the syntax given in Section 4.2.1 (page 100), and shows
how it can be translated into a ProMeLa model. The Model2Promela essentially calls
the translation routines of its three elements that are introduced shortly. First, in lines
2-3, the EnumType2Promela routine is used for each global enum element of the model
input. Second, in lines 4-5, for each global typedef element, the Typedef2Promela is
used. Finally, in line 6, the composite component instance of the model representing
its architectural configuration is translated via the CompositeComponent2Promela
routine.

4.4.2 Translating Enum Elements

The routine in Listing 4.3 shows the ProMeLa translation of a global enum element
specification, following the syntax given in Section 4.2.1 (page 100). A ProMeLa
mtype is declared for each enum specification that consists of a set of numerical
constants. It should, however, be noted that the mtype constants are specified in the
reverse order. This is because ProMeLa assigns the maximum value to the first con-
stant, and the minimum value to the last one,4 which is the opposite of the semantics
of enum types in usual programming languages, such as Java.

4.4.3 Translating TypeDef Elements

The Typedef2Promela routine in Listing 4.4 shows the ProMeLa translation of a
typedef element specification, following the syntax given in Section 4.2.1 (page 100).
A set of C macro definitions is produced, which can be interpreted by SPIN. The
#ifndef and #endif macros are used firstly to ensure that the typedef constant has
not been defined previously. The #define macro is then used to define the constant
for the new type that can be used in any place where the actual type is used.

4.4.4 Translating Composite Components

A composite component instance specification, which follows the syntax given in Sec-
tion 4.2.2 (page 100), is translated via the CompositeComponent2ProMeLa routine in
Listing 4.5. The translation herein requires the use of various routines. Firstly, the
Map_PrimitiveComponentChannels routine is called in lines 2-3 for each primitive

4 See http://spinroot.com/spin/Man/mtype.html

120

http://spinroot.com/spin/Man/mtype.html

1 EnumType2Promela (Enum enum)
2 mtype = { reverseOrder(enum . ConstantSeq }

Listing 4.3: Translating an enum specification

1 Typedef2Promela (Typedef typede f)
2 #ifndef typede f . new
3 #define typede f . new typede f . a c tua l
4 #else
5 #error
6 #endif

Listing 4.4: Translating a typedef specification

sub-component of the composite component. It produces a set of ProMeLa channels
for each port of a sub-component. Note that no channel is produced for the sub-
components that are of composite type. This is because composite type instances do
not have their own ports to interact with their environment – they export the uncon-
nected ports of their subcomponents. In lines 4-5, the PrimitiveComponent2Promela
routine is called for each primitive sub-component to translate its behaviour into a
ProMeLa process. In lines 6-7, the CompositeComponent2Promela routine itself is
called recursively for each composite sub-component to translate its composite be-
haviour into a ProMeLa process. These ProMeLa processes of the sub-components
are then instantiated and run (via the run operator) in a process that represents the
composite component behaviour shown in lines 9–14.

4.4.5 Translating Component Communication Links

The Map_PrimitiveComponentChannels routine in Listing 4.6 shows how the com-
munication channels are constructed for the primitive sub-components instantiated
in a composite component.

In lines 4–5, for each consumer port, an array of channels is declared whose size is
equal to the number of the connected emitter ports. Each channel of the array holds
an asynchronous, N-slot buffered channel that is used to transfer event messages
between the consumer port and one of its emitter ports. The default value for N
is 1. In lines 7–10, two different arrays of channels are declared for each provided
port, one for communicating its method request and another for its method response
with the required ports. The size of these channel arrays is equal to the number
of the connected required ports; and, the channels are again asynchronous, 1-slot
buffered channels, each corresponding to the connection with a distinct required port.
Note that I employ asynchronous channels, which is because I target software systems
where asynchronous interaction is the mainstream. The buffer length for the channels
is 1 by-default as I aim at minimising the possibility of state space explosions that
may occur during formal verification. Indeed, the state space required for a model
verification grows exponentially with the size of the channel buffers.

It should also be noted that while reducing the state space explosions, 1-slot
buffered channels may introduce unrealistic system behaviours, e.g., deadlock. This
is due to the asynchronous nature of emitter ports that can emit events to consumers
continuously without waiting for a response. If the events are not received and pro-
cessed by consumers, this may cause the 1-slot consumer buffers to overflow and block
emitters from sending any further events. The buffer overflow issue is discussed in the
introduction of XCD’s tool in Section 5.4.3 (page 141), where I show how buffer over-

121

1 CompositeComponent2Promela (CompositeCInstance compositeComp)
2 FORALL primsubcomp ∈ ctype(compositeComp . typename) . Pr imi t iveCInstanceSet
3 Map_PrimitiveComponentChannels (primsubcomp) ;
4 FORALL primsubcomp ∈ ctype(compositeComp . typename) . Pr imi t iveCInstanceSet
5 PrimitiveComponent2Promela (primsubcomp) ;
6 FORALL compsubcomp ∈ ctype(compositeComp . typename) . CompositeCInstanceSet
7 CompositeComponent2Promela (compsubcomp) ;
8
9 proctype compositeComp . InstanceID () {

10 FORALL pr im i t i v e ∈ ctype(compositeComp . typename) . Pr imi t iveCInstanceSet
11 run p r im i t i v e . instancename () ;
12 FORALL composite ∈ ctype(compositeComp . typename) . CompositeCInstanceSet
13 run composite . instancename () ;
14 }

Listing 4.5: Translating a composite component specification

1 Map_PrimitiveComponentChannels (Pr imit iveCInstance primComponent)
2 FORALL port ∈ ctype(primComponent . typename) . PortSet
3 IF port . ConsumerPort != nu l l
4 chan channelID(port) [numOfConnections(port)]
5 = [1] of {eventMessageStructure(port) } ;
6 IF port . ProvidedPort != nu l l
7 chan requestChannelID(port) [numOfConnections(port)]
8 = [1] of {methodRequestMessageStructure(port) } ;
9 chan responseChannelID(port) [numOfConnections(port)]

10 = [1] of {methodResponseMessageStructure(port) } ;

Listing 4.6: Producing the communication channels for primitive component instances

1 PrimitiveComponent2Promela (Pr imit iveCInstance primComponent)
2 LET
3 RoleVars = { r o l e . Var iab l eSet | r o l e ∈ r o l e S e t (primComponent) } ;
4 VarSet= RoleVars ⋃ ctype(primComponent . typename) . Var iab l eSet ;
5 IN
6 proctype primComponent . instancename () {
7 FORALL var ∈ VarSet
8 var . DataType pre_state(var) = initialValue(var) ;
9 var . DataType post_state(var) = initialValue(var) ;

10 FORALL port ∈ ∈ ctype(primComponent . typename) . PortSet
11 IF port . RequiredPort != nu l l ∨ port . ProvidedPort != nu l l
12 var . DataType pre_state_copy(port , var) = initialValue(var) ;
13 FORALL port∈primComponent . ConsumerPortSet∪primComponent . ProvidedPortSet
14 bufferType(port) bufferID(port) [numOfConnections(port)] ;
15 FORALL port ∈ primComponent . RequiredPortSet
16 chan responseChannelID_cond(port) [2] ;
17 Star t :
18 do
19 FORALL port ∈ ctype(primComponent . typename) . PortSet
20 IF port . EmitterPort != nu l l
21 Port2Promela_Emitter (primComponent , port . EmitterPort) ;
22 IF port . ConsumerPort != nu l l
23 Port2Promela_Consumer (primComponent , port . ConsumerPort) ;
24 IF port . RequiredPort != nu l l
25 Port2Promela_Required (primComponent , portRequiredPort) ;
26 IF port . ProvidedPort != nu l l
27 Port2Promela_Provided_SimpleMethod (primComponent , port . ProvidedPort) ;
28 Port2Promela_Provided_ComplexMethod (primComponent , port . ProvidedPort) ;
29 od
30 }

Listing 4.7: Translating a primitive component specification

flows can be caught during verifications and avoided via techniques, e.g., increasing
buffer size.

122

4.4.6 Translating Primitive Components

As already mentioned in the composite component translation, each primitive compo-
nent is translated into a separate ProMeLa process, which is then instantiated in com-
posite component processes. The PrimitiveComponent2Promela routine in Listing 4.7
shows how a primitive component type, following the syntax given in Section 4.2.3
(page 101), is translated into a process.

Initially, the routine records the component data and the data of the roles that
the component assumes (lines 3-4).

Lines 6–30 gives the process declaration. It contains a pair of variables for each
component data and role data variables (lines 7–9), which are initialised with the
initial value of the data. The first one pre_state(d) corresponds to the current value
of the data right before a call, i.e., where the pre-conditions are evaluated. The
second one post_state(d) corresponds to the data value immediately after a call, i.e.,
where the post-conditions are evaluated for establishing the data-assignments. Both
variables are needed because an assignment of some post_state(di) in constraint data-
assignments may refer to some pre_state(dj) values. Moreover, there is also another
variable pre_state_copy(port, d) introduced (lines 10–12). This variable serves to
hold a copy of the pre-state value of a data, so as to use it in checking for race-
conditions, discussed in detail at the end of the section (i.e., page 132). Since race
conditions result from the non-atomic executions of required methods and complex
provided methods, for each required/provided port a separate pre-state-copy variable
for a data is created.

In lines 13–14, user-defined buffers are produced, one for each consumer port and
provided port of the component5. These buffers store the received events and method
requests. The size of a port buffer is equal to the number of connections that the port
has. For instance, if a provided port can receive requests from 3 required ports, then,
its buffer size is 3, where one message can be stored from each required port at a
time. User-defined port buffers are indeed essential because communication channels
in ProMeLa do not allow messages to be picked from its original buffers conditionally
– channel message receipts cannot be constrained. However, as discussed in the
port behaviour translations shortly, consumer and provided ports receive and process
their action requests only if the component and role interaction constraints of the
actions are met. So, to resolve this issue, the action requests are received from the
original buffer of the channels and stored in the respective user-defined buffers. This
then allows to pop the requests from the user-defined buffers non-deterministically
(without following FIFO) only if they meet their conditions.

The issue of receiving channel messages conditionally occurs in the required port
translations too. Therein, the response of a method is received by a required port only
when the method request has been processed, which is however not supported by the
ProMeLa channels. To resolve this, one could again employ user-defined buffers as
discussed in the previous paragraph. However, unlike the request messages that need
to be received and stored first by provided ports and then checked for a condition
separately, the response messages do not need to be stored in the case of required
ports. Indeed, the condition for a required port to receive a method response (i.e.,
whether the method request already processed or not) is independent from the method

5I used ProMeLa’s typedef construct to create buffers for consumer/provided ports. The typedef
construct is the same as C++’s struct construct and thus used for specifying a data-structure to store
some data (e.g., received message via communication channels). See the link for further information
about typedefs: http://spinroot.com/spin/Man/typedef.html

123

http://spinroot.com/spin/Man/typedef.html

response message itself. Therefore, a simpler approach is followed herein that does
not require to store and check the response messages to be received by required ports.
Instead, an array of channels is produced for each required port, with an array size
equal to 2 (lines 15–16). This channel array stores in its first slot a reference to the
provided port’s response channel, from which the required port receives its method
responses, and, in its second slot it stores a blocking channel that does not receive
any messages. As discussed shortly in the required port translation, channel arrays
can be used successfully to receive response messages conditionally.

Finally, in lines 18–29, the component port behaviours are specified inside an
infinite do::od loop of guarded atomic actions. For each port, the corresponding
routine is called to construct the guarded actions for its event/method operations.
Note also that the beginning of the loop is labelled with the label Start (line 17),
which is used to break back to the beginning of the loop in certain cases.

4.4.7 Port Behaviour Translations

Now, I show the ProMeLa translations of component ports and their method/event
behaviours. As aforementioned, each component assumes some connector roles that
constrain its behaviours. So, in the component port translations given below, I also
consider the roles and their port-variables associated with the component ports.

The translation routines are presented in two parts: LET and IN. The former is
used to simplify the port translation descriptions that are given as the latter and
make the translation algorithms easier to follow. So, the LET part basically introduces
meaningful names to represent either (i) a set of elements (surrounded with curly
brackets {..}), e.g., rolePostEnsures representing the set of ensures data-assignments
of the role contracts for a particular port action or (ii) logical combinations of con-
tract expressions, e.g., roleAwait representing the logical AND of the waits interaction
constraints of the role contracts for a particular port action. Note that the logical
combinations of contract expressions may end up as empty expressions, i.e., no con-
straints specified for a method/event. In such cases, the names of LET evaluate to
true in the algorithms. For instance, if there are no role constraints specified for a
component port action, the roleAwait name in LET evaluates to true.

4.4.7.1 Translating Emitter Ports

The routine in Listing 4.8 translates an emitter port of a component into ProMeLa
code. For each event of the emitter port, a single atomic block is produced from
each of the event’s functional constraints (lines 11–25). One of the atomic blocks is
processed nondeterministically in the loop6, enabling the non-deterministic choice of
one of the event’s functional constraints. The block initially calls the ContractAssign-
ment2Promela routine (line 13), which assigns to the event parameters the promised
values of the chosen functional constraint (promises clause). Note here that the
parameters not included in the promises are assigned nondeterministically to some
value within their range (line 14–15). After the event parameters are assigned, then,
it is checked whether the component port interaction constraint and its roles’ inter-
action constraints on the event are satisfied or not (line 17). If unsuccessful (line
23), no data update takes place (nor the event emission), and, the control moves
back to the Start label (i.e., the beginning of the component loop in Listing 4.7).

6The guard of emitter event blocks is always true for their non-deterministic execution (see line
11 of Listing 4.8).

124

1 Port2Promela_Emitter (Pr imit iveCInstance comp , EmitterPort port)
2 FORALL event ∈ port . emitterEventSet
3 LET
4 parameters = { event . EventSignature . paramSeq } ;
5 compICAwait = event . IC_waits . Waits ;
6 ro leAwait = ⋀re ∈ roleEventSet(event) re . IC_waits_ensures . Waits ;

7 ro l ePostEnsures={re . IC_waits_ensures . Ensures | re ∈ roleEventSet(event) } ;
8 In te rac t i onWai t s = roleAwait ⋀ compICAwait ;
9 IN

10 FORALL f c ∈ event . FC_emitter . EmitterFConsSet
11 : : atomic{
12 true →
13 ContractAssignment2Promela (f c . Promises) ;
14 FORALL var ∈ omittedParameterVars(e , f c . Promises)
15 s e l e c t (param : min(var . DataType) . . max(var . DataType)) ;
16 i f
17 : : In t e rac t i onWai t s →
18 ContractAssignment2Promela (ro l ePostEnsures) ;
19 ContractAssignment2Promela (f c . Ensures) ;
20 FORALL var ∈ updatedVarSet (f c . Ensures ∪ ro l ePostEnsures)
21 pre_state(var) = post_state(var) ;
22 channelID(port) ! eventMessage(event) ;
23 : : e l s e → goto Star t
24 f i
25 }

Listing 4.8: Translating emitter port specifications

If successful, firstly, the data of the roles are assigned new values of the interaction
constraint data-assignment (ensures clause) via the ContractAssignment2Promela
routine (line 18). Then, the component data are assigned to their new values of
the functional constraint data-assignment, calling again the same routine (line 19).
Next, the pre-state of each variable is updated with its post-state value for the next
method/event operation of the component (lines 20–21). Finally, the event message
is emitted to the channel (line 22).

4.4.7.2 Translating Consumer Ports

The routine in Listing 4.9 translates a consumer port specification into ProMeLa
code. For each event, three blocks are produced. The top first block (lines 11–13)
receives event messages from the channel. Then, firstly, the user-defined buffer for
the consumer is checked (line 12). If it is full and cannot store the received message,
the verification fails due to buffer overflow. Otherwise, the event message is pushed
into the consumer buffer (line 13).

The middle block (lines 14–25) is the one that processes the received event mes-
sages atomically. The block guard (line 15) enables the block’s execution only if
an event message can be popped from the user-defined buffer non-deterministically
that satisfies its component and role interaction constraints. Upon their satisfaction,
firstly, the role data are updated using the role interaction constraints ensures (line
16). Then, the component data are updated using one of the functional constraints
(ensures) chosen non-deterministically whose requires pre-condition is satisfied
(line 17–22). If however none of the functional constraint pre-conditions are satis-
fied (i.e., they are incomplete), the verification fails (line 21), indicating that they
have been specified erroneously. Finally, having assigned the data variables, the pre-
state of each variable is updated with its post-state value for the next method/event
operation of the component (lines 23–24).

The last block is produced as shown in lines 26–27. Its guard is satisfied if an event
message can be popped from the consumer buffer nondeterministically that violates

125

1 Port2Promela_Consumer (Pr imit iveCInstance comp , ConsumerPort port)
2 FORALL event ∈ port . consumerEventSet
3 LET
4 compICAwait = event . IC_waits_accepts . Waits ;
5 compICAccept = event . IC_waits_accepts . Accepts ;
6 ro leAwait = ⋀re ∈ roleEventSet(event) re . IC_waits_ensures . Waits ;

7 ro l ePostEnsures={re . IC_waits_ensures . Ensures | re ∈ roleEventSet(event) } ;
8 Inte ract ionWait sAccepts = roleAwait ⋀ compICAwait ⋀ compICAccept ;
9 I n t e r a c t i onRe j e c t = roleAwait ⋀ ¬compICAccept ;

10 IN
11 : : channelID(port) ? eventMessage(event) →
12 a s s e r t (! isEventBufferFull(port)) ; // check event buffer overflows
13 push(port , eventMessage(event)) ;
14 : : atomic{
15 pop(event , Inte ract ionWait sAccepts) →
16 ContractAssignment2Promela (ro l ePostEnsures) ;
17 if
18 FORALL f c ∈ event . FC_consumer . ConsumerFConsSet
19 : : f c . Requires →
20 ContractAssignment2Promela (f c . Ensures) ;
21 : : e l s e →printf ("incomplete functional constraints ") ; a s s e r t (f a l s e) ;
22 fi
23 FORALL var ∈ updatedVarSet (f c . Ensures ∪ ro l ePostEnsures)
24 pre_state(var) = post_state(var) ;
25 }
26 : : pop(event , I n t e r a c t i onRe j e c t) →
27 printf ("unsafe interaction constraints – chaos; ") ; assert(false);

Listing 4.9: Translating consumer port specifications

the event’s accepting interaction constraint (if there is any) while the role interac-
tion constraints on the event being satisfied. So, this means that the event cannot
be accepted by the consumer; and, the verification fails due to unsafe interaction
constraints, which put the component in a chaotic, illegal state.

4.4.7.3 Translating Required Ports

Required ports are translated as shown in Listing 4.10. For each required method,
two co-dependent atomic blocks are produced from each functional constraint on the
method (lines 21–51). One these atomic block pairs is chosen to be processed non-
deterministically, which therefore enables the non-deterministic choice of one of the
functional constraints. The top block makes a method request to a provided port;
and, the bottom treats the response received from the provided port.

The request atomic block (lines 21–34) is enabled if the port has no active method
(i.e., those waiting for response). So then, the ContractAssignment2Promela routine
is used in line 23 for establishing the promised method parameters (i.e., promises
clause of the chosen functional constraint). Those parameters that are not assigned in
the promises are assigned to some value within their ranges non-deterministically
(lines 24-25). After assigning the parameters, it is checked whether the required port’s
interaction constraint and the role interaction constraints on the event are satisfied or
not. If unsuccessful, control moves back to the beginning of the component loop (line
32). If successful, then, the method is recorded as active (line 28), and, the copies of
the variables that might suffer from a race-condition are kept, so as to identify these
later (lines 29–30). Finally, the request message is emitted via the request channel
(line 31).

The response atomic block (lines 35–51) is guarded by the response message that
can be received if the current method has already been activated (lines 36–37). Note
that to receive the response messages conditionally, the required port’s channel array
that is introduced in Section 4.4.6 is used. The channel array’s particular slot is chosen

126

1 Port2Promela_Required (Pr imit iveCInstance comp , RequiredPort port)
2 FORALL method ∈ port . requiredMethodSet
3 LET
4 parameters = {method . MethodSignature . ParSeq } ;
5 compICAwait = method . IC_waits . Waits ;
6 ro leAwait=⋀rm ∈ roleMethodSet(method)rm . IC_waits_ensures . Waits ;

7 ro l ePostEnsures={rm . IC_waits_ensures . Ensures | rm ∈ roleMethodSet(method) } ;
8 In te rac t i onWai t s = roleAwait ⋀ compICAwait ;
9

10 UpdatedRoleVarsRace={updatedVarSet(rm . IC_waits_ensures)
11 | rm ∈ roleMethodSet(method) } ;
12 UpdatedCVarsRace (f c)={updatedVarSet(subfc . Ensures)
13 | sub fc ∈ f c . r equ i r e sEnsu r e sSe t } ;
14 UpdatedVarSetRace = UpdatedRoleVarsRace ⋃ UpdatedCVarsRace ;
15 UsedRoleVarsRace = {usedVarSet(rm . IC_waits_ensures)
16 | rm ∈ roleMethodSet(method) } ;
17 UsedCVarsRace (f c)={usedVarSet(subfc) | sub fc ∈ f c . r equ i r e sEnsu r e sSe t } ;
18 UsedVarSetRace = UsedRoleVarsRace ⋃ UsedCVarsRace ;
19 IN
20 FORALL f c ∈method . FC_required . RequiredFConsSet
21 : : atomic{ // sending reque s t
22 activeMethod(port) = nu l l →
23 ContractAssignment2Promela (f c . Promises) ;
24 FORALL param ∈ omittedParameterVars(m, f c . Promises)
25 param = s e l e c t (min(param . DataType) , max(param . DataType)) ;
26 i f
27 : : In t e rac t i onWai t s →
28 activeMethod(port) = method ;
29 FORALL var ∈ UsedVarSetRace ∪ UpdatedVarSetRace
30 pre_state_copy(port , var) = pre_state(var) ;
31 requestChannelID(port) ! methodRequestMessage(method) ;
32 : : e l s e → goto Star t
33 f i
34 }
35 : : atomic{ // r e c e i v i n g response
36 responseChannelID_cond(port) [activeMethod(port)=method→ 0 : 1] ?
37 methodResponseMessage(method)→
38 raceCondit ionChecking2Promela (port , UpdatedVarSetRace (f c) ,
39 UsedVarSetRace (f c)) ;
40 ContractAssignment2Promela (ro l ePostEnsures) ;
41 if
42 FORALL subfc ∈ f c . r equ i r e sEnsu r e sSe t
43 : : sub fc . Requires →
44 ContractAssignment2Promela (sub fc . Ensures) ;
45 : : e l s e → printf ("incomplete functional constraints ") ; a s s e r t (f a l s e) ;
46 fi
47 activeMethod(port) = nu l l ;
48 FORALL var ∈ updatedVarSet (sub fc . Ensures ∪ ro l ePostEnsures)
49 pre_state(var) = post_state(var) ;
50 pre_state_copy(port , var) = post_state(var) ;
51 }

Listing 4.10: Translating required port specifications

using ProMeLa’s conditional expression operator (ChannelArray[Cond → 0 ∶ 1])7.
If the method has been activated (i.e., the condition holds), the channel array’s index
0 is chosen that stores the reference to the response channel. If the condition does not
hold, the index is chosen 1 and the system execution starts reading from the blocking
channel, stored in the index 1, where no message exists actually. This prevents the
guard of the atomic block being satisfied. Upon receiving the response for a request,
the race-conditions for the component and role data variables are checked via the
raceConditionChecking2Promela routine (lines 38–39). If there is no race condition,
firstly, the role data are updated via the ContractAssignment2Promela routine (line
40). Following that, the requires–ensures pairs of the functional constraint are evalu-
ated (lines 41–46). One of the pairs is picked nondeterministically among those whose
requires pre-condition is met. Using the respective ensures data-assignment, the

7See http://spinroot.com/spin/Man/cond_expr.html

127

http://spinroot.com/spin/Man/cond_expr.html

1 Port2Promela_Provided_SimpleMethod (Pr imit iveCInstance comp , ProvidedPort port)
2FORALL method ∈ port . providedMethodSet
3 LET
4 compICAwait = method . IC_waits_accepts . Waits ;
5 compICAccept = method . IC_waits_accepts . Accepts ;
6 ro leAwait = ⋀rm ∈ roleMethodSet(method)rm . IC_waits_ensures . Waits ;

7 ro l ePostEnsures={rm . IC_waits_ensures . Ensures | rm ∈ roleMethodSet(method) } ;
8 roleAwait_req = ⋀rm ∈ roleCMethodSet(method)rm . IC_waits_ensures_req . Waits ;

9 ro lePostEnsures_req = {rm . IC_waits_ensures_req . Ensures
10 | rm ∈ roleCMethodSet(method) } ;
11 ro leAwait_res = ⋀rm ∈ roleCMethodSet(method)rm . IC_waits_ensures_res . Waits ;

12 ro lePostEnsures_res={rm . IC_waits_ensures_res | rm ∈ roleCMethodSet(method) } ;
13 Inte ract ionWait sAccepts = roleAwait ⋀ roleAwait_req ⋀ compICAwait
14 ⋀ compICAccept ;
15 I n t e r a c t i onRe j e c t = roleAwait ⋀ roleAwait_req ⋀ ¬compICAccept ;
16 IN
17 : : requestChannelID(port) ? methodRequestMessage(method) →
18 push(port , methodRequestMessage(method)) ;
19 : : atomic{
20 pop(method , Inte ract ionWait sAccepts ∧ requestedMethod(port) = nu l l) →
21 ContractAssignment2Promela (ro l ePostEnsures) ; //simple role method
22 ContractAssignment2Promela (ro lePostEnsures_req) ; //complex role method’s request
23 FORALL var ∈ updatedVarSet(ro lePostEnsures_req) //complex role method’s request
24 pre_state_copy(port , var) = pre_state(var) ;
25 pre_state(var) = post_state(var) ;
26 if
27 : : ro leAwait_res → //roleAwait_res evaluates to true for simple role methods
28 ContractAssignment2Promela (ro lePostEnsures_res) ; //complex role method
29 if
30 FORALL f c ∈ method . FC_provided . ProvidedFConsSet
31 : : f c . Requires →
32 ContractAssignment2Promela (f c . Ensures) ;
33 : : e l s e →printf ("incomplete functional constraints ") ; a s s e r t (f a l s e) ;
34 fi;
35 FORALL var ∈ updatedVarSet (f c . Ensures ∪ ro lePostEnsures_res) ;
36 pre_state_copy(var) = post_state(var) ;
37 pre_state(var) = post_state(var) ;
38 responseChannelID(port) ! methodResponseMessage(method) ;
39 : : else →
40 FORALL var ∈ updatedVarSet (ro lePostEnsures_req)
41 pre_state(var) = pre_state_copy(var) ;
42 post_state(var) = pre_state_copy(var) ;
43 push (port ,methodRequestMessage(method)) ;
44 fi
45 }
46 : : pop(method , I n t e r a c t i onRe j e c t) →
47 printf ("unsafe interaction constraints – chaos; ") ; assert(false);

Listing 4.11: Translating provided port specifications – simple methods

component data are updated via the ContractAssignment2Promela routine (line 44).
If none of the requires pre-conditions is met, the verification fails (line 45) due to
incomplete functional constraint pre-conditions. Lastly, in line 47, the method is dis-
activated so that another method can be requested. Furthermore, the pre-state and
pre-state-copy of each updated data variable are updated with its post-state value for
the next method/event operation of the component (lines 48–50).

4.4.7.4 Translating Provided Ports – simple provided methods

Like consumer events, provided port methods are each translated into three blocks,
shown in lines 17–47 of Listing 4.11. The top block (lines 17–18) acts similarly to that
of consumers. Unlike the consumer translation, it is not checked herein whether the
port buffer overflows or not when receiving a method request. Indeed, the buffer of a
provided port cannot overflow as required ports cannot make consecutive requests –
they have to wait for the response of each request.

128

The middle block (lines 19–45) processes a method request atomically. The block’s
guard enables its execution if (i) the request message can be popped from the buffer
non-deterministically that satisfies the component and the roles’ interaction con-
straints, and, (ii) the port has no active methods (e.g., processed complex method
requests). Upon its satisfaction, the data of the roles that the component plays are
updated initially.

Simple component method – simple role method. If the matching method
of a role is simple, the role data variables are updated using the method’s role inter-
action constraint ensures (line 21).

Simple component method – complex role method. The role method may
be a complex one consisting of separate (i.e., non-atomic) request and response events.
In such a case, the role data are updated firstly using the request event’s interaction
constraint ensures (line 22). Then, the pre-state of those role data variables are
updated with their post-state values for processing the response event (lines 23–25).
Furthermore, the pre-state values are backed up in the pre-state-copy variables for
a possible undo operation, discussed shortly. So, now, it is checked whether the
updated data variables by the request event enables the response event, satisfying its
interaction constraint waits (line 27)8. If unsuccessful (lines 39–43), the role data
updates are un-done, re-storing their pre-state values via the pre-state-copy variables,
and, the received method request is again pushed into the buffer for trying again later
on. If successful, the role data are updated using the response event’s interaction
constraints ensures (line 28).

Upon completing the role data updates successfully, one of the functional con-
straints is chosen non-deterministically whose requires pre-condition is met (lines
29–34). If none of the pre-conditions is satisfied, then, the verification fails again
(line 33) due to incomplete functional constraint pre-conditions. If successful, the
component data are updated using the functional constraint’s ensures paired with
the satisfied requires (line 32). Furthermore, the ensures are also expected to
assign the method /result (unless the method is void type). Otherwise, the /result
is assigned to a random value within the range of the method return type. Note that
designers could specify an exception via the throws clause instead of the ensures
data-assignments. In that case, the specified exception is simply added to the response
message for the method. Having processed the method’s functional constraint, the
pre-state and pre-state-copy values of the data variables are updated with the post-
state values for the next method/event operations of the component (lines 35–37).
Finally, the response including the result/exception is sent back to the caller via the
response channel (line 38).

The bottom block is shown in lines 46–47. Its guard is satisfied if the method
request message can be popped from the buffer nondeterministically that violates the
method’s accepting interaction constraint (if there is any) while the role interaction
constraints on the method request being satisfied. This triggers an assertion violation
that leads to the failure of the model analysis due to the wrong use of services.

4.4.7.5 Translating Provided Ports – complex provided methods

Unlike simple provided methods, complex methods of provided ports are processed
non-atomically in terms of separate request and response events, shown in Listing 4.12.
Its top block (lines 25–26) is just like that of the simple method translation given in

8The roleAwait_res in line 25 of Listing 4.11 evaluates to true for simple methods.

129

1 Port2Promela_Provided_ComplexMethod (Pr imit iveCInstance comp , ProvidedPort port)
2 FORALL cmethod ∈ port . complexProvidedMethodSet
3 LET
4 compICAwait_req = cmethod . IC_waits_accepts_req . Waits ;
5 compICAccept_req = cmethod . IC_waits_accepts_req . Accepts ;
6 compICAwait_res = cmethod . IC_waits_res . ICons_Waits . Waits ;
7 ro leAwait = ⋀rm ∈ roleMethodSet(cmethod)rm . IC_waits_ensures . Waits ;

8 ro l ePostEnsures={rm . IC_waits_ensures . Ensures | rm∈roleMethodSet(cmethod) } ;
9 roleAwait_req = ⋀rm ∈ roleCMethodSet(cmethod)rm . IC_waits_ensures_req . Waits ;

10 ro lePostEnsures_req = {rm . IC_waits_ensures_req . Ensures
11 | rm ∈ roleCMethodSet(cmethod) } ;
12 ro leAwait_res = ⋀rm ∈ roleCMethodSet(cmethod)rm . IC_waits_ensures_res . Waits ;

13 ro lePostEnsures_res = {rm . IC_waits_ensures_res
14 | rm ∈ roleCMethodSet(cmethod) } ;
15 Interact ionWaits_req=roleAwait ∧ roleAwait_req ∧ compICAwait_req
16 ∧ compICAccept_req ;
17 In t e rac t i onRe j ec t_req = roleAwait ⋀ roleAwait_req ⋀ ¬compICAccept_req ;
18 Interact ionWait s_res = roleAwait ⋀ ro leAwait_res ⋀ compICAwait_res ;
19
20 UpdatedRoleVarsRace={updatedVarSet(rm . IC_waits_ensures . Ensures)
21 | rm∈ roleMethodSet(cmethod) } ;
22 UsedRoleVarsRace={usedVarSet(rm . IC_waits_ensures . Ensures)
23 | rm∈ roleMethodSet(cmethod) } ;
24 IN
25 : : requestChannelID(port) ? methodRequestMessage(cmethod) →
26 push(port , methodRequestMessage(cmethod)) ;
27 : : atomic{
28 pop(cmethod , Interact ionWaits_req ∧ requestedMethod(port) = nu l l) →
29 ContractAssignment2Promela (ro lePostEnsures_req) ; //role method’s request
30 FORALL varRace ∈ UpdatedRoleVarsRace ∪ UsedRoleVarsRace//role method
31 pre_state_copy(port , varRace) = pre_state(varRace) ;
32 if
33 FORALL f c ∈ cmethod . FC_complexProvided_req . RequestEventFConsSet
34 : : f c . Requires →
35 ContractAssignment2Promela (f c . Ensures) ;
36 : : e l s e →printf ("incomplete functional constraints ") ; a s s e r t (f a l s e) ;
37 fi;
38 requestedMethod(port) = cmethod ;
39 FORALL var ∈ updatedVarSet (f c . Ensures ∪ ro lePostEnsures_req)
40 pre_state(var) = post_state(var) ;
41 pre_state_copy(port , var) = post_state(var) ;
42 }
43 FORALL f c ∈ cmethod . FC_complexProvided_res . ResponseEventFConsSet
44 : : atomic{
45 requestedMethod(port) = cmethod →
46 i f
47 : : In te ract ionWait s_res →
48 raceCondit ionChecking2Promela (port , UpdatedVarSetRace ,
49 UsedVarSetRace) ;
50 ContractAssignment2Promela (ro lePostEnsures_res) ; //role method response
51 ContractAssignment2Promela (ro l ePostEnsures) ; //role method
52 ContractAssignment2Promela (f c . Ensures) ;
53 ContractAssignment2Promela (f c . Promises) ;
54 requestedMethod(port) = nu l l ;
55 FORALL var ∈ updatedVarSet (f c . Ensures ∪ ro l ePostEnsures
56 ∪ ro lePostEnsures_res)
57 pre_state(var) = post_state(var) ;
58 pre_state_copy(var) = post_state(var) ;
59 responseChannelID(port) ! methodResponseMessage(cmethod) ;
60 : : e l s e → goto Star t
61 f i
62 }
63 : : pop(cmethod , In t e rac t i onRe j ec t_req) →
64 printf ("unsafe interaction constraints – chaos; ") ; assert(false);

Listing 4.12: Translating provided port specifications – complex methods

Listing 4.11, receiving a method request and storing it in the buffer.
Processing complex method request. The block in lines 27–42 processes the

method’s request event atomically. The block’s guard enables its execution if the
method request of any connected required ports can be popped non-deterministically

130

when it satisfies the component and the roles’ interaction constraints on the request
event and no methods of the port is yet active (i.e., port.ActiveMethod=Null). Upon
satisfaction of the guard, the role data are updated firstly.

Complex component method – complex role method. The method of the role that
the component plays may be complex, in which case the role data are updated using
its request event’s interaction constraint ensures (line 29).

Complex component method – simple role method. If the role method is simple
that corresponds to the complex port method, then, the role data are assigned to their
new values in the response block – not when processing the request. However, this
may cause race-conditions as the role data may be updated in between. Therefore,
the role data values are stored for checking against race conditions in the response
block (lines 30-31).

After dealing with the roles, the component data are updated using one of request
event’s functional constraints chosen non-deterministically (lines 32–37). If the func-
tional constraints are incomplete, the verification fails (line 36). Upon updating the
component data, the request event is recorded as completed (line 38). Finally in lines
39–41, the pre-state and pre-state-copy values of the component data (also the role
data if its method is complex) are updated with their post-state values for processing
the response.

Processing complex method response. The atomic block in lines 44–62 is
produced for each functional constraint of the complex method’s response event. One
of the response blocks is chosen nondeterministically for processing. Its guard (line
45) is satisfied if the method request event has already been processed. Then, if
the component and the role interaction constraints (waits) of the response event
are satisfied (line 47), the raceConditionChecking2Promela routine is called (lines 48–
49) for checking race-conditions. If no race-condition is detected, the role data are
assigned to their new values. Note that if the interaction constraints are not satisfied,
the control moves back to the Start label (line 60).

Complex component method – complex role method. For the role(s) whose corre-
sponding method is complex too, the role data are updated using the response event’s
interaction constraints (line 50).

Complex component method – simple role method. For those whose method is
simple, the role data are updated using the method’s interaction constraint (line 51).

Having updated the role data, the component data variables are updated (line 52),
using the chosen functional constraint ensures. After processing the ensures, the
promises of the functional constraint is processed, which may include the method
result assignment (line 53). Next, the provided port’s complex method is deactivated
(line 54) to be able to receive new requests, and, the pre-state values of the data
variables are updated with their post-state values for the next method/event operation
of the component (lines 55–58). Finally, the result is sent to the caller’s required port
via the response channel (line 59).

The bottom block (lines 63–64) is the same as the last block in the simple provided
method translation. It is executed when a request event message can be popped that
violates the accepting interaction constraints while the role interaction constraints
being satisfied. It leads to the failure of the model analysis.

131

1 ContractAssignment2Promela (AssignmentSeq ass ignments)
2 FORALL as ∈ ass ignments
3 IF as . Express ion
4 post_state(as . var) = as . Express ion ;
5 IF as . RangeExpression
6 s e l e c t (post_state(as . var) :
7 as . RangeExpression . leftBoundExpr . .
8 as . RangeExpression . rightBoundExpr) ;

Listing 4.13: Data and parameter-assignments of contracts

4.4.8 Translating Contract Data-assignments

The data-assignment sequence of contracts (ensures) and the parameter-assignment
sequence of them (promises) are translated via the ContractAssignment2Promela
routine that is shown in Listing 4.13. Each assignment of a sequence may assign one of
two types of expressions to a variable, i.e., single value expression or range expression,
following their syntax in Section 4.2.4.3 (page 107). If a single valued expression is
assigned to a variable, the variable’s post-state is assigned with the expression via
the assignment operator (line 4). If a range expression is assigned, the ProMeLa
select statement is produced (lines 6–8) that allows to assign a non-deterministic
value bounded by a pair of expressions.

4.4.9 Translating Checking for Race Conditions

Components encapsulate their state data, which are accessed and manipulated via
their port interfaces. These ports are essentially the concurrent units of execution
for components and perform method/event actions on the component state. Given
the concurrent execution of component ports, there may be race-conditions. Race-
conditions cause unexpected system behaviours, which may not always be easy to fix
once the systems have been implemented. So, XCD allows to check for them in the
architectural design stage so as to help reduce the development cost.

Since the behaviours of emitter/consumer events and simple provided methods are
considered as single atomic actions in the loop, they do not suffer from race-conditions.
However, required port methods and complex provided methods require two atomic
actions, one for the method request and the other for the response. These may
have race-conditions. Given their translation in Section 4.4.7.3 (page 126), required
port methods are by necessity modelled as a pair of atomic actions – one initiating
a method call and another receiving the method response. The data-assignments
(ensures clause) at the latter can suffer from one of two types of race-conditions.
First, an assignment may attempt to use the value of some data at the pre-state,
i.e., when the method request was being made. If another port has modified this
value, then this indicates a write-read type of race-condition. If an assignment tries
to update the value of some data that has been updated in the meantime by another
port, then, this indicates a write-write type of race-condition. For complex provided
methods, as already discussed in their translation in Section 4.4.7.5 (page 129), they
can be combined with a simple provided method of a connector role. While the pre-
condition of the role method’s interaction constraint affects the guard of the atomic
block processing the request, the data-assignments of the role interaction constraint
can only be performed in the atomic block processing the response of the complex
method. This makes the data races possible again. Indeed, upon completing the
request action, some other port associated with a port-variable of the same role may

132

1 raceCondit ionChecking2Promela (Port port , UpdatedVarSet updatedVarSet ,
2 UsedVarSet usedSet)
3 i f
4 FORALL var ∈ usedVarSet
5 : : pre_state_copy(port , var)≠pre_state(var)
6 → p r i n t f (" write −read c o n f l i c t ; hard f a i l ") ; a s s e r t (f a l s e) ;
7 : : e l s e →
8 i f
9 FORALL var ∈ updatedVarSet

10 : : pre_state_copy(port , var)≠pre_state(var)
11 → p r i n t f (" write −wr i t e c o n f l i c t ; soft f a i l ") ; a s s e r t (f a l s e) ;
12 : : e l s e → p r i n t f (" no race cond i t i on ") ;
13 f i
14 f i

Listing 4.14: Checking race conditions in ProMeLa

update the role data. When processing the complex method’s response event, if the
updated role data are used to update another data, this causes a write-read conflict.
If the updated role data have to be updated again, this causes a write-write conflict.

The raceConditionChecking2Promela routine in Listing 4.14 shows the ProMeLa
translation for checking race conditions. It is used by the translations of required port
methods (Listing 4.10) and provided port’s complex method (Listing 4.12). The rou-
tine receives three parameters for a method: (i) port is the currently executing port
whose method is checked for race-conditions, (ii) updatedVarSet is the set of com-
ponent and role data variables that are updated by the constraint data-assignments
of the method (ensures), and, (iii) usedVarSet is the set of data variables used in
the expressions of the data-assignments. It has already been shown in the primitive
component translation (see Section 4.4.6 in page 123) that the pre-state-copy vari-
ables are declared for storing the pre-state values of the data variables recorded in the
updatedVarSet and usedVarSet. The pre-state-copy variables are used to determine
whether these variables have been updated by some other port action(s) or not. So,
the routine in Listing 4.14 checks at the method’s response if there is some data vari-
able that is updated using another data variable whose pre_state value is not equal
to its pre_state_copy (lines 5–6). If so, the model analysis fails due to assertion
violation, indicating a write-read conflict (line 6). If there is no write-read conflict,
then, it is checked in the inner if statement (lines 8–13) to determine whether the
pre_state value of any data to be updated is not equal to the pre_state_copy (line
10). The existence of such a data causes a write-write conflict, failing the analysis
again via an assertion violation (line 11).

4.5 Summary

In this chapter, I discussed XCD’s formal aspects, which include respectively the
descriptions of (i) XCD’s syntax, (ii) the well-definedness rules for valid XCD archi-
tectures, and (iii) the translation rules for translating XCD models to formal models
in SPIN’s ProMeLa language. To enhance the understanding of XCD’s syntax, I
based the syntax descriptions on the Extended Backus-Naur Form (EBNF), which
is a widely accepted notation for defining the language grammars formally. In the
syntax descriptions, I showed for each XCD element the optional, compulsory, and
repetitive parts and how these parts are sequenced together to specify the element in a
syntactically correct way. Architecture specifications must also be valid by satisfying
the well-definedness rules of the XCD language. For instance, although an archi-

133

tecture specification is syntactically correct, it may include connector specifications
that connect a required component port with a consumer. Or, connector specifica-
tions may not include parameters for each of its roles, which prevent components
being associated with the roles. So, following the syntax descriptions, I introduced
such well-definedness rules using first-order predicate logic. Lastly in this chapter, I
presented the algorithms for the precise translation of syntactically correct and well-
defined XCD architectures into SPIN’s ProMeLa models. ProMeLa models enable the
formal verification of XCD architectures for a number of properties using the SPIN
model checker. Indeed, in the translation algorithms, I considered a number of prop-
erties for their automated checking using the SPIN model checker. These properties
are the wrong use of services, incomplete functional behaviours, race conditions, and
event buffer overflow for asynchronous event communications. Deadlock checking is
already supported by the SPIN model checker itself.

134

Chapter 5

Tool Support for XCD

5.1 Introduction

In Chapter 4, I have defined XCD’s formal semantics, showing how XCD elements
can be translated precisely in SPIN’s ProMeLa language [Holzmann, 2004]. However,
giving just the precise ProMeLa translation rules is not enough for designers to trans-
late their XCD specifications into ProMeLa models. Indeed, manual transformations
are not only impractical but also error-prone that may require tremendous effort to
get the resulting ProMeLa models working (i.e., accepted by the SPIN model checker
for verification). Therefore, I developed a prototype tool that automates this trans-
formation process and renders the formal analysis of XCD specifications sufficiently
practical for designers.

In this chapter, I firstly introduce the architecture of XCD’s prototype tool, then,
continue with its demonstration via the simple shared-data case study [Allen and
Garlan, 1997]. Through the case-study, I aim at showing how the SPIN model checker
can be used in formally verifying XCD architectures, which properties can be checked
during the verifications, and how. Finally, I end the chapter by showing how any
verification errors detected by the SPIN model checker can be dealt with.

5.2 Tool Architecture

To develop XCD’s tool, I used Eclipse Xtext framework1 [Eysholdt and Behrens,
2010], which is used as a plug-in to the Eclipse software [Holzner, 2004]. Xtext of-
fers a language for describing the grammar rules of domain specific languages and
automatically produces basic compiler tools from the grammar specifications. Using
Xtext, I described XCD’s syntax and automatically obtained (i) a lexer, (ii) a parser,
and (iii) an Eclipse editor for the XCD language. Using the editor, software architec-
tures can be specified in XCD and checked for syntax errors, which are highlighted by
the editor.

Xtext is also supported by the Xtend framework2 [Bettini, 2013]. Xtend offers a
Java-like language, which is used to develop a code generator for a language whose
syntax is defined in Xtext. Using Xtend, developers can basically specify a code
snippet for each grammar rule, and, this code snippet is generated when that rule
is matched for an XCD specification. So, I used Xtend to specify the ProMeLa
mapping of each XCD element, matched by the grammar rules, in a way complying

1http://www.eclipse.org/Xtext/
2https://www.eclipse.org/xtend/

135

http://www.eclipse.org/Xtext/
https://www.eclipse.org/xtend/

Figure 5.1: Architecture of XCD’s tool

with the ProMeLa semantics given in Section 4.4 (page 119). Furthermore, to ensure
that only the well-defined specifications are translated, I extended the code generator
implementation with a mechanism for checking well-definedness. By doing so, the
translation into a ProMeLa model cannot occur unless the given XCD specification
is well-defined as described in Section 4.3 (page 108). Having developed the code
generator, I integrated it with the lexer and parser of the XCD language, which have
already been produced via Xtext. XCD’s integrated tool is accessible as a standalone
jar file in [Xcd, 2013].

Figure 5.1 depicts the architecture of XCD’s prototype tool. As shown there, the
tool produces a folder from any given XCD specification. This folder contains a set of
files, which structures the translated ProMeLa model from the XCD specification in
a modular, thus more understandable, manner. Each component is mapped as two
files: one C header file3 (.h), representing the C macros used in mapping the internal
component structure, and one ProMeLa file (.pml), representing the behaviour of the
component type as a ProMeLa process. The header file includes macros relevant to
the component data and contract constraints of the component port actions, if the
component is primitive type. For composite types, it includes the macros about its
sub-connectors (i.e., their role state, connector parameters, and role constraints) and
sub-components (i.e., their state, action parameters, constraints, and processes for
behaviours). The process in the ProMeLa file executes the port actions for primitive
components, while it instantiates and runs the sub-component processes for compos-
ite components. Lastly, the produced folder also includes a ProMeLa file (configu-
ration.pml) that is created for the configuration of the system components, specified
as an instance of a composite component. The configuration file includes a ProMeLa
process that instantiates and runs the process declared for the composite component.
As discussed shortly, it is essentially the configuration.pml that is used by the SPIN
model checker to verify the behaviour of a system configuration.

3SPIN allows designers to use C codes in their ProMeLa models (see http://spinroot.com/
spin/Man/c_code.html). Designers can also use C macros to include their C header files as part
of their ProMeLa models (see http://spinroot.com/spin/Man/macros.html).

136

http://spinroot.com/spin/Man/c_code.html
http://spinroot.com/spin/Man/c_code.html
http://spinroot.com/spin/Man/macros.html

1 component user(){

2 int data:=0;

3 required port puser_r {

4 @functional{ensures: data:=\result;}
5 int get();

6 }

7 emitter port puser_e {

8 @functional{promises: data_arg:=7;}

9 set(int data_arg);

10 }

11 }

12 component memory(int numOfUsers) {

13 bool initialised_m := false;

14 int sh_data := 0;

15 provided port pmem_p[numOfUsers] {

16 @interaction{accepts: initialised_m;}

17 @functional{ensures: \result:=sh_data;}
18 int get();

19 }

20 consumer port pmem_c[numOfUsers] {

21 @functional{
22 ensures: initialised_m := true;

23 sh_data := data_arg; }

24 set(int data_arg);

25 }

26 }

27 component sharedData() {

28 component user userIns1();

29 component user userIns2();

30 component memory memoryIns(2);

31 connector memory2user x1(userIns1{puser_r,puser_e},memoryIns{pmem_p[0],pmem_c[0]});

32 connector memory2user x2(userIns2{puser_r,puser_e},memoryIns{pmem_p[1],pmem_c[1]});

33 }

34 component sharedData configuration();

36 connector memory2user(

37 userRole{pvuser_r,pvuser_e},

38 memoryRole{pvmem_p,pvmem_c}) {

39 role userRole {

40 required port pvuser_r {

41 int get();

42 }

43 emitter port pvuser_e {

44 set(int data_arg);

45 }

46 }

47 role memoryRole {

48 bool initialised := false;

49 provided port pvmem_p {

50 @interaction{ waits: initialised;}

51 int get();

52 }

53 consumer port pvmem_c {

54 @interaction{
55 ensures: initialised := true;}

56 set(int data_arg);

57 }

58 }

59 connector user2memory_m(

60 userRole{pvuser_r},memoryRole{pvmem_p});

61 connector user2memory_e(

62 userRole{pvuser_e},memoryRole{pvmem_c});

63 };

Figure 5.2: Specification of shared-data access in XCD

5.3 Tool Demonstration

In this section, I give the demonstration of XCD’s prototype tool via the shared-data
case study [Allen and Garlan, 1997]. I firstly discuss the XCD specification of the
shared-data system and then show its automatic mapping into a ProMeLa model via
the tool. In the next section, I use the shared-data system specification in discussing
XCD’s support for formal verification via SPIN.

5.3.1 Shared-Data Specification in XCD

In the shared-data system, user components retrieve and update some shared data
stored in a memory component. The memory component accepts requests for data
retrieval only if the data has been initialised – otherwise, it rejects the request and
commences a chaotic behaviour.

The XCD specification of the shared-data access is given in Figure 5.2. Its elements
are explained in the following text.

User Component Type Component user has a required port puser_r (lines 3–6)
through which it makes method calls to its environment (i.e., the memory) to retrieve
the value of some data. Port puser_r has a single method get, whose functional
contract’s ensures data-assignments clause (line 4) assigns the method’s result to
the component data – it has no pre-condition (i.e., a requires clause). Component
user also has an emitter port puser_e (lines 7–10) to emit events. Port puser_e

declares a single event set, whose functional contract promises clause assigns its
parameter to 7 – the event has no data-assignments (i.e., no ensures clause).

137

1 $ java -jar xcd.jar sharedData.xcd

Listing 5.1: Command for executing XCD’s tool

Memory Component Type Component memory has an array of provided ports
pmem_p (lines 15–19). It uses each of these ports to provide the method get to a differ-
ent user component instance. Unlike the contracts of component user, the contract
of these ports have an additional @interaction part (line 16). This states that the
pmem_p port will accept a get method-call only if the component data initialized_m

is true. Otherwise, the call is rejected and the component starts behaving in a chaotic
manner. If the call is accepted, then the functional contract (line 17) is considered,
which sets the result of the method call to be the value of the component sh_data vari-
able. The array of consumer ports pmem_c (lines 20–26) serves to receive set events.
Reception of such an event modifies the component state.

Memory2User Connector Type Connector type memory2user (lines 36–63 of Fig-
ure 5.2) specifies the protocol used in the system between the memory and the users.
It guarantees that the memory will not behave chaotically. The connector has two
roles, userRole (lines 39–46) and memoryRole (lines 47–58). The role userRole has a
required port-variable pvuser_r (lines 40–42), reflecting the port puser_r of the com-
ponent user, and an emitter port-variable pvuser_e (lines 43–46), reflecting the port
puser_e. These port-variables do not impose any interaction constraints on the role.

The role memoryRole has a provided port-variable pvmem_p (lines 49–52) reflecting
the port pmem_p of the component memory. Unlike the port-variables of the userRole,
this port-variable introduces extra interaction constraints on the behaviour of its
methods. It requires that calls to the method get are considered only when the role’s
initialized data is true, thus delaying them while this condition is not satisfied.

The role’s consumer port-variable pvmem_c (lines 53–57) reflects the port pmem_c

of the component memory. It uses its interaction contract to note that the memory
has been set, through its ensures clause. The combination of the contracts of the
two ports means that the memory cannot start behaving chaotically, as requests at
non-accepting states are delayed until they are safe.

SharedData Composite Component Type The sharedData component type
(lines 27–33 of Figure 5.2) includes two instances of the user component and a single
instance of the memory component. The component instances are passed as arguments
to the two connector instances, in lines 31–32, to bind them together and constrain
their interactions.

5.3.2 Automated Translation of XCD in ProMeLa

Having specified the shared-data system in Section 5.3.1, I executed XCD’s proto-
type tool (namely its jar file) via the command given in Listing 5.1. This produces
the ProMeLa mapping of the shared-data specification in a folder, as depicted in
Figure 5.1. The configuration.pml file in the ProMeLa model folder represents the
mapping of the shared-data configuration, specified in line 34 of Figure 5.2 as an
instance of the sharedData composite component. In the next section, the formal
verification of system configurations is illustrated via the shared-data configuration
and its ProMeLa mapping.

138

1 $ spin -a configuration.pml
2 $ gcc -O2 -DMEMLIM=7024 -DSAFETY -o pan pan.c
3 $./pan -m50000

Listing 5.2: Commands for SPIN verification

5.4 Checking Model Correctness via SPIN

The ProMeLa language is supported by the SPIN model checker [Holzmann, 2004],
which exhaustively checks formal ProMeLa models to prove their correctness. How-
ever, components and connectors cannot be analysed in isolation with the SPIN model
checker, which require a closed system. For each component one wishes to analyse
they need to specify a corresponding testing component. Similarly, for each connector
one wishes to analyse they need to provide a testing component for each of its roles.
I use the SPIN model checker to verify the correctness of system configurations, each
of which describes a group of components interacting via some connectors to com-
pose a system. Through the verification of a system configuration, I aim at detecting
whether the components can be composed successfully in the way specified in the
configuration and check for: (i) component interaction constraint violations, (ii) in-
complete functional behaviours of components, (iii) race conditions, (iv) deadlocks,
and (v) the violation of system properties specified by designers. These properties
are discussed in the rest of this section.

5.4.1 Checking Wrong Use of Services and Behaviour Incom-
pleteness

As discussed in XCD’s semantics (both high-level in Section 3.4 of page 90 and
ProMeLa mappings in Section 4.4 of page 119), consumer and provided ports may
receive event and method requests respectively at unacceptable states, violating their
accepting interaction constraints. This causes chaos, indicating the use of actions in
the wrong order. Moreover, even if requests are received at acceptable states, the
functional constraints may not be complete. This occurs when none of the functional
pre-conditions is satisfied. While the former indicates the wrong use of services, the
latter indicates the wrongly specified contracts. In both scenarios, the verification of
a system configuration fails, translated as an assertion violation in ProMeLa models.
To use services correctly, user components must always request method/event actions
when the requests are expected by the components offering the actions and satisfy
their accepting interaction constraints (e.g., a server expecting its service requests
when its connection is opened). To specify the functional constraints of a method-
/event correctly (i.e., complete), designers must consider all possible cases that the
component can be in once the method/event request is accepted (e.g., the functional
behaviour of sqrt(x) method considering not only the case when x ≥ 0 but also x < 0).

Designers can use the ispin GUI of the SPIN model checker to perform formal
verification via a graphical tool4. Alternatively, the SPIN model checker can be used
over a command line. Then, the set of commands that can be used to verify for
assertion violations is shown in Listing 5.2. Note that I specified the memory limit as
7024MB for formal verifications (i.e., -DMEMLIM=7024 in line 2 of Listing 5.2), and the
maximum search depth as 50.000 (-m50000) – these can be changed to other values.

4See the following link for installation information of ispin: http://spinroot.com/spin/Man/
README.html.

139

http://spinroot.com/spin/Man/README.html
http://spinroot.com/spin/Man/README.html

Model State-vector States Memory Time
Configuration (in Bytes) Stored Matched (in MB) (in sec)

1 user 156 477 284 128 0.00
2 users 248 169380 248188 163 0.3
3 users 344 16156062 39898631 4701 41
4 users 436 19630407 65378729 7024† 57.7

BITSTATE 4 users 436 62680212 1.9209748e+08 16 226
Spin (version 6.2.4) and gcc (version 4.7.2) used.
For bit-state verification, the -DBITSTATE option needs to be passed to gcc.
Using a 64bit Intel Xeon CPU (W3503 @ 2.40GHz × 2), 11.7GB of RAM, and Linux version
3.5.0-39-generic.
Column “States Stored” shows the number of unique global system states stored in the
state-space, while column “States Matched” the number of states that were revisited during the
search - see: spinroot.com/spin/Man/Pan.html#L10
† Cases marked with † in the Memory column run out of memory.

Table 5.1: Verification results for 4 different configurations of shared-data

I run the commands in Listing 5.2 for the verification of the shared-data specifi-
cation, given in Figure 5.2, and successfully verified it for the absence of chaotic and
incomplete behaviours – no assertion violation reported. The verification results are
displayed in Table 5.1 for four different configurations of the shared-data, each varying
by the number of users involved. So, this means that users always request methods
and events of the memory in the correct order (i.e., the interaction constraints are
satisfied). Moreover, since the method and event functional constraints do not have
the requires pre-conditions (i.e., these are true), they are complete by definition.

Note that when memory proves insufficient during the formal verification (marked
with a † in Table 5.1), designers can use instead SPIN’s bit-state hashing mode [Holz-
mann, 1998], which uses Bloom filters [Bloom, 1970] to reduce memory drastically.

5.4.2 Checking Race Conditions

Race condition is the commonly observed problem of concurrent software systems.
As discussed in Section 4.4.9 (page 132), XCD’s ProMeLa semantics consider the de-
tection of race conditions. Indeed, race conditions may occur in system behaviours
specified with XCD because XCD components execute their ports concurrently. So,
when multiple ports of the same component perform their method/event actions con-
currently, accessing and updating the component state in an arbitrary order, the
component may then have race conditions, which leave the component at an incon-
sistent state.

Since events and simple provided methods are executed atomically in XCD, they
cannot cause race conditions. Race conditions may occur in the case of required
methods and complex provided methods, whose execution consists of non-atomic
request and response parts (see Section 4.4.7.3 in page 126 and Section 4.4.7.5 in
page 129 respectively).

Race conditions are indicated with an assertion violation in the ProMeLa models
(just like chaos and incomplete behaviours). So, designers can use the verification
commands given in Listing 5.2 for detecting race conditions too.

Having verified the shared-data specification using the commands in Listing 5.2,
I essentially guaranteed the absence of race conditions, apart from the absence of
chaotic and incomplete behaviours. Race condition is in fact not possible in the
shared-data system. This is because the user’s required port puser_r requests the
method get and, upon receiving the response, the component state is updated using
the method’s functional constraint ensures. The ensures assigns the received
result to the data, which is however not updated by the functional constraint of the

140

spinroot.com/spin/Man/Pan.html#L10

1 #define CHECK_BUFFEROVERFLOW

Listing 5.3: Checking buffer overflow for consumers in ProMeLa model

1 [bufferLength=100]
2 consumer port samplePort{.......}

Listing 5.4: Attribute for specifying consumer buffer size

user’s emitter event.

5.4.3 Checking Buffer Overflow for Consumer Ports

As discussed in the ProMeLa semantics of components in Section 4.4.5 (page 121),
consumer and provided ports store their received requests in a buffer, where the
requests can be obtained and processed. However, consumer buffers may overflow,
as the emitter events can be emitted asynchronously without waiting for a response.
Note that provided buffers never overflow because required ports wait for the method
response of each request before making another request.

The consumer port translation in Section 4.4.7.2 (page 125) already considers the
buffer overflows, which are mapped as an assertion violation in ProMeLa. So design-
ers can verify their system configurations for the absence of the event buffer overflows.
However, it should be noted that buffer overflows may cause deadlocking system be-
haviours too. As illustrated via FIPA’s english auction system evaluated in Section 6.5
(page 175), this occurs when the system components are stuck writing event messages
to the full buffers of each other’s consumer. Since assertion violations hide deadlocks
during the SPIN verification, designers are prompted to manually activate the event
buffer overflow checks when they wish so. By doing so, designers can always observe
deadlocks, which can be caught by the SPIN model checker automatically. To activate
buffer overflow checking, the C macro given in Listing 5.3 needs to be added inside
the configuration.pml. Once the macro is added, designers can use the same set of
commands given in Listing 5.2 to check against buffer overflow.

Event buffer overflows can be dealt with in two ways. The repetitive emission
of events, causing the consumer buffer overflow, can be prevented by modifying the
protocol contracts. Alternatively, designers may choose to increase the size of the con-
sumer buffer. This is done in XCD as illustrated in Listing 5.4, where the bufferLength
precedes the consumer port specification and denotes the desired new size of that con-
sumer port. By doing so, the default buffer size (i.e., 1) can be replaced by the tool
with the desired bufferLength.

I checked the shared-data, specified in Figure 5.2, for consumer buffer overflow and
got a verification error by the SPIN model checker. The error is due to the consumer
port pmem_c of the memory, whose buffer overflows with the user events. Indeed,
it is easy to understand from the shared-data specification that the event set can be
emitted repetitively by the user without any delaying interaction constraints.

5.4.4 Checking System Properties

Designers may want to verify their system behaviours for high-level system require-
ments, e.g., the shared-data must always be initialised first before any user access.
While XCD does not yet provide a (sub) language to specify system properties for such

141

(a) Labelling user process (b) Labelling memory process

Figure 5.3: Process labels for tracing the executions of shared-data users and memory

1 ltl sharedData_liveness{
2 ◻ ((instance_name(userIns1)@user_get || instance_name(userIns2)@user_get)
3 → ◇ instance_name(memoryIns)@memory_get)
4 }

Listing 5.5: LTL specification of a liveness property for shared-data

1 ltl sharedData_safety{
2 !instance_name(memoryIns)@memory_get U instance_name(memoryIns)@memory_set
3 }

Listing 5.6: LTL specification of a safety property for shared-data

system requirements, it is still possible by using the ProMeLa language’s notation for
the translated ProMeLa models of XCD architectures.

5.4.4.1 Linear Temporal Logic (LTL)

ProMeLa offers Linear Temporal Logic (LTL) [Pnueli, 1977] construct, through which
designers can specify safety and liveness properties of their systems via temporal op-
erators (e.g., ◻, U, and ◇). To facilitate the use of LTL for the transformed ProMeLa
models of XCD architectures, XCD’s prototype tool further adds labels to each atomic
block transformed from the component port actions. These action labels aid in iden-
tifying whether the actions of component ports are executed or not (i.e., the labelled
state is reached). So, using the labels, designers can specify LTL properties on the
execution of port actions.

Figure 5.3 shows the action labels for the user and memory component processes
of the shared-data. Using these labels, one can identify at any time whether these
labelled states are reached, and, thus, the set and get actions are executed. For
instance, Listing 5.5 gives a liveness property that I specified for the shared-data inside
its configuration mapping (i.e., configuration.pml) using ProMeLa’s ltl. It basically
checks that whenever one of the two user instances in the configuration (specified in
lines 27–33 of Figure 5.2) requests the method get, the memory instance eventually
processes the request and sends back the response. Another ltl is given in Listing 5.6,
where a safety property is specified for checking that the memory processes the event
set before receiving and processing the method get. Note that to determine whether
the labelled state of a port action is reached or not, the label must be preceded with
the name of the component process, in which the label exists, and the remote reference
symbol (@)5. The name of a component process is obtained via XCD’s pre-defined

5Remote reference in ProMeLa allows designers to refer to the local variables and labelled states
of the component processes in LTL formulas.

142

1 #define CHECK_LTL

Listing 5.7: Macro for specifying LTL property

1 proctype Monitor() {
2 Q_0:
3 do
4 :: memory_control?set → goto Q_1
5 :: memory_control?get → assert(false)
6 od;
7 Q_1:
8 do
9 :: memory_control?get → goto Q_1

10 :: memory_control?set→ goto Q_1
11 od;
12 }

Listing 5.8: A ProMeLa process for checking a shared-data property

1 #define CHECK_MONITOR

Listing 5.9: Macro for specifying monitor process

instance_name macro6, which receives the full name of the component instance and
returns the name of its process. To verify shared-data for these two properties, it is
further necessary to add inside the configuration.pml file the macro definition given in
Listing 5.7. This will activate the state labels in component processes, which should
not be activated otherwise as they highly increase the state space by introducing
non-atomicity (discussed shortly). Having done that, I used the SPIN commands
given in Listing 5.2 and verified the shared-data configuration successfully for the
LTL properties.

5.4.4.2 Monitor Processes

Besides ProMeLa’s ltl, system properties can also be specified using ProMeLa pro-
cesses. Designers can specify a process to describe a particular behaviour (e.g., global
interaction protocol) that the system components are wished to satisfy. Such a pro-
cess is essentially a monitor for the component processes observing their actions to
determine whether they satisfy the expected behaviour. Therefore, it is instantiated
inside the system’s configuration process and executed asynchronously with the pro-
cesses of the components, constructing the system. It is also necessary to add inside
the configuration.pml the macro given in Listing 5.9, which activates using a monitor
process in the transformed ProMeLa model.

Listing 5.8 gives the monitor process that I specified for the shared-data system. It
monitors the set and get actions executed by the memory component ports. Just like
the LTL property in Listing 5.6, the monitor process checks that the memory firstly
processes the event set, and then the method get. The monitor process in Listing 5.8
uses a FIFO channel memory_control that is declared manually inside configuration.pml.
The same channel is also used by the memory process. While the memory process
writes in it the names of each action upon its execution, the monitor process reads
these action names to check the correct order of action execution. So, designers are
also expected to edit the atomic actions of the component processes, whose behaviours
are monitored. Indeed, Listing 5.10 depicts the modification for the set event’s atomic

6Macros, e.g., instance_name, acting as functions, are defined in XcD_Package.h, which is in-
cluded in the produced ProMeLa model folders.

143

1 : : atomic{
2 pop(event , Inte ract ionWait sAccepts) →
3 .
4 if
5 FORALL f c ∈ event . FC_consumer . ConsumerFConsSet
6 : : f c . Requires →
7 ContractAssignment2Promela (f c . Ensures) ;
8 : : e l s e →
9 printf ("incomplete functional constraints – wrong contract; ") ;

10 a s s e r t (f a l s e) ;
11 fi
12 .
13 memory_control ! set;

14 }

Listing 5.10: Modified atomic action for memory’s set event

1 : : atomic{
2 pop(method , Inte ract ionWait sAccepts ∧ requestedMethod(port) = nu l l) →
3 .
4 if
5 : : ro leAwait_res →
6 .
7 if
8 FORALL f c ∈ method . FC_provided . ProvidedFConsSet
9 : : f c . Requires →

10 ContractAssignment2Promela (f c . Ensures) ;
11 : : e l s e →
12 printf ("incomplete functional constraints – wrong contract; ") ;
13 a s s e r t (f a l s e) ;
14 fi;
15 .
16 memory_control ! get;

17 responseChannelID(port) ! methodResponseMessage(method) ;
18 : : else →
19 .
20 fi
21 }

Listing 5.11: Modified atomic action for memory’s get method

action in the memory process, while Listing 5.11 the modification for the get method’s
atomic action. There in both actions, I added a channel operation to write the
corresponding action names to the memory_control channel (line 13 of Listing 5.10 and
line 16 of Listing 5.11).

5.4.4.3 Comparing LTL and Monitor Processes

Now, I compare the two aforementioned approaches for specifying system properties,
which is crucial for designers’ decision of choice between the two.

LTL is distinguished with its support for specifying safety properties (i.e., "some-
thing bad never happens") and liveness system properties (i.e., "something good
eventually happens"). Indeed, in Listing 5.5 and Listing 5.6, I used ProMeLa’s LTL
to specify liveness and safety properties for the shared-data system respectively. Un-
like LTL, monitor processes cannot be used to specify liveness properties. Instead,
they are used to express behaviours that must always be satisfied in a finite system
execution, e.g., safety properties.

LTL may not always be practical for designers to specify their system properties,
especially for those who are not expert on LTL. Speaking from my own experiences,
LTL is particularly useful in specifying general system behaviours. However, speci-
fying specific behaviour of systems in LTL (e.g., interaction protocols for a certain

144

1 #define IMPOSE_ATOMICITY

Listing 5.12: Macro for imposing atomicity during property checking

order of action executions) may sometimes require a considerable amount of effort.
In such situations, designers can alternatively use monitor processes to describe their
protocol properties. Processes do not require the use of any LTL operators (e.g., ◇,
◻, U , and W). They are specified simply using ProMeLa’s C-like notation, consisting
of constructs such as loop statement (do::od) and selection statement (if::fi).

Lastly, LTL allows designers to make remote reference to the component processes
and access to their local variables or labelled states. This is, however, not possible
with normal processes like the monitor processes because remote references can only
be accessed by never claims 7, which LTL properties are converted into by SPIN
for execution. Moreover, using LTL does not require the modification of the trans-
lated ProMeLa models either, which monitor processes do. Indeed, monitor processes
require the creation of channels and also the modification of atomic actions in com-
ponent processes, whose behaviours are observed by the monitor processes via the
created channels.

I also discovered that both LTL properties and monitor processes suffer from
non-atomicity. That is, their use in ProMeLa models turns the atomic actions of
component processes into non-atomic actions. Indeed, LTL properties are specified
using the labels that are placed outside the atomic blocks of actions (see Figure 5.3).
While these labels outside the atomic blocks aid in determining whether the action
executions are completed, their executions are performed non-atomically. Note that
labels could be used to indicate the last state of the atomic blocks, but, in ProMeLa,
the labels used within atomic blocks are invisible to outside. Likewise, the use of mon-
itor processes requires the inclusion of channel I/O operations inside the atomic blocks
of actions, which break their atomicity when the channel operations are blocked8. To
resolve this issue, I modified XCD’s prototype tool to add a global bit free declara-
tion (bit free = true;) within the ProMeLa translations of XCD specifications. This
free bit is used in the guard of every atomic component actions, to ensure that their
executability depends also on the value of the free (i.e., it must be true for enabling
the guard). Inside the atomic blocks, the free is set to false, which is then set to
true only once the current atomic action has been completed and its labelled state
has been reached (if any). So now, even though the atomicity is broken, the currently
executing atomic block is still the only one that can execute thanks to the bit free.

To ensure the atomic execution of component port actions during system prop-
erty checking, the macro given in Listing 5.12 is added inside the configuration.pml
file. This macro activates the free bit operations that are discussed in the previous
paragraph. However, designers should not activate it unless a system property is
checked. Indeed, updating the bit free inside and outside the atomic blocks of actions
and its use in the guards of atomic blocks contribute to the state space during the
formal verification. Therefore, it had better be applied only when needed for property
checking.

7Never claims are offered by ProMeLa to specify system behaviours that should not happen. For
further information see http://spinroot.com/spin/Man/never.html.

8Read channel operations are blocked if the channel does not have any messages to read, and
write channel operations are blocked if the channel cannot accept any messages due to its buffer
which overflows.

145

http://spinroot.com/spin/Man/never.html

5.4.5 Checking Deadlocks

Deadlock is one of the most common properties that concurrent systems are verified
against. The SPIN model checker warns designers automatically when a deadlock
occurs globally that stops the system components from operating. It halts the formal
verification with an invalid end state error. The invalid end state indicates that a
system execution terminates at a state where the component processes are not able
to reach their end state and complete their operations. For deadlock verification,
designers can use the command set given in Listing 5.2.

I successfully verified the shared-data configuration for the absence of deadlock.
So, the users and memory components interact with each other without getting
blocked indefinitely.

5.4.6 Checking Unreachable Code

Besides checking for global deadlock, the SPIN model checker also reports the ProMeLa
code that cannot be reached in any executions of the system. This unreachable code
is reported for each component process executing. So, designers can easily observe
unexpected behaviours of their system components, e.g., response messages that can
never be received or request messages that can never be sent by emitter/required
ports. Furthermore, local deadlocks can also be determined from unreachable code.
That is, particular components of a system stop operating, while the rest work prop-
erly.

Unreachable code is reported when a system is verified using the SPIN commands
given in Listing 5.2. I have not got any reports of unreachable code during the
verification of the shared-data. So, there are no local deadlocks either.

5.4.7 Dealing with Verification Errors in SPIN

So far, I have introduced the different property types that are supported by XCD’s
semantics and checked via the SPIN model checker automatically. However, I have
not yet shown how to deal with the SPIN verification errors occurring due to the
violation of these properties. So, now, I show how designers can understand which
property is violated when they encounter a verification error in their SPIN verification
and how designers can inspect the property violations to find out its cause.

5.4.7.1 SPIN Verification Result

After each verification, the SPIN model checker produces the verification report de-
picted in Figure 5.4. The verification report includes information about the state
space of the verified system that has been explored exhaustively during the verifica-
tion. The report gives in lines 14–18 of Figure 5.4 (i) the vector size of each state,
(ii) the reached depth of the explored state space, (iii) the number of stored and
matched states, (iv) the number of stored state transitions, and (v) the number of
taken atomic steps. The details about the memory that is used to store the state
space are also given in lines 21–26. Furthermore, as mentioned in Section 5.4.6, the
verification report may also include unreachable code for the component processes,
which are given at the end of the verification report in lines 28–31. Note that Ta-
ble 5.1 given in Section 5.4.1 (page 139) essentially represents the verification reports
resulted from the verification of the shared-data system configurations.

146

1 pan:1: invalid end state (OR assertion violated 0) (at depth - - -)//Printed for an error

2 pan: wrote configuration.pml.trail //Printed for an error

3
4 (Spin Version 6.3.2 -- 17 May 2014)

5 Warning: Search not completed

6 + Partial Order Reduction

7
8 Full statespace search for:

9 never claim - (none specified)

10 assertion violations +

11 cycle checks - (disabled by -DSAFETY)

12 invalid end states +

13
14 State-vector - - - byte, depth reached - - -, errors: 1

15 - - - states, stored

16 - - - states, matched

17 - - - transitions (= stored+matched)

18 - - - atomic steps

19 hash conflicts: 0 (resolved)

20
21 Stats on memory usage (in Megabytes):

22 - - - equivalent memory usage for states (stored*(State-vector + overhead))

23 - - - actual memory usage for states

24 - - - memory used for hash table (-w24)

25 - - - memory used for DFS stack (-m50000)

26 - - - total actual memory usage

27
28 unreached in proctype .. //".." can be any component process name

29 //Unreached process code

30 unreached in proctype ..

31

32
33 pan: elapsed time - - - seconds

34

Figure 5.4: SPIN’s verification report template
The places denoted with "- - -" are to be filled with some experimental values obtained during formal

verifications performed via the SPIN model checker.

1 ./pan -r

Listing 5.13: SPIN commands for viewing the error trail

5.4.7.2 Verification Error Types in SPIN

Besides providing information about the explored state space, the verification report
also lets designers know whether the verification was successful or not. In case an error
is caught during the formal verification, the SPIN model checker halts the verification
at the point where the error is caught and reports the verification error in the first line
of the verification report – see line 1 of Figure 5.4. As aforementioned, the error can be
either an invalid end state error or an assertion violation error. The former indicates
a deadlocking system behaviour. The latter indicates the violation of some pre-
defined properties, which are wrong use of services, incomplete functional behaviours,
event buffer overflow, and race conditions. The violation of user defined properties,
discussed in Section 5.4.4, causes an assertion violation too. In the occurrence of
errors, designers can simply run the SPIN command given in Listing 5.13 to obtain
the error trail, which can be gone through to identify what causes the error. If the
error trail is too long hindering its understandability, designers can shorten the trail
by running the commands in Listing 5.14 as an alternative to the one in Listing 5.13.

5.4.7.3 Inspecting SPIN’s Error Trace for Assertion Violation Error

In the case of an assertion violation error, the error trace gives the sequence of
ProMeLa code that lets identify the code each component process executes when

147

1 gcc -O2 -DREACH -o pan pan.c

2 ./pan -m100000 -I

3 ./pan -r

Listing 5.14: SPIN commands for viewing the shortened error trail

1 Wrong use of services

2 pan:1: assertion violated 0 (at depth 68)

3

4

5 #processes 5:

6 68: proc 0 (:init:) configuration.pml:19 (state 2)

7 68: proc 1 (GasStation_0_0) configuration.pml:11 (state 4)

8 68: proc 2 (Customer_cust1_0) configuration.pml:28 (state 147)

9 68: proc 3 (Cashier_cash1_0) configuration.pml:24 (state 44)

10 68: proc 4 (Pump_pump1_0) configuration.pml:148 (state 147)

11

Figure 5.5: An example error trail - assertion violation error

the error occurs. To illustrate this, let us consider Figure 5.5 that gives the error
trail of a system with customer, cashier, and pump components. Line 1 always in-
dicates the reason for the assertion violation. Apparently, the assertion violation in
this instance results from the wrong use of component services. Lines 6–10 indicates
the executed ProMeLa code of each unique component process when the assertion
violation occurs. It shows respectively (i) the id of the process (e.g., proc 0), (ii)
the full name of the component consisting of the type name, instance name9 and
the instance index10 (e.g., Customer_cust1_0), and lastly (iii) the line number of
the component process code that has been executed at that point (e.g., configura-
tion.pml:11). Designers can use these information to locate the cause of the assertion
violation. For instance, following line 10 of the error trail, one can inspect the pump
component’s process file, whose code in line 148 indicates that the error is due to
the pump’s particular method requested at an unacceptable state. Note also that the
location information may sometimes be supplemented with the exact ProMeLa code
in that location, especially if it is a channel I/O operation. This liberates designers
from having to search the code in the process files of the components.

5.4.7.4 Inspecting SPIN’s Error Trace for Invalid End State Error

In the case of an invalid end state error, the error trail is supposed to give the sequence
of ProMeLa channel I/O operations that cannot be executed by the component pro-
cesses and thus causes the components to get blocked indefinitely. To illustrate this,
let us consider a very simple software architecture specified in Figure 5.6. Therein, the
Client1 and Client2 emit events to each other under no constraints. However, their
interactions are deadlocking, indicated via the invalid end state error that has been
reported during the formal verification. The error trail shown in Figure 5.7 includes
the ProMeLa code for the Client1 and Client2 processes that cannot be executed.
Lines 7–8 give the ProMeLa code for the Client1 process, while lines 9–10 give the
code for the Client2 process. Apparently, the deadlock occurs due to that the former
is stuck trying to emit event1 and the latter is stuck emitting event3.

9 In the case of the configuration composite component, the error trail does not show the instance
name, e.g., GasStation_0_0

10Single components are assigned index 0 while the components of component arrays are assigned
their own index in the array.

148

1 component Client1(){

2 emitter port ReqInterface1{ service1();}

3 consumer port OfferInterface1{service2();}

4 }

5 component Client2(){

6 emitter port ReqInterface2{service2();}

7 consumer port OfferInterface2{service1();}

8 }

9 connector C1xC2(Client1{ReqInterface1,OfferInterface1},Client2{ReqInterface2,OfferInterface2}){

10 role Client1{

11 emitter port_variable ReqInterface1{service1();}

12 consumer port_variable OfferInterface1{service2();}

13 }

14 role Client2{

15 emitter port_variable ReqInterface2{service2();}

16 consumer port_variable OfferInterface2{service1();}

17 }

18 connector async link1(Client1{ReqInterface1},Client2{OfferInterface2});

19 connector async link2(Client2{ReqInterface2}, Client1{OfferInterface1});

20 }

21 component configuration(){

22 component Client1 C1inst();

23 component Client2 C2inst();

24 connector C1xC2 connIns(C1inst{ReqInterface1,OfferInterface1},

25 C2inst{ReqInterface2,OfferInterface2});

26 }

27

Figure 5.6: An example software architecture with deadlocking behaviour

1

2 #processes 4:

3 309: proc 0 (:init:) configuration.pml:19 (state 2)

4 -end-

5 309: proc 1 (configComp_0_0) configuration.pml:8 (state 3)

6 -end-

7 309: proc 2 (C1_c1inst_0) configuration.pml:123 (state 117) (invalid end state)

8 CHANNEL_configComp_0_COMPONENT_C2_c2inst_0_PORT_eventPort_cons2[0]!event1

9 309: proc 3 (C2_c2inst_0) configuration.pml:123 (state 117) (invalid end state)

10 CHANNEL_configComp_0_COMPONENT_C1_c1inst_0_PORT_eventPort_cons1[0]!event3

11

Figure 5.7: The error trail produced from the verification of the software architecture
specified in Figure 5.6

5.5 Summary

In this chapter, I introduced the tool that I developed for the XCD language. I de-
veloped XCD’s tool using Eclipse’s Xtext and Xtend frameworks, and released it as
a jar file that can be run on a command line. For an XCD architecture specification,
the tool firstly checks the syntax of the specification. If no syntax error is found,
the tool then checks whether the specification is valid or not with regard to XCD’s
well-definedness rules. If the specification is valid, the tool translates the specifica-
tion into a ProMeLa model. As I demonstrated via the shared-data case study in
this chapter, the SPIN model checker can be used to verify the translated ProMeLa
models for a number of properties that are supported by XCD’s ProMeLa translation.
These properties are the wrong use of services, incomplete functional behaviours, race
conditions, event buffer overflow in event-based communications. The SPIN model
checker itself allows for checking deadlocks. Furthermore, I showed that designers
can specify high-level requirements and verify their architectures for these require-
ments. However, this requires designers to use the ProMeLa language as XCD does
not yet provide a (sub) language to specify properties for system requirements. I
offered two different ways for specifying system properties in ProMeLa. The first way

149

is using ProMeLa’s ltl construct to specify safety and liveness properties in the form
of linear temporal logic formulas. The alternative way is using ProMeLa processes to
specify some (non-local) protocols that are desired. Such processes can run concur-
rently with the component processes and observe the component behaviours to check
whether the protocol is satisfied or not. Both ways of specifying system requirements
have its own advantages and disadvantages that affect designers’ choice between the
two, discussed thoroughly in this chapter. Lastly, I ended the chapter by showing
how designers can use the SPIN model checker to detect verification errors for the
aforementioned properties and trace them.

150

Chapter 6

Evaluation of XCD

6.1 Introduction

I have evaluated XCD’s language and its prototype tool by considering a number of
well-known case studies. The lunar lander [Taylor et al., 2010,Bagheri and Sullivan,
2010,Maoz et al., 2013] is a case study considered extensively in the software archi-
tecture community. It specifies a number of sensors and actuators, controlled by a
single controller that attempts to safely land a spacecraft on the moon. The gas sta-
tion [Naumovich et al., 1997] is another classic case study in software architectures,
consisting of a gas station with a number of gas pumps and customers that need to
pay a cashier before a pump is released for them. The aegis weapons system [Allen
and Garlan, 1996] is a command-and-control system developed by the US navy using
a client-server approach, containing a number of sensors to establish the environment
a ship is in and components that analyse this context in order to react to potential
threats. FIPA’s english auction [FIPA TC C, 2001] describes a marketplace with an
auctioneer who uses the english auction variant to sell an item. Finally, the nuclear
power plant [Alur et al., 2003] describes a system with two clients, which attempt to
access and modify the nitric acid and uranium data controlled by the nuclear power
plant.

Having specified the case studies, I translated them into formal models in SPIN’s
ProMeLa using xcd’s prototype tool. The translated ProMeLa models for the case
studies are accessible via the tool’s website [Xcd, 2013]. Using the SPIN model
checker, I verified the ProMeLa models of the case studies for a number of properties
that are supported by XCD’s ProMeLa translation, introduced in Section 5.4. These
properties are (i) correct use of services offered by consumer and provided ports
that respects the services’ interaction constraints, (ii) completeness of method/event
functional constraints, (iii) race-conditions, both write-read and write-write ones, and
(iv) port buffer overflows for event based communications. The SPIN model checker
by itself checks for deadlock in system behaviours. Furthermore, I specified my own
properties using ProMeLa’s notation to verify some system requirements.

In this chapter, I discuss the specification and formal verification of each case
study and illustrate XCD’s significant points. These are mainly (i) the expressiveness
of XCD’s contractual notation for specifying nontrivial system behaviours, (ii) the
automated formal verification of software architectures using SPIN (iii) the modular
nature of XCD (i.e., components and complex connectors) that eases the architectural
exploration of different design solutions and the detection (and correction) of design
errors, and finally (iv) the guaranteed realisability of software architectures. Besides

151

Figure 6.1: Conceptual diagram of gas station

illustrating XCD’s features, I also discuss the restrictions of XCD during the case
study evaluations, which I hope to resolve in the future.

6.2 Gas Station Case Study

As Figure 6.1 shows, the gas station system [Naumovich et al., 1997] is considered
for a number of customers N . It has one cashier component with N consumer ports
to receive payment events from the customers, and one emitter port to send events
to the pump for releasing gas to the customers. The system has a pump component
that also has one consumer port to receive pump-release events from the cashier and
N provided ports to receive gas requests from the customers. Finally, the system has
N components of type customer, each of which has two ports. One is an emitter port
that sends payment events to the cashier and the other is a required port that calls
the pump method for receiving gas.

Note that the gas station architecture depicted in Figure 6.1 is slightly different
from the original architecture given in Figure 4 of [Naumovich et al., 1997]. In the
original architecture, the pump has a distinct port for each customer and these pump
ports are connected with the ports of the cashier that notify the pump of the customers
who paid their gas. However, I herein consider the pump and cashier to interact over a
single port for the customers who have paid their requests, instead of interacting over
a distinct port for each customer. As discussed in the analysis part of this section, this
helped in checking for the buffer overflow of the pump’s port with the pump-release
events.

My motivation for specifying the gas station system is firstly that gas station can
have a varying number of customers involved. So, using gas station, I can illustrate
how designers can deal with the specification and analysis of growing instances of
systems. Moreover, the components composing the gas station system perform both
event- and method-based communications. This can help in illustrating the syntactic
and semantic differences between the method and asynchronous event specifications
in XCD. Another important characteristic of the gas station is that it has a number of
interesting system requirements. Using these requirements, I can illustrate how XCD

allows for designers to specify and verify their own properties.

6.2.1 XCD Specification of Gas Station

I specify three types of components for the gas station depicted in Figure 6.1: cus-
tomer, cashier, and pump component types. To represent the communications be-
tween them, I specify three types of connectors: Customer2Cashier, Cashier2Pump,
and Customer2Pump. There is also a composite component type specified for describ-

152

ing the configuration.

1 enum Amount := {None, Little, Average, Much};

2
3 component customer(){

4 bool requestMade := false;

5 Amount chosenAmount := Little;

6
7 emitter port pay{

8 @interaction{waits:!requestMade;}
9 @functional{

10 promises:amount\in [Little, Much];

11 ensures:requestMade:=true;
12 chosenAmount:=amount;

13 }

14 pay(Amount amount);

15 }

16 required port gas{

17 @interaction{waits:requestMade==true;}
18 @functional{
19 requires:/result==chosenAmount;

20 ensures:requestMade:=false;
21 otherwise:

22 requires:!(/result==chosenAmount);

23 ensures: /nothing;

24 otherwise ∶
25 requires:\exception==
26 MissingPaymentException;}

27 ensures: /nothing;

28 Amount pump()

29 throws MissingPaymentException;

30 }

31 }

Figure 6.2: Customer component type specification of gas station

6.2.1.1 Customer Component

Figure 6.2 gives the specification of the customer component type. The customer
component’s state is represented via two data variables in lines 4–5. It also contains
two ports, the emitter pay (lines 7–15) and the required gas (lines 16–30). The emitter
port pay (lines 7–15) has the pay event, which it emits to the cashier to make gas
payment. The event parameter amount is assigned a non-deterministic value by the
promise functional constraint (line 10) if the customer has not made the request yet
(satisfying the event’s interaction constraint in line 8). Upon emission of the event
pay, the component state is updated using the event’s ensures functional constraint
in lines 11–12. For the gas required port (lines 16–30), it is used to request the
pump method from the pump component. The pump method has no parameters, and
therefore, no promises clauses is specified in its functional constraint. So, it is called
whenever its interaction constraint is satisfied (line 17). Upon receiving the response
for a call, (i) if the method result received is equal to the data chosenAmount (line
19), the data requestMade is assigned to false (line 20), or (ii) if the result is
not equal to the chosenAmount (line 21), the component state is not changed as
there seems to be a problem with the Pump that sends the wrong paid-amount as a
confirmation (lines 22–23), or (iii) if an exception is received instead (lines 25–26),
the component state is not updated again.

6.2.1.2 Cashier Component

Figure 6.3 gives the specification of the cashier component type. The cashier compo-
nent has a parameter N for receiving the number of customers at configuration time.
The component state is represented with a single data variable given in line 2. The
cashier has also an array of the customer consumer ports (lines 4–12), each receiving
the pay event from a distinct customer, and the toPump emitter port (lines 13–22),
emitting the toPump event to the pump component for releasing its pump. The pay
event of the customer ports is each received only if the payment of the customer has
not been received yet (satisfying the event’s accepting interaction constraint in lines
5–6). Otherwise, a chaos occurs. Upon its receipt, the component state is updated
using the event pay ’s ensures functional constraint (lines 9–10). For the toPump
emitter port (lines 13-22), its single releasePump event is emitted after assigning the

153

1 component cashier(ID N := 2){

2 Amount payment_amount[N] := None;

3
4 consumer port customer[N]{

5 @interaction{
6 accepts:payment_amount[@]==None;}
7 @functional{
8 requires:true;
9 ensures:

10 payment_amount[@]:=amount_arg;}

11 pay(Amount amount_arg);

12 }

13 emitter port toPump{

14 @interaction{
15 waits:payment_amount[customerID]!=None;}
16 @functional{
17 promises:customerID \in [0, N-1];

18 amount:=payment_amount[customerID];

19 ensures:
20 payment_amount[customerID]:=None;}

21 releasePump(ID customerID,Amount amount);

22 }

23 }

Figure 6.3: Cashier component type specification of gas station

1 component pump(ID N:=2){

2 bool pumpReleased[N]:=false;

3 Amount payment_amount[N]:=None;

4
5 provided port oil[N]{

6 @interaction{
7 accepts:pumpReleased[@]==true;}
8 @functional{
9 requires:payment_amount[@] != None;

10 ensures:pumpReleased[@]:=false;
11 /result:=payment_amount[@];}

12 otherwise:

13 requires:payment_amount[@] == None;

14 throws:MissingPaymentException;}
15 Amount pump()

16 throws MissingPaymentException;

17 }

18
19 consumer port fromCashier {

20 @interaction{
21 waits:!pumpReleased[customerID];}
22 @functional{
23 requires:true;
24 ensures:pumpReleased[customerID]:=true;
25 payment_amount[customerID]:=amount;}

26 releasePump(ID customerID, Amount amount);

27 }

28 }

Figure 6.4: Pump component type specification of gas station

event parameters using the promises functional constraint (lines 17–18) in a way
that satisfies the interaction constraint. The parameter customerID is assigned a
customer ID nondeterministically, among the customers who have paid for the gas
(satisfying the event’s interaction constraint in line 15); and, the parameter amount
is assigned the amount paid by that customer. Upon assigning its parameters and
emitting the releasePump event, the component state is updated using the event’s
ensures functional constraint (lines 19–20).

6.2.1.3 Pump Component

Figure 6.4 gives the specification of the pump component type. Just like the cashier,
the pump component has also a parameter to receive the number of customers. The
pump’s state is represented via two data variables given in lines 2–3. The pump
component has an array of the oil provided ports (lines 5-17) and the fromCashier
consumer port (lines 19–27). Each oil port has the pump method, which is used
by some customer. Requests for the pump method are accepted only if the pump
component released the pump for that customer, satisfying the method’s accepting
interaction constraint (lines 6–7). Otherwise, the pump requests are rejected, causing
a chaos. When satisfied, the pump method’s functional constraints are processed:
if the amount of the payment made by the customer is not None, then, the compo-
nent state is updated using the ensures functional constraint (lines 9–11), and the
result is assigned with the payment amount, which is equivalent to the amount of
gas released. Otherwise, an exception is thrown to the customer (lines 13–14). The
fromCashier port (lines 19–27) consumes the releasePump events from the cashier,
along with their arguments holding the ID of the customer and its payment amount.

154

Consumption of a releasePump event is delayed until the pump for the chosen cus-
tomer is available to be released, satisfying the event’s interaction constraint (line
21). Then, the component state is updated using the event’s ensures functional
constraint (lines 24–25).

1 connector Customer2Cashier(Customer{pay}, Cashier{customer}){

2 role Customer{emitter port_variable pay{pay();} }

3 role Cashier{consumer port_variable customer{pay();} }

4 connector cust2cash_pay(Customer{pay}, Cashier{customer});

5 }

6
7 connector Cashier2Pump(Cashier{toPump}, Pump{fromCashier}){

8 role Cashier{emitter port_variable toPump{releasePump(int customerID);} }

9 role Pump{consumer port_variable fromCashier{releasePump(int customerID);} }

10 connector cash2pump_pump(Cashier{toPump},Pump{fromCashier});

11 }

12
13 connector Customer2Pump(Customer{gas}, Pump{oil}){

14 role Customer{ required port_variable gas{ void pump(); } }

15 role Pump{provided port_variable oil{ void pump();}}

16 connector cust2pump_pump(Customer{gas}, Pump{oil});

17 }

18

Figure 6.5: Connector type specifications of gas station

6.2.1.4 Connector types

In Figure 6.5, three different connector type specifications are given. The connector
roles therein do not impose any interaction protocols on the components playing the
roles – role port-variables do not have contracts for their actions. So, the duty of the
connectors herein is essentially to connect the ports of the interacting components.
The Customer2Cashier connects the port of a customer with the port of a cashier for
payment requests; the Cashier2Pump connects the port of a cashier with the port of a
pump for notifying the pump about the customers who have made their gas payments;
and finally, the Customer2Pump connects the port of a customer with the port of a
pump for gas requests.

6.2.1.5 Gas Station Component

Figure 6.6 gives a composite component type specification, which describes the system
configuration. It includes in lines 3–5 (i) an array of customer component instances
whose size is 4, (ii) a cashier component instance, and (iii) a pump component in-
stance. Furthermore, there is also a set of connector instances specified (lines 7–9),
which receive via their parameters the component instances and establish the com-
munication links between the component ports1.

6.2.2 Analysis of Gas Station

Using XCD’s prototype tool, I have encoded the gas station specification in ProMeLa
[Holzmann, 2004] and have verified it automatically via the SPIN model checker. In
total, I considered 5 different configurations for the gas station system, each differing
by the number of customers involved. I verified the configurations for a number of
properties.

1@ symbol is used to obtain the index of the currently executing connector in a connector instance
array.

155

1 component GasStation(ID N := 4){

2
3 component customer customerIns[N]();

4 component cashier cashierIns(N);

5 component pump pumpIns(N);

6
7 connector Customer2Cashier conn1[N](customerIns[@]{pay}, cashierIns{customer[@]});

8 connector Customer2Pump conn2[N](customerIns[@]{gas}, pumpIns{oil[@]});

9 connector Cashier2Pump conn3(cashierIns{toPump}, pumpIns{fromCashier});

10
11 }

Figure 6.6: Gas station composite component type specification

Model Size State-vector States Memory Time
(in Bytes) Stored Matched (in MB) (in seconds)

Gas Station (1 customer) 188 788 1289 130 0
Gas Station (2 customers) 288 933035 2904910 337 3.23
Gas Station (3 customers) 368 24351026 1.0165547e+08 7024† 90

BITSTATE Gas Station (3 customers) 368 2.5743675e+08 2.0745238e+08 24 291
Gas Station (4 customers) 456 20045485 1.0533125e+08 7024† 77

BITSTATE Gas Station (4 customers) 456 69889845 3.5241057e+08 25 351
Gas Station (5 customers) 544 17010484 1.0229734e+08 7024† 72

BITSTATE Gas Station (5 customers) 544 72082862 4.1847946e+08 26 417
Spin (version 6.2.4) and gcc (version 4.7.2) used, with up to 7024MB of RAM and a search
depth of 50,000:
spin -a configuration.pml
gcc -DMEMLIM=7024 -O2 -DXUSAFE -DSAFETY -DNOCLAIM -w -o pan pan.c
./pan -m50000 -c1
For bit-state verification, the -DBITSTATE option needs to be passed to gcc.
Using a 64bit Intel Xeon CPU (W3503 @ 2.40GHz × 2), 11.7GB of RAM, and Linux version
3.5.0-39-generic.
Column “States Stored” shows the number of unique global system states stored in the
state-space, while column “States Matched” the number of states that were revisited during the
search - see: spinroot.com/spin/Man/Pan.html#L10
† Cases marked with † in the Memory column run out of memory.

Table 6.1: Verification results for gas station

Firstly, I checked for chaotic behaviours, which occur when the component services
are used wrongly, and got a verification error as shown in Figure 6.7. As I have gone
through the error trail presented in Appendix C.1, I understood that the error is due
to the pump component receiving gas requests from the customers when the pumps
for the customers have not been released yet (violating the pump method’s accepting
interaction constraint in lines 6–7 of Figure 6.4). To resolve this, I turned the accepting
interaction constraint in lines 6–7 of Figure 6.4 into a delaying interaction constraint
(waits). By doing so, each customer is delayed until the pump is released, instead of
being rejected immediately. Moreover, I also verified that the functional contracts of
the component port actions are complete.

Second, I verified for the absence of race-conditions. This proves that the non-
atomically executing required port of the customer always makes its gas request and
then receives its response at a consistent state – the customer’s emitter port does not
interfere in between.

Third, I attempted to verify for the absence of event buffer overflows, which failed
as reported in Figure 6.8. Buffer overflow errors can always be traced via the SPIN’s
verification report itself. Indeed, lines 1–2 of Figure 6.8 gives the reason for the buffer
overflow in this instance. So, the buffer overflow error occurs in the pump’s consumer
fromCashier port, whose buffer is reported to be full (i.e., its slot being occupied
already). Its buffer overflows due to the multiple releasePump events emitted from
the cashier component. Indeed, when there are two or more customers involved in
the configuration, the cashier may emit two or more consecutive releasePump events
(one per customer). This normally leads to buffer overflow. Because, the consumer
port’s buffer size is equal to the number of connected emitters (see Section 4.4.5 for its

156

spinroot.com/spin/Man/Pan.html#L10

1 pan:1: assertion violated 0 (at depth 580)

2 pan: wrote configuration.pml.trail

3
4 (Spin Version 6.3.2 -- 17 May 2014)

5 Warning: Search not completed

6 + Partial Order Reduction

7
8 Full statespace search for:

9 never claim - (none specified)

10 assertion violations +

11 cycle checks - (disabled by -DSAFETY)

12 invalid end states +

13
14 State-vector 188 byte, depth reached 580, errors: 1

15 198 states, stored

16 136 states, matched

17 334 transitions (= stored+matched)

18 879 atomic steps

19 hash conflicts: 0 (resolved)

20
21 Stats on memory usage (in Megabytes):

22 0.041 equivalent memory usage for states (stored*(State-vector + overhead))

23 0.224 actual memory usage for states

24 128.000 memory used for hash table (-w24)

25 2.670 memory used for DFS stack (-m50000)

26 130.866 total actual memory usage

27
28 pan: elapsed time 0 seconds

29

Figure 6.7: SPIN’s verification report – error due to wrong use of Pump method
The verification results belong to the gas station configuration with 1 customer.

semantics), which is 1 for the pump’s fromCashier port connected with the cashier ’s
emitter port only. To resolve this issue, I increased the buffer size to the number of
customers, in the way shown in Section 5.4.3. Now, it can store one releasePump event
per customer without any overflows. Finally, using the SPIN model checker, I verified
for deadlock-freedom. This means that whenever a customer makes a payment request
to the cashier or a gas request to the pump, the cashier and pump never get stuck
and always process the requests (i.e., accepted) without delaying them indefinitely.
Similarly, the pump does not delay the cashier indefinitely either when the cashier
notifies the pump of the customers who have paid their gas.

Besides the above mentioned properties, I specified some properties for checking
high-level system requirements for the gas station and verified them. As discussed
in Section 5.4.4 (page 141), designers can use ProMeLa’s ltl construct for specifying
properties. So, I specified the LTL property given in Listing 6.1, which checks that
whenever a customer has paid for gas (pay event), the cashier notifies the pump
eventually to release its gas (event toPump). Furthermore, I specified another LTL
property given in Listing 6.2. It checks that a customer who has paid for gas and
requested it from the pump (pump method) always receives the gas from the pump
eventually.

Lastly, I verified successfully that customers always receive the correct amount of
gas. To do so, I specified the monitor process given in Listing 6.3. It basically checks
to determine whether the customer’s functional constraint for the pump method that is
specified in lines 18–27 of Figure 6.2 (page 153) processes a wrong gas amount received
from the pump component. To enable this checking, I modified the customer process’s
atomic blocks translated from the pump method. As shown in Listing 6.4, the response
atomic block of the pump method includes an if selection construct of ProMeLa (lines
7–14) translated from the method’s functional constraint. The if construct has a
distinct option for each requires-ensures pair of the functional constraint (see lines

157

1 pan:1: assertion violated (

2 COMPONENT_Pump_VAR_PORT_fromCashier_BUFFER[...].slotOccupied==0) (at depth 45091)

3 pan: wrote configuration.pml.trail

4
5 (Spin Version 6.3.2 -- 17 May 2014)

6 Warning: Search not completed

7 + Partial Order Reduction

8
9 Full statespace search for:

10 never claim - (none specified)

11 assertion violations +

12 cycle checks - (disabled by -DSAFETY)

13 invalid end states +

14
15 State-vector 288 byte, depth reached 45091, errors: 1

16 83646 states, stored

17 240459 states, matched

18 324105 transitions (= stored+matched)

19 874800 atomic steps

20 hash conflicts: 3957 (resolved)

21
22 Stats on memory usage (in Megabytes):

23 25.208 equivalent memory usage for states (stored*(State-vector + overhead))

24 18.973 actual memory usage for states (compression: 75.27%)

25 state-vector as stored = 210 byte + 28 byte overhead

26 128.000 memory used for hash table (-w24)

27 2.670 memory used for DFS stack (-m50000)

28 149.616 total actual memory usage

29
30 pan: elapsed time 0.26 seconds

31

Figure 6.8: SPIN’s verification report – error due to pump’s consumer buffer overflow
The verification results belong to the gas station configuration with 2 customers.

1 //◻(P → ◇ S), where S responds to P

2 ltl notify_for_paid_gas_release {

3 ◻(
4 instance_name(customerIns_1)@pay→ ◇instance_name(cashierIns)@toPump &&

5 ..

6 instance_name(customerIns_4)@pay→ ◇instance_name(cashierIns)@toPump
7)

8 }

Listing 6.1: LTL property for checking notifications of the paid gas release

1 //◻(P → ◇ S), where S responds to P

2 ltl receive_paid_gas{

3 ◻(
4 instance_name(customerIns_1)@pumpreq →◇instance_name(customerIns_1)@pumpres &&

5 ..

6 instance_name(customerIns_4)@pumpreq →◇instance_name(customerIns_4)@pumpres

7)

8 }

Listing 6.2: LTL property for checking the receipt of the paid gas

18–27 of Figure 6.2). The middle option of the if construct (lines 10–11) is mapped
from the middle pair of the functional constraint, which is satisfied if the customer
receives an incorrect gas amount. So, I added a channel operation therein (line 11),
writing a pump message into the customer_control channel that I created manually.
The same channel is also used by the monitor process in Listing 6.3 to read the pump
message.

Table 6.1 shows the formal verification results for the gas station configurations.
As the results indicate, the memory limit of 7024MB is not enough for the verification
of the gas station with 3 or more customers. So, in these cases, I used SPIN’s bit-state
hashing mode [Holzmann, 1998] to reduce the memory consumption.

158

1 proctype Monitor(){

2 do

3 ::customer_control?pump→assert(false);

4 od

5 }

Listing 6.3: Monitor process for checking correct amount of gas

1 : : atomic{ // sending reques t
2
3 }
4 : : atomic{ // r e c e i v i n g response
5 responseChannelID(port) ? methodResponseMessage(method) : activeMethod(port)=method→
6
7 if

8 : : FC_requiresEnsures_1 . Requires → // "result == chosenAmount"(lines 19–20 of Figure 6.2)
9 ContractAssignment2Promela (FC_requiresEnsures_1 . Ensures) ;

10 : : FC_requiresEnsures_2 . Requires → // "!(result == chosenAmount)"(lines 21–23 of Figure 6.2)

11 customer_control ! pump; //Let the monitor process be informed of the wrong received gas amount

12 : : FC_requiresEnsures_3 . Requires → //Exception received in lines 24–27 of Figure 6.2; do nothing
13 : : e l s e → printf ("incomplete functional constraints ") ; a s s e r t (f a l s e) ;
14 fi

15
16 }

Listing 6.4: Modified atomic block translations of the customer’s pump method

6.2.3 Conclusion

Through the specification and analysis of the gas station system, I was able to il-
lustrate some of the distinguishing features of XCD and evaluate their use. Firstly,
I showed how XCD aids in dealing with the analysis of larger instances of systems.
When memory remains insufficient for the formal verification of large systems, design-
ers can use ProMeLa’s bit-state hashing mode that reduces the memory consumption
drastically. It should however be noted that while bit-state hashing is a successful
technique for enabling full system verifications, it may sometimes lead to imprecise
results due to the hash collisions that prevents the exploration of some system states.

In the gas station, I also illustrate the two-way method communications and one-
way event communications among components. XCD’s comprehensive extension of
design-by-contract lets me easily express the behaviours of required/provided methods
and emitted/consumed events of components. The modular application of contracts
also enhances the understandability of the method/event behaviours. Indeed, one can
easily understand for a method/event (i) when it can be processed (i.e., interaction
contract) and (ii) its normal and exceptional behaviours that influence the component
state and result/exception values for methods (functional contract).

XCD’s prototype tool allowed to translate the gas station specification into a
ProMeLa model for formal verification. I checked a number of properties that are
supported by the ProMeLa semantics of XCD, including wrong (chaotic) use of meth-
ods/events, incomplete functional behaviours, race conditions, and deadlock. I also
specified and verified some system properties, which however require the knowledge
of the ProMeLa language. XCD does not yet provide a (sub) language for specifying
system properties. One needs to use ProMeLa’s ltl construct for specifying temporal
properties or use its process construct for specifying monitors. I observed that one
can easily use ltl to specify system requirements, along with some available property
patterns2. Its use does not require any editing on the translated ProMeLa processes

2 Patterns for specifying linear temporal logic formulas are available at http://patterns.
projects.cis.ksu.edu/documentation/patterns/ltl.shtml

159

http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml
http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

DataStore Calculation

UserInterface

Figure 6.9: Conceptual diagram of lunar lander

either. Nevertheless, specifying LTL properties may not always be practical, espe-
cially for specific system requirements. Indeed, the property for checking the correct
gas amount received by the customers is specific enough. It requires the monitoring
of the customers to determine whether they execute their pump method’s specific
functional constraint (indicating the wrong gas amount). Therefore, I specified this
property by using a monitor process, even though it made me modify the compo-
nent processes via some channel I/O operations to understand whether the expected
functional constraint is executed or not.

6.3 Lunar Lander System Case Study

As depicted in Figure 6.9, lunar lander [Taylor et al., 2010,Bagheri and Sullivan, 2010,
Maoz et al., 2013] consists of dataStore, calculation, and userInterface components,
which interact with each other to safely land a spacecraft on the moon. The dataStore
maintains the data of the lunar lander system (e.g., its height, velocity, fuel, and etc.)
and controls access to the data by other components. The calculation receives the
lunar-lander data, updates them based on the burn-rate, and stores the updated data
values back in the dataStore. The userInterface basically provides the burn-rate to
the calculation component.

My motivation for specifying the lunar lander system derives from the desire to
illustrate the architectural exploration of different design solutions with XCD. In-
deed, as discussed shortly, there are three different interactions occurring between the
components of the lunar lander system, each concerning a different pair of compo-
nents. For each interaction, I aim at specifying more than one connector representing
different protocols (i.e., design solutions). By doing so, I can illustrate the facili-
tated specification and analysis of different design solutions in XCD without changing
the components. Furthermore, I can also illustrate the facilitated exploration of the
optimal solution among the connector protocols specified and analysed for each inter-
action.

6.3.1 XCD Specification of Lunar Lander

I specify three component types, dataStore, calculation, and userInterface. Further-
more, I specify six connector types: (i) two for the interaction between the dataStore
and the calculation, (ii) two for the interaction between the calculation and the data-
Store, and, (iii) another two for the interaction between the userInterface and the
dataStore. Finally, I specify a composite component for describing the lunar lander
configuration.

160

1 component dataStore(){

2 byte height := 1;

3 byte velocity := 1;

4 byte fuel := 1;

5 byte simulationTime := 1;

6
7 provided port data_ui{

8 @functional{ensures:/result:=simulationTime;}

9 byte simulationTime();

10
11 @functional{ensures:/result:=fuel;}

12 byte fuel();

13
14 @functional{ensures:/result:=velocity;}

15 byte velocity();

16
17 @functional{ensures:/result:=height;}

18 byte height();

19 }

20 provided port data_calc{

21 @functional{
22 ensures:/result:=simulationTime;}

23 byte simulationTime();

25 @functional{ensures:/result:=fuel;}

26 byte fuel();

27
28 @functional{ensures:/result:=velocity;}

29 byte velocity();

30
31 @functional{ensures:/result:=height;}

32 byte height();

33 }

34 required port newData{

35 @functional{
36 ensures:simulationTime:=/result;}

37 byte newSimulationTime();

38
39 @functional{ensures:fuel:=/result;}

40 byte newFuel();

41
42 @functional{ensures:velocity:=/result;}

43 byte newVelocity();

44
45 @functional{ensures:height:=/result;}

46 byte newHeight();

47 }

48 }

Figure 6.10: DataStore component type specification of lunar lander

6.3.1.1 DataStore Component

Figure 6.10 gives the specification of the dataStore component type. In lines 1–5, a
set of data variables are specified, representing the dataStore’s state. The dataStore
consists of (i) the data_ui (lines 7–19) and data_calc (lines 20–33) provided ports,
and (ii) the newData required port (lines 34–47). The data_ui provided port pro-
vides the lunar lander data to the userInterface component. The data_ui includes a
distinct method for the communication of each data. Each method has a functional
constraint that assigns via its ensures the method result with the respective data
value (e.g., the height data variable for the method height). The data_calc provided
port consists of a distinct method for each data, through which the lunar lander data
are provided to the calculation component. The ensures functional constraint of
each data_calc method assigns the method result with the respective data value.
Finally, the newData required port consists of a distinct method for each data again,
through which the updated values of the data are requested from the calculation
component. Upon making a call for a newData method and receiving the response,
the method’s ensures functional constraint updates the component state using the
received result.

6.3.1.2 Calculation Component

Figure 6.11 gives the specification of the calculation component type. The state of
the calculation is represented by the data variables specified in lines 1–6. The cal-
culation component consists of (i) the simState emitter port (lines 7–10), (ii) the
data_burnRate (lines 11–16) and data (lines 17–33) required ports, and (iii) the new-
Data provided port (lines 34–58). The simState emitter port includes the notify event
for notifying the userInterface component of the simulator state. The notify event
parameter is assigned using the promises functional constraint (line 8), and then,
the event is emitted with the promised parameters. The data_burnRate required port
has a single burnRate method, through which the burn-rate data can be requested
from the user-interface. The burnRate method has no parameters; so, it may be called

161

1 component calculation(){

2 byte bRate:=5;

3 byte simTime:=5

4 byte fuel:=5;

5 byte velo:=5;

6 byte height:=5;

7 emitter port simState{

8 @functional{promises:state /in[Easy,Hard];}
9 notify(SimulatorState state);

10 }

11 required port data_burnRate{

12 @interaction{waits:!bRateReceived;}
13 @functional{
14 ensures:bRate:=/result;bRateReceived:=true;}

15 byte burnRate();

16 }

17 required port data{

18 @interaction{waits:bRateReceived;}
19 @functional{ensures:simTime:=/result;}

20 byte simulationTime();

21
22 @interaction{waits:bRateReceived;}
23 @functional{ensures:fuel:=/result;}

24 byte fuel();

25
26 @interaction{waits:bRateReceived;}
27 @functional{ensures:velo:=/result;}

28 byte velocity();

29
30 @interaction{waits:bRateReceived}
31 @functional{ensures:height:=/result;}

32 byte height();

33 }

34 provided port newData{

35 @functional{
36 ensures: simTime := simTime + 1;

37 /result := simTime + 1;

38 bRateReceived := false;}

39 byte newsimulationTime();

40
41 @functional{
42 ensures:fuel := fuel + bRate;

43 bRateReceived := false;

44 /result := fuel + bRate;}

45 byte newFuel();

46
47 @functional{
48 ensures: velo := velo+bRate;

49 /result := velo+bRate;

50 bRateReceived := false;}

51 byte newvelocity();

52
53 @functional{
54 ensures: height := height+bRate;

55 /result := height+bRate;

56 bRateReceived := false;}

57 byte newHeight();

58 }

59 }

Figure 6.11: Calculation component type specification of lunar lander

immediately if the burn rate has not been received yet (satisfying the method’s in-
teraction constraint in line 12). Upon calling the burnRate method and receiving the
response, the component state is updated using the ensures functional constraint
(line 14). The data required port consists of a distinct method for each lunar lander
data. The data methods are each called if the burn-rate has already been received
(satisfying the method’s interaction constraint). Upon calling the method and re-
ceiving the response, the component state is updated using the method’s ensures
functional constraint. Finally, the newData provided port provides the dataStore
component with the updated data. It includes a distinct method for communicating
each data. Upon receiving a method request, the method’s ensures functional con-
straint updates the component state and the result is assigned with the respective
data value.

6.3.1.3 UserInterface Component

Figure 6.12 gives the specification of the userInterface component type. In lines 4-11,
the data variables are specified for the userInterface’s state. The userInterface con-
sists of (i) the simState consumer port (lines 12–16), (ii) the data_burnRate provided
port (lines 17 – 23), and (iii) the data required port (lines 24–37). The simState con-
sumer port has the notify event, whose emissions are received from the calculation to
communicate the simulator state information. Upon receiving the notify event, the
component state is updated using the event’s ensures functional constraint (lines
13–14). The data_burnRate provided port has the burnRate method for communi-
cating the burn-rate data to the calculation. A call for the method burnRate can be
received only when it has not been sent so far to the calculation. Upon receiving a
method-call for burnRate, the result to be sent back is assigned with the burn-rate

162

1 enum SimulatorState := {None, Landed, Crashed};

2
3 component userInterface(int BurnRate){

4 byte simulationTime := 0;

5 byte fuel := 0;

6 byte velocity := 0;

7 byte height := 0;

8 byte burnRate := BurnRate;

9 bool burnRateSent := false;

10 //see line 1 for the SimulatorState enum

11 SimulatorState currentSimState:=None;

12 consumer port simState{

13 @functional{
14 ensures:currentSimState:=state;}
15 notify(SimulatorState state);

16 }

17 provided port data_burnRate{

18 @interaction{waits:!burnRateSent;}
19 @functional{
20 ensures:/result:=burnRate;

21 burnRateSent:=true;}

22 byte burnRate();

23 }

24 required port data{

25 @functional{
26 ensures:simulationTime:=/result;}

27 byte simulationTime();

28
29 @functional{ensures:fuel:=/result;}

30 byte fuel();

31
32 @functional{ensures:velocity:=/result;}

33 byte velocity();

34
35 @functional{ensures:height:=/result;}

36 byte height();

37 }

38 }

Figure 6.12: User Interface component type specification of lunar lander

data using the ensures functional constraint (lines 20–21). Finally, the data re-
quired port requests the lunar lander data from the dataStore component. The port
has a distinct method for communicating each data. Upon calling any of the methods
and receiving the response (including the data value), the component state is updated
using the ensures functional constraint.

1 connector data2calculation(calculation{data,newData}, dataStore{data,newData}){

2 role calculation{

3 required port_variable data{

4 byte simulationTime();

5 byte fuel();

6 byte velocity();

7 byte height();

8 }

9 provided port_variable newData{

10 byte newSimulationTime();

11 byte newFuel();

12 byte newVelocity();

13 byte newHeight();

14 }

15 }

16 role dataStore{

17 provided port_variable data{

18 byte simulationTime();

19 byte fuel();

20 byte velocity();

21 byte height();

22
23 }

24 required port_variable newData{

25 byte newSimulationTime();

26 byte newFuel();

27 byte newVelocity();

28 byte newHeight();

29 }

30 }

31 connector x1(calculation{data},

32 dataStore{data_calc});

33 connector x2(calculation{newData},

34 dataStore{newData});

35 }

Figure 6.13: Data2Calculation connector type specification

6.3.1.4 Data2Calculation Connector

Figure 6.13 gives the specification of the data2calculation connector type, represent-
ing the interaction between a calculation and a dataStore component for the data
updates. The data2calculation has two roles, the calculation (lines 2-15) and the
dataStore (lines 16-30), played by calculation and dataStore components respectively.
The role port-variables do not impose any contract constraints on the actions of the
corresponding component ports. So, the data2calculation basically establishes the
linkings between the interacting component ports. Indeed, in lines 31-34, two link
connectors are specified: the required data of the calculation role is linked with the
provided data of the dataStore; and, the provided newData of the calculation is linked

163

1 connector complex_data2calculation(calculation{data,newData}, dataStore{newData,data_calc}){

2 role calculation{

3 bool dataReceived_simTime:=false;

4 bool dataReceived_fuel:=false;

5 bool dataReceived_velocity:=false;

6 bool dataReceived_height:=false;

7 bool waitForUpdate := false;

8 required port_variable data{

9 @interaction{
10 waits:!dataReceived_simTime
11 && !waitForUpdate;

12 ensures:dataReceived_simTime:=true;
13 waitForUpdate:=true;}

14 byte simulationTime();

15 @interaction{
16 waits: !dataReceived_fuel

17 && !waitForUpdate;

18 ensures:dataReceived_fuel:=true;
19 waitForUpdate:=true;}

20 byte fuel();

21 @interaction{
22 waits:!dataReceived_velocity
23 && !waitForUpdate;

24 ensures:dataReceived_velocity:=true;
25 waitForUpdate:=true;}

26 byte velocity();

27 @interaction{
28 waits:!dataReceived_height
29 && !waitForUpdate;

30 ensures:dataReceived_height:=true;
31 waitForUpdate:=true;}

32 byte height();

33 }

34 provided port_variable newData{

35 @interaction{
36 waits:dataReceived_simTime;
37 ensures:dataReceived_simTime:=false;
38 waitForUpdate:=false;}

39 byte newSimulationTime();

40 @interaction{
41 waits:dataReceived_fuel;
42 ensures:dataReceived_fuel:=false;
43 waitForUpdate:=false;}

44 byte newFuel();

45 @interaction{
46 waits:dataReceived_velocity;
47 ensures:dataReceived_velocity:=false;
48 waitForUpdate:=false;}

49 byte newVelocity();

50 @interaction{
51 waits:dataReceived_height;
52 ensures:dataReceived_height:=false;
53 waitForUpdate:=false;}

54 byte newHeight();

55 }

56 }

57 role dataStore{

58 bool simTimeObtainable := true;

59 bool fuelObtainable := true;

60 bool velocityObtainable := true;

61 bool heightObtainable := true;

62 provided port_variable data_calc{

63 @interaction{
64 waits: simTimeObtainable;

65 ensures: simTimeObtainable:= false;}

66 byte simulationTime();

67 @interaction{
68 waits: fuelObtainable;

69 ensures: fuelObtainable:= false;}

70 byte fuel();

71 @interaction{
72 waits: velocityObtainable;

73 ensures: velocityObtainable:= false;}

74 byte velocity();

75 @interaction{
76 waits: heightObtainable;

77 ensures: heightObtainable:= false;}

78 byte height();

79 }

80 required port_variable newData{

81 @interaction{
82 waits: !simTimeObtainable;

83 ensures: simTimeObtainable:=true;}

84 byte newSimulationTime();

85 @interaction{
86 waits: !fuelObtainable;

87 ensures: fuelObtainable:=true;}

88 byte newFuel();

89 @interaction{
90 waits: !velocityObtainable;

91 ensures:velocityObtainable:= true;}

92 byte newVelocity();

93 @interaction{
94 waits:!heightObtainable;
95 ensures:heightObtainable:=true;}
96 byte newHeight();

97 }

98 }

99 connector x1(calculation{data},

100 dataStore{data_calc});

101 connector x2(calculation{newData},

102 dataStore{newData});

103 }

Figure 6.14: Complex Data2Calculation connector type specification of lunar lander

with the required newData of the dataStore.

Complex data2calculation. I specify a new connector complex_data2calculation
in Figure 6.14, which can be used in place of the basic data2calculation specified in Fig-
ure 6.13. Unlike the basic data2calculation, the complex_data2calculation connector
imposes interaction protocols on the calculation and the dataStore components, inter-
acting with each other. The calculation role is specified in lines 2–56 of Figure 6.14,
which constrains the data and newData ports of the calculation. It guarantees that
for each data the calculation component firstly requests its current value from the
dataStore and then provides its newly calculated value to the dataStore. In lines
57–98, the dataStore role is specified, constraining the data_calc and newData ports

164

1 connector calculation2userInterface(calculation{data_burnRate,simState},

2 userInterface{data_burnRate,simState})

3 {

4 role userInterface{

5 bool burnRateSent := false;

6 provided port_variable data_burnRate{

7 byte burnRate();

8 }

9 consumer port_variable simState{

10 notify(SimulatorState state);

11 }

12 }

13 role calculation{

14 required port_variable data_burnRate{

15 byte burnRate();

16 }

17 emitter port_variable simState{

18 notify(SimulatorState state);

19 }

20 }

21 connector x1(calculation{data_burnRate},

22 userInterface{data_burnRate});

23 connector x2(calculation{simState},

24 userInterface{simState});

25 }

Figure 6.15: Calculation2UserInterface connector type specification of lunar lander

1 connector complex_calculation2userInterface(calculation{data_burnRate,simState},

2 userInterface{data_burnRate,simState})

3 {

4 role userInterface{

5 bool burnRateSent := false;

6 provided port_variable data_burnRate{

7 @interaction{
8 waits: !burnRateSent;

9 ensures: burnRateSent := true;}

10 byte burnRate();

11 }

12 consumer port_variable simState{

13 notify(SimulatorState state);

14 }

15 }

16 role calculation{

17 required port_variable data_burnRate{

18 byte burnRate();

19 }

20 emitter port_variable simState{

21 notify(SimulatorState state);

22 }

23 }

24 connector x1(calculation{data_burnRate},

25 userInterface{data_burnRate});

26 connector x2(calculation{simState},

27 userInterface{simState});

28 }

Figure 6.16: Complex Calculation2UserInterface connector type specification of lunar
lander

of the dataStore. It guarantees that the dataStore component cannot request the up-
dated data values from the calculation component before it provides the calculation
with the current values of the data.

6.3.1.5 Calculation2UserInterface Connector

Figure 6.15 gives the specification of the calculation2userInterface connector type,
representing the interaction between a calculation and a userInterface for communi-
cating the burn-rate and simulator state. The roles of the calculation2userInterface
do not impose any constraints on the components. So, the connector basically spec-
ifies the communication links between the component ports. In lines 21-24, two link
connector instances are specified: the link in lines 21-22 connects the data_burnRate
ports of the components, and, the other link in lines 23–24 connects the simState
ports.

Complex calculation2userInterface. In Figure 6.16, I give the specification of
the complex connector complex_calculation2userInterface. Unlike the basic calcu-
lation2userInterface connector, the complex_calculation2userInterface constrains the
userInterface component interacting with the calculation component. The role userIn-
terface, played by the userInterface component, is specified in lines 4–15. It guarantees
that the userInterface responds to the calculation once only for the burn-rate data,
which is assumed to be constant.

165

6.3.1.6 UserInterface2Data Connector

Figure 6.17 gives the specification of the userInterface2Data connector type, which
represents the interaction between a userInterface and a dataStore for communicating
the lunar lander data. The roles do not include protocol constraints; so, the connector
just deals with the communication between the ports of the interacting components.
In lines 18–19, a single link connector instance is specified, which connects the data
port of the userInterface with the data_ui port of the dataStore.

1 connector userInterface2Data(userInterface{data}, dataStore{data_ui}){

2 role userInterface{

3 required port_variable data{

4 byte simulationTime();

5 byte fuel();

6 byte velocity();

7 byte height();

8 }

9 }

10 role dataStore{

11 provided port_variable data_ui{

12 byte simulationTime();

13 byte fuel();

14 byte velocity();

15 byte height();

16 }

17 }

18 connector link1(userInterface{data},

19 dataStore{data_ui});

20 }

Figure 6.17: UserInterface2Data connector type specification of lunar lander

Complex userInterface2Data. The complex_userInterface2Data connector spec-
ified in Figure 6.18 can be used in place of the basic userInterface2Data specified in
Figure 6.17. Unlike the userInterface2Data, the complex_userInterface2Data connec-
tor imposes an interaction protocol on the dataStore component interacting with the
userInterface. The role dataStore is specified in lines 10–33. It constrains the data_ui
port of the dataStore to respond to the userInterface’s data request only once for each
data. Note that I essentially introduced this protocol so as to restrict the possible
behaviours of the dataStore component and thereby reduce the state space during the
formal verification that is discussed shortly.

6.3.1.7 LunarLander Composite Component

Figure 6.19 gives the specification of the lunarLander composite component type,
which is instantiated to represent the configuration of the lunar lander system. In
lines 3–5, a component instance is specified for each of the component types. In lines
7-13, a connector instance is specified for each connector type that is initialised with
the components along with their ports.

6.3.2 Analysis of Lunar Lander

Having specified the lunar lander system in XCD, I used XCD’s prototype tool to
transform the lunar lander specification into a ProMeLa model for its formal veri-
fication via SPIN. I considered the formal verifications of 8 different configurations,
using different combinations of the connectors (both the complex ones specified in
Figures 6.14, 6.16, and 6.18, and the simple ones in Figures 6.13, 6.15, and 6.17).
Table 6.2 shows the formal verification results of the configurations. I see that the
best state space reduction is obtained when I use three of the complex connectors
in the configuration (see the last row in Table 6.2). All other configurations cause a
state space explosion, preventing a complete formal verification. Indeed, I used the
bit-state hashing mode to reduce their memory consumption.

166

1 connector complex_userInterface2Data(userInterface{data}, dataStore{data_ui}){

2 role userInterface{

3 required port_variable data{

4 byte simulationTime();

5 byte fuel();

6 byte velocity();

7 byte height();

8 }

9 }

10 role dataStore{

11 bool simTimeObtainableUI := true;

12 bool fuelObtainableUI := true;

13 bool velocityObtainableUI := true;

14 bool heightObtainableUI := true;

15 provided port_variable data_ui{

16 @interaction{
17 waits: simTimeObtainableUI;

18 ensures:simTimeObtainableUI:=false;}
19 byte simulationTime();

20 @interaction{
21 waits: fuelObtainableUI;

22 ensures: fuelObtainableUI:= false;}

23 byte fuel();

24 @interaction{
25 waits: velocityObtainableUI;

26 ensures:velocityObtainableUI:=false;}
27 byte velocity();

28 @interaction{
29 waits: heightObtainableUI;

30 ensures:heightObtainableUI:=false;}
31 byte height();

32 }

33 }

34 connector link1(userInterface{data},

35 dataStore{data_ui});

36 }

Figure 6.18: Complex UserInterface2Data connector type specification of lunar lander

1 component lunarLander(){

2 component calculation calc_ins();

3 component dataStore data_ins();

4 component userInterface ui_ins(5);

5 connector data2calculation

6 conn1(calc_ins{data,newData},

7 data_ins{newData,data_calc});

8 connector calculation2userInterface

9 conn2(calc_ins{data_burnRate,simState},

10 ui_ins{data_burnRate,simState});

11 connector userInterface2Data

12 conn3(ui_ins{data},data_ins{data_ui});

13 }

Figure 6.19: LunarLander composite component type specification of lunar lander

Connectors State-vector States Memory Time
(in Bytes) Stored Matched (in MB) (in seconds)

No complex connectors 364 22585720 89194466 7024† 97
BITSTATE No complex connectors 364 61816066 2.25283e+08 24 349

complex_data2calculation (Figure 6.14) 380 21456506 79517800 7024† 132
BITSTATE complex_data2calculation (Figure 6.14) 383 57774616 1.9324628e+08 24 383

complex_userInterface2Data (Figure 6.18) 364 22585757 70918398 7024† 116
BITSTATE complex_userInterface2Data (Figure 6.18) 364 57536220 1.6031512e+08 25 299

complex_calculation2userInterface (Figure 6.16) 364 22585724 86756771 7024† 134
BITSTATE complex_calculation2userInterface (Figure 6.16) 364 60801443 2.1656084e+08 24 315

complex_data2calculation & complex_userInterface2Data 380 21456586 68222887 7024† 132
BITSTATE complex_data2calculation &

complex_userInterface2Data 380 55098738 1.6407194e+08 24 381

complex_data2calculation &
complex_calculation2userInterface 380 21456501 75856252 7024† 197

BITSTATE complex_data2calculation &
complex_calculation2userInterface 380 30843632 1.0490026e+08 24 227

complex_userInterface2Data &
complex_calculation2userInterface 364 22585690 66485011 7024† 179

BITSTATE complex_userInterface2Data
& complex_calculation2userInterface 364 58266503 1.539174e+08 25 325

complex_data2calculation &
complex_userInterface2Data &

complex_calculation2userInterface
380 6524135 21263299 2226 35

Spin (version 6.2.4) and gcc (version 4.7.2) used, with up to 7024MB of RAM and a search
depth of 50,000:
spin -a configuration.pml
gcc -DMEMLIM=7024 -O2 -DXUSAFE -DSAFETY -DNOCLAIM -w -o pan pan.c
./pan -m50000 -c1
For bit-state verification, the -DBITSTATE option needs to be passed to gcc.
Using a 64bit Intel Xeon CPU (W3503 @ 2.40GHz × 2), 11.7GB of RAM, and Linux version
3.5.0-39-generic.
Column “States Stored” shows the number of unique global system states stored in the
state-space, while column “States Matched” the number of states that were revisited during the
search - see: spinroot.com/spin/Man/Pan.html#L10
† Cases marked with † in the Memory column run out of memory.

Table 6.2: Verification results for lunar lander

In the lunar lander verifications, I also considered a number of properties. First,
I verified that the interacting components use the port methods/events of each oth-
ers correctly, respecting their interaction constraints. Moreover, I also verified that
the functional constraints of the component methods and events are specified in a
complete way. Second, I verified for the absence of race-conditions. Third, I verified

167

spinroot.com/spin/Man/Pan.html#L10

for deadlock-freedom using the SPIN model checker itself. Finally, I attempted to
verify the absence of event buffer overflows, which failed however. The verification
error indicates that the buffer of the userInterface’s consumer port overflows with
the notify events emitted by the calculation. This is because the notify event in the
calculation port (lines 7–10 of Figure 6.11 in page 162) does not include any inter-
action constraints, which allows its repetitive emission. I resolved this by turning
the notify event specification into a two-way method specification (and turning the
calculation’s emitter to required port and the userInterface’s consumer to provided).
So now, the buffer overflow cannot occur as methods cannot be requested repeatedly
– the requester waits for a response to each request from the receiver.

6.3.3 Conclusion

With lunar lander, I particularly aimed at showing how XCD facilitates the architec-
tural exploration of different design solutions. To this end, I specified two different
connectors for each interaction between the components, where one is a simple con-
nector for establishing the communication links and the other is a complex one for
imposing interaction protocols on the components. I experimented with a number
of system configurations, each applying a different combination of the connectors for
the component interactions. In all these cases, the model remained the same, with
the only difference being the different connector types used inside the configuration
component (i.e., the lunarLander in Figure 6.19). Without XCD’s modular nature,
it would have been much more difficult to specify and verify such different design
solutions. This modularity greatly increases architectural exploration in practice –
one can start with minimal component and connector specifications and test multiple
design solutions without having to modify any specifications (except the configura-
tion).

I also showed that designers can use connectors not just for meeting some safety
properties (e.g., avoidance of deadlock), but also for reducing the state spaces and
memory consumptions during formal verifications. Indeed, when I used all of the com-
plex connectors in the configuration (instead of the simple ones), the state space and
memory consumption are highly reduced (see the last row of Table 6.2). Therefore, I
believe that constraining first with some connector protocols that do not meet any crit-
ical properties is a sensible step that may reduce the overall state-space. It essentially
allows designers to explore larger instances of the system, which may potentially help
identify further problems, opportunities for optimisation, or simply provide evidence
for choosing among alternative design solutions for meeting a particular property. De-
signers can then easily remove some of the non-critical solutions, if they need to use
the extra degrees of freedom for meeting other critical properties, e.g., performance.
This is made possible by the modular nature of XCD again – adding and removing
connectors requires no modifications to component specifications.

168

Figure 6.20: Conceptual diagram of aegis

6.4 Aegis Case Study

As depicted in Figure 6.20, the aegis combat system consists of a set of compo-
nents interacting with each other. The Experiment_Control at the top of the dia-
gram provides information, obtained via sensors, to its connected components. The
Track_Server requires the track information from the Experiment_Control, for deter-
mining the location of the enemies that operate around the ship. The Track_Server
then provides the location information to its own connected components. The Doc-
trine_Authoring requires doctrine rules from the Experiment_Control and provides
them to its connected components, which require rules to take actions. Using the
doctrine rules and track information from its environment, the Geo_Server calcu-
lates region information for enemies and provides them to the Doctrine_Reasoning.
Lastly, the Doctrine_Reasoning makes the decision of which task(s) to take against
the enemies.

My motivation for specifying the aegis combat system is essentially that its com-
ponent behaviours let me illustrate XCD’s support for non-atomic provided methods,
whose responses do not have to be sent back to the callers immediately upon receiv-
ing the method requests. Indeed, the aegis components, such as Track_Server and
Doctrine_Authoring, may need their required ports to obtain some data before they
send back the responses of the provided methods whose requests have already been
processed. Moreover, I also aim at showing how the first-class specification of con-
nectors facilitates the detection of wrong interaction protocols that cause deadlocking
component behaviours.

6.4.1 XCD Specification of Aegis

I specify three types of components: client, server, and mixedComponent. To model
the interactions between the components, I also specify the connector type client2server.
Finally, I specify a composite component type to describe the configuration of client,
server, and mixedComponent components as depicted in Figure 6.20.

6.4.1.1 Client Component

Figure 6.21 gives the specification of the client component type. The client data
variables are specified in lines 2–3, representing the state of the client. The client
consists of an array of the service required ports (lines 5–17), whose size is equal to
the numOfPorts component parameter. Each service port is used as a connection
to a distinct server port, whose methods are requested. Three methods are specified

169

1 component client(int numOfPorts){

2 int data = 0,

3 int openedConns = 0;

4
5 required port service[numOfPorts]{

6
7 @functional{
8 ensures:openedConns:=pre(openedConns)+1;}
9 void open();

10 @functional{
11 ensures:openedConns:=pre(openedConns)-1;}
12 void close();

13
14 @interaction{waits:openedConns==numOfPorts;}
15 @functional{ensures:data:=/result;}

16 int request();

17 }

18 }

Figure 6.21: Client component type specification of aegis

1 component server(int numOfPorts){
2 int data = 1;
3
4 provided port service[numOfPorts] {
5 void open();
6
7 void close();
8
9 @functional{ensures:/result:=data;}

10 int request();
11 }
12 }

Figure 6.22: Server component type specification

in the service port: open, close, and request. The open (lines 7–9) and close (lines
10–12) methods can be requested at any time. Upon their request and the receipt of
the response, the component state is updated using the methods’ ensures functional
constraint (line 8 for open and line 11 for close). The method request (lines 14–16)
can be requested only when all the server connections have been opened. Upon calling
the request and receiving the response, the ensures functional constraint updates
the state using the received result (line 15).

6.4.1.2 Server Component

Figure 6.22 gives the specification of the server component type. In line 2, a data
variable is specified, representing the server state. The server consists of an array of
the service provided ports (lines 4-11). Each of these ports in the array is used as a
connection to a specific required port of the client, receiving its requests and sending
back the responses. Each service port has three methods, open, close, and request.
Requests for these three methods can be received at any time, which does not change
the state. Note that the request method assigns the result of a received request via
its ensures functional constraint (line 9).

6.4.1.3 MixedComponent Component

Figure 6.23 gives the specification of the mixedComponent component type. In lines
2–3, two data variables are specified, representing the component state. The mixed-
Component has an array of the client required ports (lines 4–16), whose size is equal
to the component parameter CSize. Herein, each client port behaves in the same way
as those of the client component type, specified in Figure 6.21. There is also an array
of the server provided ports specified in lines 17–27, whose size is equal to the SSize
parameter this time. Each server port has open, close, and request methods. These
methods are complex – whose request and response are processed non-atomically. So,
in their complex method specifications, the interaction and functional contracts are

170

1 component mixedComponent(int CSize,int SSize){

2 int openedConns := 0,

3 int data := 3;

4 required port client[CSize]{

5 @functional{ensures:openedConns++;}
6 void open();

7
8 @functional{ensures:openedConns--;}
9 void close();

10
11 @interaction{waits:openedConns := CSize;}

12 @functional{
13 ensures: data:=result;dataUpdated:=false;
14 }

15 int request();

16 }

17 provided port server[SSize]{

18 @interaction_req{waits:openedConns==CSize;}
19 void open();

20
21 @interaction_req{waits:openedConns==CSize;}
22 void close();

23
24 @interaction_req{waits:openedConns==CSize;}
25 @functional_res{ensures:\result:=data;}
26 int request();

27 }

28 }

Figure 6.23: MixedComponent component type specification of aegis

1 connector client2server_deadlock(client{service}, server{service},

2 byte numOfClients, byte numOfServers){

3
4 role client{

5 bool opened := false;

6 byte clientConnection := 0;

7 required port_variable service{

8 @interaction{
9 waits: !opened ;

10 ensures: opened := true;

11 }

12 void open();

13 @interaction{
14 waits: opened;

15 ensures: opened := false;

16 }

17 void close();

18 @interaction{
19 waits: opened &&

20 clientConnection == @ ;

21 ensures: clientConnection /in
22 [0, numOfClients-1];

23 }

24 byte request();

25 }

26 }

27 role server{

28 bool opened:=false;

29 byte serverConnection := 0;

30 provided port_variable service{

31
32 @interaction{
33 waits: !opened;

34 ensures: opened:=true;

35 }

36 void open();

37 @interaction{
38 waits: opened;

39 ensures: opened:= false;

40 }

41 void close();

42 @interaction{
43 waits:opened && serverConnection==@;

44 ensures: serverConnection /in
45 [0, numOfServers-1];

46 }

47 byte request();

48 }

49 }

50
51 connector link(client{service},

52 server{service});

53 }

Figure 6.24: Client2Server connector type specification of aegis

split into two atomic parts: the request part (∗_req), evaluated upon the receipt
of the method request, and the response (∗_res) part, evaluated when the port is
ready to send the method response. The requests for the complex methods can be
received once the client ports have opened their connections, according to the method
requests’ interaction constraints (line 18 for open, line 21 for close, and line 24 for
request). Unlike for open and close, the request method response has functional con-
straint (@functional_res), given in line 25. Its ensures assigns the value of data
to the result that is sent back as a response. Note that I have not specified inter-
action constraints for the complex method responses. This is due to the fact that
the mixedComponent can send back the server ’s complex method responses immedi-
ately (non-atomically though) after processing the respective requests, while it still
has the option of making some service requests via its client ports before sending the
responses.

171

6.4.1.4 Client2Server Connector

Figure 6.24 gives the specification of the client2server connector type. The client2server
has the roles client and server, played by client and server components. The client
role is specified in lines 4–25. It has two data variables (lines 5–6) and the service
port-variable (lines 7–25), corresponding to the service port of a client component.
The service port-variable includes the open, close, and request methods. While the
open method is delayed by its interaction constraint (line 9) until the client port’s
server connection is closed, the close method is delayed until the server connection
is opened (line 14). Upon making a request and receiving the response for open or
close, the role’s state is updated using the method’s ensures interaction constraint
(line 10 for open and line 15 for close). The request method may be requested when
the client’s currently executing port3 is the selected port of the client (i.e., initially
the first port, determined via the clientConnection data specified in line 6) and that
port’s server connection is already opened. Upon its request and the receipt of the
response, the role state is updated (lines 21–22), selecting another client port nonde-
terministically for the next method request.

The server role is specified in lines 27–49, which has again two data variables in
lines 28–29 and the service provided port-variable, corresponding to the service port
of the server component. The service port-variable has three methods: open, close,
and request. While the requests for the open method are delayed until the server’s
port connection is closed (line 33), the close method requests are delayed until the
connection is opened (line 38). Upon receiving and processing a method request, the
role state is updated using the methods’ ensures interaction constraint (line 34 for
open and line 39 for close). Finally, the request method can be received when the
connection is opened and the currently executing port of the server is the selected
one (i.e., initially the first port, determined via the serverConnection data specified
in line 29). Upon the successful receipt of the request, the role state is updated (lines
44–45) and a new server port is selected nondeterministically, from which the next
request can be received.

The link connector instantiated in lines 51–52 specifies the connected role port-
variables (and through them, the respective component ports).

6.4.1.5 Aegis Composite Component

Figure 6.25 gives the specification of the aegis composite component type. The
aegis component describes the configuration depicted in Figure 6.20, instantiating
the client, server, and mixedComponent component types, and controlling their in-
teraction via the connector instances created from the client2server connector type.

6.4.2 Analysis of Aegis

Having specified the aegis system, I used XCD’s prototype tool to translate it into a
ProMeLa model for formal verification. While I have not received any verification er-
rors for chaotic behaviours, wrong functional contracts, race conditions, and (global)
deadlock, the verification reported unreachable code for the executing components,
given in Appendix C.4. This unreachable code indicates that (i) the clients may insist
on a specific port connection for making requests; thereby, their other connections are
ignored, and, (ii) the servers may accept calls from particular client connections and

3The currently executing port of a component, playing a connector role, is accessible via the @
symbol, which returns the current port index.

172

1 component aegis(){

2
3 component server experimentControl(3);

4 component mixedComponent

5 doctrineAuthoring(1,3);

6 component client doctrineValidation(3);

7 component mixedComponent trackServer(1,3);

8 component mixedComponent geoServer(2,1);

9 component client doctrineReasoning(3);

10
11 connector client2server_deadlock cs_1(

12 1, 3,doctrineAuthoring{client[0]},

13 experimentControl{service[0]});

14 connector client2server_deadlock cs_2(

15 3, 3,doctrineValidation{service[0]},

16 experimentControl{service[1]});

17 connector client2server_deadlock cs_3(

18 1, 3,trackServer{client[0]},

19 experimentControl{service[2]});

20 connector client2server_deadlock cs_4(

21 3, 3,doctrineValidation{service[1]},

22 doctrineAuthoring{server[0]});

23 connector client2server_deadlock cs_5(

24 3, 3,doctrineValidation{service[2]},

25 trackServer{server[0]});

26 connector client2server_deadlock cs_6(

27 3, 3,doctrineReasoning{service[0]},

28 doctrineAuthoring{server[1]});

29 connector client2server_deadlock cs_7(

30 2, 3,geoServer{client[0]},

31 doctrineAuthoring{server[2]});

32 connector client2server_deadlock cs_8(

33 3, 3,doctrineReasoning{service[1]},

34 trackServer{server[1]});

35 connector client2server_deadlock cs_9(

36 2, 3, geoServer{client[1]},

37 trackServer{server[2]});

38 connector client2server_deadlock cs_10(

39 3, 1,doctrineReasoning{service[2]},

40 geoServer{server[0]});

41 }

Figure 6.25: Aegis composite component type specification of aegis

1 connector client2server(client{service},

2 server{service}){

3 role client{

4 bool opened := false;

5 required port_variable service{

6 @interaction{
7 waits: opened==false;

8 ensures: opened:=true;}

9 void open();

10 @interaction{
11 waits: opened==true;

12 ensures: opened:=false;}

13 void close();

14 @interaction{
15 waits: opened==false;}

16 int request();

17 }

18 }

19 role server{

20 bool opened:=false;

21 provided port_variable service{

22 @interaction{
23 waits: !opened;

24 ensures: opened:=true;

25 }

26 void open();

27 @interaction{
28 waits: opened;

29 ensures: opened:= false;

30 }

31 void close();

32 @interaction{
33 waits: opened;

34 ensures: \nothing;

35 }

36 byte request();

37 }

38 }

39 connector link(client{service},

40 server{service});

41 }

Figure 6.26: Deadlock-free Client2Server connector type specification of aegis

ignore the rest of their connections. Indeed, (i) the experimentControl server chooses
to receive requests only from its connection with doctrineAuthoring, delaying the rest
indefinitely; (ii) the doctrineAuthoring mixedComponent makes requests to exper-
imentControl only; (iii) the doctrineValidation client chooses to make requests to
experimentControl only, which is however delayed indefinitely by experimentControl ;
(iv) the trackServer mixedComponent chooses to make request to experimentControl
only, which is delayed indefinitely again; (v) the geoServer mixedComponent chooses
to make request to doctrineAuthoring only, which is delayed indefinitely; and finally,
(vi) the doctrineReasoning client chooses to make request to doctrineAuthoring only,
which is delayed indefinitely by doctrineAuthoring. So, there are essentially local dead-
locks here. While the experimentControl server can interact with the doctrineAuthor-
ing client, the trackServer and geoServer servers cannot receive requests from their
selected ports. This is because the doctrineValidation and doctrineReasoning clients,
which are supposed to make requests to them, get stuck waiting indefinitely for their

173

Model State-vector States Memory Time
(in Bytes) Stored Matched (in MB) (in seconds)

Aegis 556 15527961 72314072 7024† 62
BITSTATE Aegis 556 68133665 3.1582694e+08 36 365

Spin (version 6.2.4) and gcc (version 4.7.2) used, with up to 7024MB of RAM and a
search depth of 50,000:
spin -a configuration.pml
gcc -DMEMLIM=7024 -O2 -DXUSAFE -DSAFETY -DNOCLAIM -w -o pan pan.c
./pan -m50000 -c1
For bit-state verification, the -DBITSTATE option needs to be passed to gcc.
Using a 64bit Intel Xeon CPU (W3503 @ 2.40GHz × 2), 11.7GB of RAM, and Linux
version 3.5.0-39-generic.
Column “States Stored” shows the number of unique global system states stored in the
state-space, while column “States Matched” the number of states that were revisited
during the search - see: spinroot.com/spin/Man/Pan.html#L10
† Cases marked with † in the Memory column run out of memory.

Table 6.3: Verification results for aegis – with the corrected connector given in Fig-
ure 6.26

selected servers experimentControl and doctrineAuthoring respectively.
This situation is due to the protocols of the client2server connector specified in

Section 6.4.1.4 (page 172). The connector protocols force the clients and servers to
initially select their first ports to write and listen requests respectively. Then, each
time the client and server complete their interaction, they both re-set their selections
for the port. However, as already shown, this can lead to local deadlocks. To avoid
this issue, I enhanced the freedom of the clients and servers so that they do not need
to make selections among their ports – any port can be chosen at a time. I did this
by introducing a new connector for client-server interaction as shown in Figure 6.26.
Unlike the previous connector given in Figure 6.24, the new client2server connector
does not impose any selection of ports. It simply guarantees via its protocols that
the clients may make a request to a server via their port when they open the server
connection. Likewise, the servers accept requests when their port connections are
already opened by the clients.

When I replaced the connector instances in the configuration with the instances
of the new connector, the new verification results shown in Table 6.3 did not report
any unreachable code. This proves that now clients and servers can use either of their
ports freely without the imposition of any selections.

6.4.3 Conclusion

Besides illustrating XCD’s main features, e.g., DbC-based specifications and auto-
mated formal verifications, the aegis system further helped in illustrating complex
methods of provided component ports. Complex methods are used when a compo-
nent can receive method-calls but cannot respond to them immediately and instead
require some data to be calculated via some other port of the component. As intro-
duced in Section 3.2.1.4 (page 80), unlike simple provided methods, complex provided
methods are considered non-atomically as separate request and response events. So,
upon processing the method-call request, the provided port can process the response
of a complex method at any time, allowing some other ports of the component to
take actions in between. In aegis, I used complex methods for the server port of the
mixedComponent, specified in Section 6.4.1.3 (page 170). When the server receives a
request for one of its complex methods, the server port processes the request first, and
then, the client required port can make some data calculations, requesting some data
from their environments. Finally, the server port resumes, processing the method
response and sending back the data as a method result to the requester.

174

spinroot.com/spin/Man/Pan.html#L10

Figure 6.27: Conceptual diagram of FIPA english auction interaction protocol [FIPA
TC C, 2001]

Aegis also helped in illustrating how XCD’s modular nature facilitates the detec-
tion of deadlocks in software architectures and also their prevention. This is possible
with the clean separation of the interaction protocols as a connector. Indeed, I easily
detected during the formal verification that the protocols of the aegis connector cause
deadlocking component behaviours. To avoid this, I specified a new connector as
an alternative to the deadlocking connector. When I verified the aegis configuration
with the new connector, no deadlocks has been reported. So I detected and resolved
the deadlock without changing the components at all, which have been specified as
protocol-independent. This allowed me to re-use the same components in different
aegis configurations but only changed the connector employed in the configurations.

6.5 English Auction Interaction Protocol

Figure 6.27 gives the UML sequence diagram that describes FIPA’s auction interaction
protocol. The sequence diagram consists of an initiator component interacting with
a participant. The auction is started by the initiator, informing all the participants
(inform-start-of-auction). Then, the initiator calls the participants for their partici-
pation to the auction (cfp). Each participant then makes a bid for the good (propose),
which is either (i) accepted (accept_proposal) if the proposed price is greater than
the current price of the good or (ii) rejected (reject_proposal) by the initiator if it is
less than the current price. Once the participant bid is accepted, the initiator updates
the good’s current price with the price of the accepted bid. The initiator keeps calling
the participants for their participation until everyone rejects the updated price of the
good, which indicates that the auction ends at that point (inform-end-of-auction).

Note that the XCD specification of the FIPA auction protocol is subject to the
assumption that each participant who is rejected by the initiator is not called for

175

1 component initiator(int numOfParticipants, byte goodPrice){

2 byte maxAmount := goodPrice;

3 byte proposedAmount[numOfParticipants]:=0;

4 byte numOfRejections := 0;

5
6 emitter port auction[numOfParticipants]{

7 startAuction();

8
9 @functional{promises:initAmount:=maxAmount;}

10 cfp(byte initAmount);

11
12 @interaction{
13 waits:proposedAmount[@]<=maxAmount;}
14 @functional{
15 ensures:numOfRejections:=numOfRejections+1;}
16 reject_proposal();

18 @interaction{
19 waits:proposedAmount[@]>maxAmount;}
20 @functional{
21 ensures:maxAmount:=proposedAmount[@];}
22 accept_proposal();

23
24 @interaction{
25 waits:numOfRejections==numOfParticipants;}
26 endAuction();

27 }

28 consumer port propose[numOfParticipants]{

29 @functional{
30 requires:true;
31 ensures:proposedAmount[@]:=propAmount;}
32 propose(byte propAmount);

33 }

34 }

Figure 6.28: Initiator component type specification of english auction

his/her participation anymore. Furthermore, I combined the inform and request ac-
tions, which are used to complete the auction, into a single endAuction action. By
doing these, I aim at simplifying the specification of the auction protocol and focus
on other aspects, which are its formal verification, detection of system deadlocks, and
their prevention in a modular and re-usable way.

My motivation for specifying FIPA’s english auction protocol is mainly that spec-
ifying and analysing widely-accepted interaction protocols which are standardised by
some organisations, such as FIPA, can be very useful in highlighting the main pur-
pose of connectors in XCD. Furthermore, given that FIPA’s english auction protocol
specification is intended for multi-agent systems [FIPA TC C, 2001], its specification
in XCD will aid in illustrating XCD’s applicability across different domains. Lastly,
I also aim here at illustrating the modular specification of connector protocols that
can be specified by re-using the protocols of existing connectors.

6.5.1 XCD Specification of the English Auction Interaction
Protocol

I specify two types of components, initiator and participant for FIPA’s english auction
system. To represent the interaction between an initiator and a participant, I specify
the connector type initiator2Participant. Furthermore, to model the configuration of
the initiator and participants, I additionally specify a composite component type.

6.5.1.1 Initiator Component

Figure 6.28 gives the specification of the initiator component type. The initiator’s
state is represented with three data variables specified in lines 2–4. The initiator
consists of an array of the auction emitter ports (lines 6–27), each emitting events
to a certain participant, and an array of the propose consumer ports (lines 28–33),
receiving the bids from the participants. Each port of the auction has five events:
startAuction (line 7), cfp (lines 9–10), reject_proposal (lines 12–16), accept_proposal
(lines 18–22), and endAuction (lines 24–26). The auction port emits the startAuction
event to inform the participant. To call the participant for participation, the cfp event
is emitted by the auction along with the event parameter, promised as the maximum
price of the good (promises in line 9). The auction port emits the reject_proposal
event if the proposed price by the participant is less than or equal to the current

176

1 component participant(byte amountToPropose){

2 consumer port auction{

3 startAuction();

4 endAuction();

5 cfp(byte currentAmount);

6 reject_proposal();

7 accept_proposal();

8 }

9 emitter port bid{

10 @functional{
11 promises:propAmount:=amountToPropose;}
12 propose(byte propAmount);

13 }

14 }

Figure 6.29: Participant component type specification of english auction

1 connector initiator2Participant(

2 initiator{auction,propose},

3 participant{auction,propose}){

4
5 role initiator{

6 bool cfpSent := false;

7 bool decisionToGive := false;

8 bool auctionStarted := false;

9 bool auctionEnded := false;

10 bool isRejected := false;

11 emitter port_variable auction{

12 @interaction{
13 waits:!auctionEnded && !auctionStarted;

14 ensures: auctionStarted := true;

15 }

16 startAuction();

17 @interaction{
18 waits: !auctionEnded && !cfpSent

19 && !decisionToGive && !isRejected;

20 ensures: cfpSent := true;

21 }

22 cfp(byte initAmount);

23 @interaction{
24 waits:!auctionEnded && decisionToGive;

25 ensures: decisionToGive := false;

26 isRejected:=true;

27 }

28 reject_proposal();

29 @interaction{
30 waits:!auctionEnded && decisionToGive;

31 ensures: decisionToGive := false;

32 }

33 accept_proposal();

34 @interaction{
35 waits:!auctionEnded && auctionStarted;

36 ensures: auctionEnded := true;

37 }

38 endAuction();

39 }

40 consumer port_variable propose{

41 @interaction{
42 waits: !auctionEnded && cfpSent;

43 ensures: cfpSent := false;

44 decisionToGive:=true;

45 }

46 propose(byte propAmount);

47 }

48 }

49 role participant{

50 consumer port_variable auction{

51 startAuction();

52 endAuction();

53 cfp(byte initAmount);

54 reject_proposal();

55 accept_proposal();

56 }

57 emitter port_variable propose{

58 propose(byte propAmount);

59 }

60 }

61 connector link1(participant{auction},

62 initiator{auction});

63 connector link2(participant{propose},

64 initiator{propose});

65 }

Figure 6.30: Initiator2Partcipant connector type specification of english auction

price of the good (satisfying the event’s interaction constraint in lines 12–13). Oth-
erwise, the bid is accepted and the accept_proposal event is emitted. Upon rejecting
or accepting the bid, the component state is updated using the events’ ensures
functional constraint (line 15 for reject_proposal and line 21 for accept_proposal).
Lastly, the auction port emits the endAuction event when all the participants have
been rejected (satisfying the event’s interaction constraint in lines 24–25). For the
propose ports of the auction, each has a propose event (lines 29–32), received from the
participants. Upon its receipt, the component state is updated using the ensures
functional constraint (line 31).

6.5.1.2 Participant Component

Figure 6.29 gives the specification of the participant component type. The participant
has the auction consumer port (lines 2–8), receiving events from the initiator, and
the bid emitter port (lines 9–13), emitting the propose event to the initiator. Note
that the emission of the propose event includes the event parameter that is promised
via the event’s functional constraint as the component parameter amountToPropose
(lines 10–11).

177

1 component auctionProtocol (){

2
3 component initiator inIns(2, 4);

4 component participant partIns1(4);

5 component participant partIns2(2);

6
7 connector initiator2Participant conn1(inIns{auction[0],propose[0]},

8 partIns1{auction,propose});

9 connector initiator2Participant conn2(inIns{auction[1],propose[1]},

10 partIns2{auction,propose});

11 }

Figure 6.31: AuctionProtocol composite component type specification of english auc-
tion

6.5.1.3 Initiator2Partcipant Connector

Figure 6.30 gives the specification of the initiator2Participant connector, which co-
ordinates the interaction between an initiator and a participant. It has two roles:
initiator (lines 5–48) and participant (lines 49–60). The initiator role describes the
protocol that the initiator always starts the auction first (startAuction event), then,
calls the participant for participation (cfp), which is followed by the bid proposal
received from the participant (propose). Finally, the initiator sends the proposal de-
cision (accept_proposal or reject_proposal). The initiator role has five state data
variables, specified in lines 6–10. It has two port-variables, auction (lines 11–39) and
propose (lines 40–47), which respectively correspond to the auction and propose ports
of the initiator component, playing the role. The auction port-variable constrains the
emission of the startAuction event (lines 12–16); so that it can be emitted only if
the auction has not started yet. The cfp event is emitted (lines 17–22) to request
for the participant’s bid proposal if there is no any pending bid of the participant
waiting for its accept/reject decision (lines 18–19). That is, the participant should
be ready to receive a call for participation and propose its price. Note that when the
participant is rejected, the cfp event cannot be emitted to that participant anymore.
The reject_proposal (lines 23–28) and accept_proposal (lines 29–33) events are emit-
ted when a decision is awaited to be sent (lines 24 and 30 respectively). Lastly, the
endAuction event may be emitted (lines 34–38) when the auction has already been
started (line 35). Upon the emission of any of these events, the role’s state is updated
using the event’s ensures interaction constraint. The propose port-variable of the
initiator role constrains the propose event of the port, whose requests can be received
when the cfp event has already been emitted. Then, the role’s state is updated using
the event’s ensures interaction constraint (lines 43–44).

The participant role does not describe any protocol for the participant, allowing
its event consumption and emission in any order.

The connections between role port-variables are given in lines 61–64.

6.5.1.4 AuctionProtocol Composite Component

Figure 6.31 gives the specification of the auctionProtocol composite component type,
which describes the configuration of the auction model. It includes a single instance
of the initiator component type (line 3), initialised with the number of participants
(e.g., 2) and the starting price of the good to be sold (e.g., 4). There are also two
different instances of the participant component type specified in the configuration
(lines 4–5), each initialised with the price to be proposed. Finally, these components
are used to initialise the connector instances specified in lines 7-10.

178

1 pan:1: invalid end state (at depth 349)

2 pan: wrote configuration.pml.trail

3
4 (Spin Version 6.3.2 -- 17 May 2014)

5 Warning: Search not completed

6 + Partial Order Reduction

7
8 Full statespace search for:

9 never claim - (none specified)

10 assertion violations +

11 cycle checks - (disabled by -DSAFETY)

12 invalid end states +

13
14 State-vector 372 byte, depth reached 350, errors: 1

15 56 states, stored

16 6 states, matched

17 62 transitions (= stored+matched)

18 330 atomic steps

19 hash conflicts: 0 (resolved)

20
21 Stats on memory usage (in Megabytes):

22 0.021 equivalent memory usage for states (stored*(State-vector + overhead))

23 0.350 actual memory usage for states

24 128.000 memory used for hash table (-w24)

25 2.670 memory used for DFS stack (-m50000)

26 130.963 total actual memory usage

27
28 pan: elapsed time 0 seconds

29

Figure 6.32: SPIN’s verification report – error due to the deadlocking auction com-
ponents

6.5.2 Analysis of the English Auction Interaction Protocol

In the previous section, I gave the XCD specification of FIPA’s english auction proto-
col. Having translated the XCD architecture of the auction protocol into a ProMeLa
model, I verified the auction protocol’s specification using the SPIN model checker.
I initially verified for the absence of chaotic behaviours. That is, the events emit-
ted by the components always respect the interaction constraints of the consuming
component. I also verified that the functional constraints of the events are complete.
However, the deadlock verification via SPIN failed as reported in Figure 6.32 (see line
1). Once I inspected the generated error trail presented in Appendix C.2, I identified
that the initiator and participant components follow a wrong order of interaction.
This is mainly to do with the participant, which can emit/consume its events in any
order, as its events are not constrained by any interaction protocol contracts. This
conflicts with the initiator who expects each participant to receive its startAuction
event and then the cfp event first before the participant sends its bid (i.e., the propose
event). When the participant emits its propose event repeatedly, without following
any order, this causes the components to get deadlocked. Indeed, given the default
1-length event buffers of the participant and initiator consumers (see the component
semantics in Section 4.4.6 of page 123), their buffers overflow in such a case. So,
the participant gets stuck writing its repetitive proposals to the full buffer, while the
initiator gets stuck trying to write cfp, as the buffer still has the startAuction event,
which has not been received by the participant yet.

To avoid this deadlock, I specified the initiator2Participant_deadlockFree con-
nector given in Figure 6.33, which imposes a protocol for the participant so that it
behaves in the way expected by the initiator. The new connector initially includes
an instance of the deadlocking connector in lines 5–7, which is initialised with the
initiator and participant component arguments of the new connector. By doing so,

179

1 connector initiator2Participant_deadlockFree(

2 initiator{auction,propose},

3 participant{auction,propose}){

4
5 connector initiator2Participant conn1(

6 initiator{auction,propose},

7 participant{auction,propose});

8
9 role initiator{

10 emitter port_variable auction{

11 startAuction();

12 endAuction();

13 cfp(byte initAmount);

14 reject_proposal();

15 accept_proposal();

16 }

17 consumer port_variable propose{

18 propose(byte propAmount);

19 }

20 }

21 role participant{

22 bool cfpReceived :=false;

23
24 consumer port_variable auction{

25 startAuction();

26 endAuction();

27
28 @interaction{
29 waits:!cfpReceived;
30 ensures:cfpReceived:=true;
31 }

32 cfp(byte initAmount);

33
34 reject_proposal();

35 accept_proposal();

36 }

37 emitter port_variable propose{

38 @interaction{
39 waits:cfpReceived;
40 ensures: cfpReceived := false;

41 }

42 propose(byte propAmount);

43 }

44 }

45 connector link1(

46 participant{auction},initiator{auction});

47 connector link2(

48 participant{propose},initiator{propose});

49 }

Figure 6.33: Deadlock-free connector specification of english auction

Model Size State-vector States Memory Time
(in Bytes) Stored Matched (in MB) (in seconds)

1 Participant 144 597 1580 130 0
2 Participants 232 947796 3607578 311 4
3 Participants 320 26539494 1.2216567e+08 7024† 166

BITSTATE 3 participants 320 58842034 2.4127075e+08 20 376
Spin (version 6.2.4) and gcc (version 4.7.2) used, with up to 7024MB of RAM and a search
depth of 50,000:
spin -a configuration.pml
gcc -DMEMLIM=7024 -O2 -DXUSAFE -DSAFETY -DNOCLAIM -w -o pan pan.c
./pan -m50000 -c1
For bit-state verification, the -DBITSTATE option needs to be passed to gcc.
Using a 64bit Intel Xeon CPU (W3503 @ 2.40GHz × 2), 11.7GB of RAM, and Linux version
3.5.0-39-generic.
Column “States Stored” shows the number of unique global system states stored in the
state-space, while column “States Matched” the number of states that were revisited during the
search - see: spinroot.com/spin/Man/Pan.html#L10
† Cases marked with † in the Memory column run out of memory.

Table 6.4: Verification results for auction – with the deadlock-free connector given in
Figure 6.33

I essentially re-used the deadlocking connector’s interaction protocols and get the
components constrained by those protocols in the first instance. Then, I specified
the roles of the new connector for further constraining the components. While the
initiator role (lines 9–20) does not introduce extra constraints, the participant role
(lines 21–44) does so. The participant role guarantees that the participant component
cannot emit its propose event before receiving the cfp event. I used the new connector
in the composite component specification given in Figure 6.31 and experimented with
three different configurations of the auction, distinguished by the number of partici-
pants involved. The formal verification results are shown in Table 6.4 – they are all
deadlock-free.

Having avoided the deadlocking system behaviour, I suffered from another ver-
ification error this time, which is due to the event buffer overflow. It occurred
because the buffer of the participant’s consumer port overflows with the initiator
events. Upon receiving a bid proposal from a participant, the initiator emits its ac-
cept_proposal/reject_proposal event, which may also be followed by the emission of
the endAuction event. If however the participant does not receive each event from
the buffer upon its emission, the 1-length buffer of the participant overflows. Indeed,

180

spinroot.com/spin/Man/Pan.html#L10

P2

URNA

P1

Figure 6.34: Decentralised architecture of nuclear power plant

participants may choose to receive only the cfp events from their buffers and subse-
quently emit propose to the initiator. One can attempt to resolve this by introducing
extra protocols for the participant and initiator again or turning some of the events
into two-way methods. But, this time, I chose to increase the buffer size of the partici-
pant’s consumer in the way explained in Section 5.4.3 (page 141). Having incremented
the buffer size systematically and experimented with it, I determined that making it
greater than or equal to 5 avoids the buffer overflows.

6.5.3 Conclusion

FIPA’s english auction is another case study that I used to illustrate XCD’s first-class
support for complex connectors (i.e., interaction protocols). Herein, I particularly
focussed on the modular and re-usable specification of complex connectors. To this
end, I specified two connectors for the auction – one is deadlocking and the other is
deadlock-free. The deadlock-free connector re-uses the deadlocking connector proto-
cols (via its instantiation), while also having its own role protocol specifications. So,
this freed me from having to specify the entire protocol of the deadlock-free connec-
tor from scratch. I re-used the existing connector and just specified the extra role
protocols that are further needed to guarantee deadlock-freedom.

The drawback of XCD’s prototype tool is that it does not fully support the modular
specification of complex connectors out of existing connector instances. For a connec-
tor to re-use another connector, both of them must be specified for the interaction
of the same set of components. However, they can differ in the protocol constraints
imposed via the roles on the components. Indeed, the deadlocking and deadlock-free
connectors for auction both have the same structure, consisting of the initiator and
participant roles. The connectors differ with their role interaction constraints – the
deadlocking connector constrains the initiator role only, and, the deadlock-free con-
nector re-uses the deadlocking connector (and so its initiator role constraints) and
further introduces constraints for the participant role.

6.6 Nuclear Power Plant

In this section, I consider the nuclear power plant system of [Alur et al., 2003], which
I also used for defining the architectural realisability in Section 1.2.1.3 (page 17). The
nuclear power plant system is important because it has a global protocol requirement
that cannot be realised by the plant components as the components exhibit emergent
system behaviours which violate the global protocol. My motivation for specifying
the nuclear power plant is that I aim at illustrating how XCD can be used to specify
the nuclear plant in a way that guarantees the realisability of its global protocol. To
this end, I initially present the decentralised specification of the plant and its analysis
too. Then, I show how I turned the decentralised specification into a centralised one
so as to enforce the global protocol without breaking the realisability.

181

1 component P1(){

2 required port toUR{void incUR();}

3 required port toNA{void incNA();}

4 }

5 component P2(){

6 required port toUR{void doubleUR();}

7 required port toNA{void doubleNA();}

8 }

1 component NA(){

2 provided port inc{void incNA();}

3 provided port double{void doubleNA();}

4 }

5 component UR(){

6 provided port inc{void incUR();}

7 provided port double{void doubleUR();}

8 }

(a) P1 and P2 component type specifications (b) UR and NA component type specifications

Figure 6.35: Component Types for the nuclear power plant

1 connector decentralised(roleP1{toUR,toNA},

2 roleP2{toUR,toNA},roleUR{inc,double},

3 roleNA{inc,double}){

4
5 //roleP1 and roleP2 from Figure 6.37, and,

6 //roleUR and roleNA from Figure 6.38

7

8 //Connections between role port-variables

9 connector x1(roleNA{inc},roleP1{toNA});

10 connector x2(roleP1{toUR},roleUR{inc});

11 connector x3(roleNA{double},roleP2{toNA});

12 connector x4(roleP2{toUR},roleUR{double});

13 }

Figure 6.36: Decentralised connector type specification of nuclear power plant

6.6.1 Decentralised Specification

Figure 6.34 gives the decentralised architecture of the nuclear power plant system. It
consists of four types of components: P1, P2, NA, and UR. Their interactions are
coordinated by a decentralised connector. Finally, to describe their configuration, as
depicted in Figure 6.34, I specify a composite component.

6.6.1.1 P1 and P2 Component Types

Figure 6.35a gives the specification of the P1 and P2 component types. P1 consists
of the toUR and toNA required ports, to increment the amounts of the UR and NA
components respectively. Likewise, P2 consists of the toUR and toNA required ports
too, for doubling the amounts of UR and NA respectively. The components have
no data variables nor do their port methods have contracts; so, they can make their
method requests in a non-deterministic order.

6.6.1.2 UR and NA Component Types

Figure 6.35b gives the specification of the NA and UR component types. The Nitric
Acid (NA) and Uranium (UR) components receive requests from the clients P1 and
P2. So, both NA and UR consist of the inc and double provided ports, receiving
increment and double requests respectively. The component ports do not include
contracts for their methods, thus receiving their requests in any non-deterministic
order.

6.6.1.3 Decentralised Connector

Figure 6.36 gives the specification of the decentralised connector type for coordinat-
ing the component interactions. It consists essentially of four roles, roleP1, roleP2,
roleNA, and roleUR. Their specifications in lines 5–6 of Figure 6.36 have been moved
into Figure 6.37 and Figure 6.38. Finally, the basic link connectors are specified in
lines 9–12, describing the interacting component ports.

182

16 role roleP1{

17 bool urFirst:=false;

18 required port_variable toUR{

19 @interaction{

20 waits: !urFirst;

21 ensures: urFirst := true; }

22 void incUR(); }

23 required port_variable toNA{

24 @interaction{

25 waits: urFirst;

26 ensures: urFirst := false; }

27 void incNA(); }

28 }

29 role roleP2{

30 bool urFirst:=false;

31 required port_variable toNA{

32 @interaction{

33 waits: urFirst;

34 ensures: urFirst := false; }

35 void doubleNA(); }

36 required port_variable toUR{

37 @interaction{

38 waits: !urFirst;

39 ensures: urFirst := true; }

40 void doubleUR(); }

41 }

Figure 6.37: P1 and P2 roles for the nuclear plant connector given in Figure 6.36

1 role roleUR{

2 provided port_variable inc{void incUR();}

3 provided port_variable double{void doubleUR();}

4 }

5 role roleNA{

6 provided port_variable inc{void incNA();}

7 provided port_variable double{void doubleNA();}

8 }

Figure 6.38: UR and NA roles for the nuclear plant connector given in Figure 6.36

Figure 6.37 gives the specifications of the roles roleP1 and roleP2 that are played
by the P1 and P2 components respectively. The port-variables of the roles constrain
the corresponding ports of the components, guaranteeing that they cannot request the
method of NA before that of UR. Indeed, each role has a boolean variable urF irst
that is initially false. This blocks the waits of the NA methods (line 25 for P1 and
line 33 for P2), while satisfying that of the UR methods (line 20 for P1 and line 38
for P2). Upon requesting the UR method and receiving the response, the urFirst
variable is set to true (line 21 for P1 and line 39 for P2), allowing the NA method
to be called.

Figure 6.38 gives the specifications of the roleNA and roleUR played respectively
by the NA and UR components. The role port-variables do not impose any protocols
on the corresponding ports of the components, allowing them to receive increment or
double requests in any non-deterministic order.

6.6.1.4 AlurPlant Composite Component

To describe the system configuration depicted in Figure 6.34 (page 181), I specify
the composite component given in Figure 6.39. It consists of the instances of the
components P1, P2, NA, and UR (lines 2–5), and also the instance of the connector
decentralised (lines 6–8). The component instances are passed via parameters to the
connector instance, which can then constrain their behaviours via the protocols of the
associated roles.

6.6.2 Analysis of the Decentralised Specification

Having specified the decentralised form of the nuclear power plant in XCD, I translated
it into a ProMeLa model using XCD’s prototype tool. I verified the resulting ProMeLa
model for a number of properties using the SPIN model checker. Firstly, I proved
that the component behaviours do not cause any deadlocks. So, the interactions
among the components – (i) P1 requesting the methods of NA and UR to increment

183

1 component AlurPlant(){

2 component P1 p1inst();

3 component P2 p2inst();

4 component NA nainst();

5 component UR urinst();

6 connector decentralised connIns(

7 p1inst{toNA,toUR},p2inst{toNA,toUR},

8 urinst{inc,double},nainst{inc,double});

9 }

Figure 6.39: Composite component type specification of nuclear power plant

P2UR NAP1

inc

inc

double

double

MSC1 MSC2

P2UR NAP1

inc

inc

double

double

P2UR NAP1

inc

double

double

inc

(a) A nuclear power plant’s (unrealisable) MSCs [Alur et al.,
2003]

(b) An unavoidable bad be-
haviour in the nuclear plant
[Alur et al., 2003]

Figure 6.40: Global protocol for nuclear power plant – reprinted from Figure 1.1

their amounts, and (ii) P2 requesting the methods of NA and UR to double their
amounts – are all performed successfully. Moreover, I also verified that there are no
race-conditions.

I further checked to see whether the decentralised specification satisfies the global
protocol of the nuclear power plant, depicted as the message sequence charts in Fig-
ure 6.40a. The global protocol herein states that the quantities of Nitric Acid (NA)
and Uranium (UR) need to be the same at all times. Two clients P1 and P2 respec-
tively increase and double these quantities and to ensure the plant’s safety they need
to strictly follow this global protocol. To check the satisfaction of the global protocol,
I specified a monitor process in ProMeLa, which runs concurrently with the compo-
nent processes and monitors the correct execution of the component behaviours. The
process specification for the global protocol and also the necessary modifications for
the component processes are discussed in Appendix B. When I used the SPIN model
checker, I got a assertion violation error during the formal verification as shown in
Figure 6.41 (see line 1). When I have gone through the error trail presented in Ap-
pendix C.3, I determined that the decentralised specification of the plant exhibits the
following behaviour: whenever UR responds to P2 (doubleUR()), this may be fol-
lowed by the NA responding to P2 (doubleNA()); and then, UR may again respond
to P2 (doubleUR()) instead of responding to P1 ((incUR())). Indeed, this is one of
the possible emergent bad behaviours (like the one depicted in Figure 6.40b), which
violates the global protocol.

6.6.3 Centralised Specification – Guaranteeing Global Con-
straints

The centralised specification of the nuclear power plant has an extra centralised con-
troller component. As depicted in Figure 6.42, the controller sits among the P1, P2
and NA, UR components. It essentially receives the requests from P1 and P2, and
forwards them to NA and UR under some conditions for ensuring the nuclear power
plant’s global protocol described in Figure 6.40.

184

1 pan:1: assertion violated 0 (at depth 373)

2 pan: wrote configuration.pml.trail

3
4 (Spin Version 6.3.2 -- 17 May 2014)

5 Warning: Search not completed

6 + Partial Order Reduction

7
8 Full statespace search for:

9 never claim - (none specified)

10 assertion violations +

11 cycle checks - (disabled by -DSAFETY)

12 invalid end states +

13
14 State-vector 244 byte, depth reached 373, errors: 1

15 116 states, stored

16 56 states, matched

17 172 transitions (= stored+matched)

18 501 atomic steps

19 hash conflicts: 0 (resolved)

20
21 Stats on memory usage (in Megabytes):

22 0.030 equivalent memory usage for states (stored*(State-vector + overhead))

23 0.196 actual memory usage for states

24 128.000 memory used for hash table (-w24)

25 2.670 memory used for DFS stack (-m50000)

26 130.866 total actual memory usage

27
28 pan: elapsed time 0 seconds

Figure 6.41: SPIN’s verification report – error due to the violation of the user-defined
system property

Controller

P1 P2

URNA

Figure 6.42: Centralised architecture of nuclear power plant

6.6.3.1 Controller Component Type

Figure 6.43 gives the specification of the controller component type. It consists of four
provided ports and four required ports. The P1_incUR and P1_incNA provided
ports receive requests from the toUR and toNA required ports of P1 respectively,
and, the P2_doubleUR and P2_doubleNA provided ports from those of the P2.
The required ports of the controller NA_incNA and NA_doubleNA make requests
to the inc and double provided ports of NA, and, the UR_incUR and UR_doubleUR
controller required ports make requests to those of UR.

6.6.3.2 Centralised Connector

Figure 6.44 gives the centralised connector specification. It differs from the decen-
tralised connector with an additional controller role played by the controller compo-
nent, and thereby the link connectors. Indeed, while in the decentralised architecture
the link connectors connect P1 and P2 components with UR and NA, in the cen-
tralised one depicted in Figure 6.42 P1, P2, UR, and NA are all connected to the
controller. The specification of the controller role is given in Figure 6.45, which
presents itself as UR and NA to P1 and P2 using its provided port-variables (Fig-

185

1 component controller{

2 provided port P1_incUR{

3 void incUR();

4 }

5 provided port P1_incNA{

6 void incNA();

7 }

8 provided port P2_doubleUR{

9 void doubleUR();

10 }

11 provided port P2_doubleNA{

12 void doubleNA();

13 }

14 required port NA_incNA{

15 void incNA();

16 }

17 required port NA_doubleNA{

18 void doubleNA();

19 }

20 required port UR_incUR{

21 void incUR();

22 }

23 required port UR_doubleUR{

24 void doubleUR();

25 }

26 }

Figure 6.43: Controller component type specification of nuclear power plant

1 connector centralised(roleP1{toUR, toNA},

2 roleP2{toUR, toNA},

3 roleUR{inc, double},

4 roleNA{inc, double},

5 roleController{P1toUR,P1toNA,

6 P2toUR,P2toNA,

7 CtoURinc,CtoURdouble,

8 CtoNAinc,CtoNAdouble}){

9
10 //Roles roleP1, roleP2, roleUR, roleNA

11 //appear here

12

13
14 // Role controller appears here

15

17 // Controller appears to

18 // P1 & P2 as UR & NA

19 connector link1(roleP1{toUR},

20 roleController{P1toUR});

21 connector link2(roleP1{toNA},

22 roleController{P1toNA});

23 connector link3(roleP2{toUR},

24 roleController{P2toUR});

25 connector link4(roleP2{toNA},

26 roleController{P2toNA});

27 // Controller appears to

28 UR & NA as P1 & P2

29 connector link5(roleUR{inc},

30 roleController{CtoURinc});

31 connector link6(roleUR{double},

32 roleController{CtoURdouble});

33 connector link7(roleNA{inc},

34 roleController{CtoNAinc});

35 connector link8(roleNA{double},

36 roleController{CtoNAdouble});

37 }

Figure 6.44: Connector type for the nuclear plant – including controller

40 role roleController{

41 order corder := none;

42 bool p1_incNARcvd :=false;

43 bool p1_incURRcvd :=false;

44 bool p2_dblNARcvd :=false;

45 bool p2_dblURRcvd :=false;

46
47 bool ur_incUREmtd := false;

48 bool na_incNAEmtd := false;

49 bool ur_dblUREmtd := false;

50 bool na_dblNAEmtd := false;

51
52 all_received()

53 {return

54 p1_incURRcvd && p1_incNARcvd

55 && p2_dblURRcvd && p2_dblNARcvd;}

56 inc_emitted()

57 {return

58 ur_incUREmtd && na_incNAEmtd;}

59 dbl_emitted()

60 {return

61 ur_dblUREmtd && na_dblNAEmtd;}

62
63 //Provided port-variables (Figure 6.46)

64

65
66 //Required port-variables (Figure 6.47)

67

68 }

Figure 6.45: Controller role of connector type in Figure 6.44

ure 6.46). Using its required port-variables (Figure 6.47), it presents itself as P1 and
P2 to UR and NA.

The role roleController describes an interaction protocol for the controller that
guarantees the nuclear power plant’s global protocol depicted in Figure 6.40a. The
global protocol states that UR and NA should always increment and double their
quantities together: UR.i→NA.i→UR.d→NA.d|UR.d→NA.d→UR.i→NA.i, where i and d are the
increment and double actions. The specification of the roleController is given in
Figure 6.45 which includes a number of data variables. Firstly, in lines 41, the corder

186

1 enum order := {none, incFirst, dblFirst};

Listing 6.5: Enum type for the nuclear power plant specification

69 provided port_variable P1toUR{

70 @interaction {

71 waits:!p1_incURRcvd;

72 ensures :p1_incURRcvd :=true;

73 corder := pre(corder) == none

74 ? incFirst : pre(corder);}

75 void incUR(); }

76 provided port_variable P1toNA{

77 @interaction {

78 waits: !p1_incNARcvd;

79 ensures:p1_incNARcvd :=true;}

80 void incNA(); }

81 provided port_variable P2toUR{

82 @interaction {

83 waits: !p2_dblURRcvd;

84 ensures: p2_dblURRcvd :=true;

85 corder := pre(corder) == none

86 ? dblFirst : pre(corder);}

87 void doubleUR(); }

88 provided port_variable P2toNA{

89 @interaction {

90 waits:!p2_dblNARcvd;

91 ensures:p2_dblNARcvd :=true; }

92 void doubleNA(); }

Figure 6.46: Controller role – provided port-variables

variable is specified, which is of the enum type order given in Listing 6.5. It is used
to store which of increment or double was received first from P1 and P2 in each
round. The role data specified in lines 42–45 are used to store whether the controller
has received requests from the components P1 and P2. Those specified in lines 47–
50 store whether the controller has made requests to the components UR and NA.
Besides data, roleController has helper functions in lines 52–61, allowing to re-use
contract expressions: (i) all_received determines whether the controller has received
requests from both P1 and P2; (ii) inc_emitted determines whether increment has
been requested for P1; and lastly, (iii) double_emitted determines whether double
has been requested for P2 to NA and UR.

Besides the role data and helper functions, roleController has a number of role
port-variables. To facilitate their discussions, I separated their specifications as shown
in Figure 6.46 and 6.47. There are four provided port-variables, given in Figure 6.46,
corresponding to the controller provided ports. The provided port-variables guarantee
via their interaction contracts that requests received from P1 and P2 are recorded
in the respective role state variables, and furthermore, corder is updated with either
increment or double depending on which of them was received first in the round.

The four required port-variables of the roleController are given in Figure 6.47.
Once all the requests have been received via the provided port-variables, the controller
starts to make requests to the UR and NA components, updating their amounts. The
required port-variables guarantee via their interaction contract that requests cannot
be made until the provided port-variables have updated the respective role state data
(∗Rcvd), which are used in determining whether all the requests have been received.
According to the value of corder, firstly, the required port-variables either request
increment (lines 94–101) or request double to UR (lines 102–109). Then, once either
of the requests has been completed, the respective required port-variable for NA,
given in lines 110–126 or lines 127–144, make the same request to NA. That is,
if increment has been requested from UR, then, the same action is also requested
from NA. Upon receiving the response from NA, depending on whether it was the
increments or the doubles that were received last via the provided ports, the method
incNA (or doubleNA respectively) resets all the role variables, to enable the next round.

187

94 required port_variable CtoURinc{

95 @interaction {

96 waits:all_received() && !ur_incUREmtd

97 && ((corder==incFirst)

98 || (corder==dblFirst

99 && dbl_emitted()));

100 ensures : ur_incUREmtd := true; }

101 void incUR(); }

102 required port_variable CtoURdouble{

103 @interaction {

104 waits:all_received() && !ur_dblUREmtd

105 && ((corder==dblFirst)

106 || (corder==incFirst

107 && inc_emitted()));

108 ensures : ur_dblUREmtd := true; }

109 void doubleUR(); }

110 required port_variable CtoNAinc{

111 @interaction {

112 waits: ur_incUREmtd && !na_incNAEmtd;

113 ensures: // clear flags if dblFirst

114 p1_incURRcvd:= !(pre(corder)==dblFirst);

115 p1_incNARcvd:= !(pre(corder)==dblFirst);

116 ur_incUREmtd:= !(pre(corder)==dblFirst);

117 na_incNAEmtd:= !(pre(corder)==dblFirst);

118 p2_dblURRcvd:= !(pre(corder)==dblFirst);

119 p2_dblNARcvd:= !(pre(corder)==dblFirst);

120 ur_dblUREmtd:= pre(corder)==dblFirst

121 ? false : pre(ur_dblUREmtd);

122 na_dblNAEmtd := pre(corder) == dblFirst

123 ? false : pre(na_dblNAEmtd);

124 corder := pre(corder) == dblFirst

125 ? none : pre(corder); }

126 void incNA(); }

127 required port_variable CtoNAdouble{

128 @interaction {

129 waits : ur_dblUREmtd && !na_dblNAEmtd;

130 ensures: // clear flags if incFirst

131 p2_dblURRcvd:= !(pre(corder)==incFirst);

132 p2_dblNARcvd:= !(pre(corder)==incFirst);

133 ur_dblUREmtd:= !(pre(corder)==incFirst);

134 na_dblNAEmtd:= !(pre(corder)==incFirst);

135 p1_incURRcvd:= !(pre(corder)==incFirst);

136 p1_incNARcvd:= !(pre(corder)==incFirst);

137 ur_incUREmtd:= pre(corder)==incFirst

138 ? false : pre(ur_incUREmtd);

139 na_incNAEmtd := pre(corder) == incFirst

140 ? false : pre(na_incNAEmtd);

141 corder := pre(corder) == incFirst

142 ? none : pre(corder); }

143 void doubleNA(); }

144 }

Figure 6.47: Controller role – required port-variables

Model Size State-vector States Memory Time
(in Bytes) Stored Matched (in MB) (in seconds)

Centralised 428 103568 412904 166 0.64
Spin (version 6.2.4) and gcc (version 4.7.2) used, with up to 7024MB of RAM and a search
depth of 50,000:
spin -a configuration.pml
gcc -DMEMLIM=7024 -O2 -DXUSAFE -DSAFETY -DNOCLAIM -w -o pan pan.c
./pan -m50000 -c1
For bit-state verification, the -DBITSTATE option needs to be passed to gcc.
Using a 64bit Intel Xeon CPU (W3503 @ 2.40GHz × 2), 11.7GB of RAM, and Linux version
3.5.0-39-generic.
Column “States Stored” shows the number of unique global system states stored in the
state-space, while column “States Matched” the number of states that were revisited during the
search - see: spinroot.com/spin/Man/Pan.html#L10

Table 6.5: Verification results for the centralised nuclear power plant

6.6.4 Analysis of the Centralised Specification

Having turned the decentralised specification of the nuclear power plant (Section 6.6.1)
into a centralised one, I translated the centralised specification into a ProMeLa model
via XCD’s prototype tool. Using the SPIN model checker, I verified that just like
the decentralised model, the centralised one does not raise any deadlocks nor any
race-conditions – its verification results are given in Table 6.5. However, unlike the
decentralised one, which failed to satisfy the property for the global protocol depicted
in Figure 6.40a (page 184), the centralised model satisfies it. So, the controller pro-
tocol of the centralised connector guarantees that each round increments or doubles
Uranium fuel (UR) first, and follows with the update of the Nitric Acid (NA) with the
same operation. If the increments operation has been performed, then the doubles
operation is performed next in the same way; otherwise, vice versa.

188

spinroot.com/spin/Man/Pan.html#L10

1 connector Plant_Connector =
2 role P1 = ur → na → P1.
3 role P2 = ur → na → P2.
4 role UR = inc → UR ◻ double → UR.
5 role NA = inc → NA ◻ double → NA.

6 glue = P1.ur→UR.inc → P1.na→NA.inc

7 → P2.ur→UR.double → P2.na→NA.double→glue

8 ⊓ P2.ur→UR.double → P2.na→NA.double

9 → P1.ur→UR.inc → P1.na→NA.inc → glue.

Listing 6.6: Wright connector for the nuclear power plant – reprinted from Figure 1.1

6.6.5 Conclusion

In this section, I illustrated the application of global constraints in XCD. To this
end, I initially specified the nuclear power plant system in a decentralised manner,
consisting of four components and a decentralised connector for their interactions. I
also specified a property to describe the global protocol of the nuclear power plant.
When I checked the property with the SPIN model checker, it failed, indicating that
the decentralised specification of the nuclear plant may not always behave as the
desired global protocol. To enforce the global protocol constraint in the nuclear plant
system, I introduced a controller component that sits among the plant components
and mediates their interactions. Furthermore, I turned the decentralised connector
into a centralised one by adding an extra controller role, which is played by the
controller component. So, as I verified the centralised specification for the same
property successfully, the controller role of the centralised connector guarantees that
the controller component behaves in a way that satisfies the global protocol.

Since XCD lacks in a (sub) language for property specifications, I had to specify
the above mentioned property using the ProMeLa language constructs. I specified the
plant property as a ProMeLa process in the way discussed in the tool support chapter
(see Section 5.4.4.2 in page 143). Alternatively, one could try using ProMeLa’s ltl
construct for specifying linear temporal logic properties. However, linear temporal
logic suits better for more general system properties. Specific ones, such as the global
protocol of the plant that requires a specific order of method executions, may not be
specified in LTL easily.

Lastly, some may argue that the XCD connector for the nuclear power plant spec-
ified in Section 6.6.3.2 (page 185) is too long, especially when compared with its
counterpart in other languages such as Wright given in Listing 6.6. This is for two
main reasons. Firstly, it does not employ a process algebra but uses a language sim-
ilar to a programming one, e.g. Java, which is more verbose but also more familiar.
Secondly, and more importantly, the XCD connector specifies a solution. Indeed, it
does not simply repeat the requirement about the behaviour of the UR and NA roles
but it guarantees it. It should be noted that this solution increases the number of
interactions per round, from four to eight. It also changes the structure of the system
– if one of P1 or P2 fails, no interactions are possible any more, unlike in the original
architecture. Both the number of messages and system structure are crucial for a
proper architectural system analysis. Lower-level designs should not modify them,
since then the architecture is compromised – what ArchJava calls (lack of) "commu-
nication integrity" [Aldrich et al., 2002b]. XCD aims at facilitating the expression
of architectures that can be realised without compromising their communication in-
tegrity.

189

6.7 Summary

In this chapter, I evaluated the XCD language and its prototype tool via a number
of case studies, which are gas station, lunar lander, aegis, FIPA’s english auction
protocol, and nuclear power plant. I specified each case study in XCD and translated
it into a ProMeLa model using XCD’s prototype tool. By doing so, I was able to
illustrate, e.g., the expressiveness of XCD’s contractual notation and the automated
formal analysis of XCD architectures for a number of properties. Besides, each case
study that I have chosen allowed me to illustrate some further features of XCD. The
gas station system has no restriction on the number of customers involved, which
therefore let me illustrate XCD’s scalability and how it can be dealt with. Also, I
used the gas station system to illustrate XCD’s support for specifying and verifying
system requirements as the system has a number of interesting system requirements.
The lunar lander system let me illustrate XCD’s modular nature that facilitates the
exploration of different design solutions without modifying components. The aegis
combat system was useful because of two reasons. Firstly, the aegis system includes
components whose provided ports may not always process the received method re-
quests until their required port(s) obtain some data from the environment. So, this let
me illustrate XCD’s non-atomic provided methods, which differ from atomic provided
methods by separating method requests from method responses as different actions.
Furthermore, aegis also let me emphasise the importance of first-class interaction pro-
tocols in architectural designs, which eases the detection and correction of erroneous
protocols. Likewise, FIPA english auction is another case study that I have chosen
to illustrate the first-class treatment of interaction protocols. It also let me show the
modular specification connectors that can re-use the protocols of other connectors (via
instantiation). Finally, I have used the nuclear power plant system so as to show how
XCD guarantees the realisability of software architectures. I showed via the plant’s
unrealisable protocol that non-local protocols can only be specified as properties in
XCD, which can then be verified using the SPIN model checker. To realise a protocol
property whose verification is unsuccessful, XCD promotes designers to specify a cen-
tralised solution with an explicit controller component that sits among the interacting
components and controls their interactions to ensure the non-local protocol.

190

Chapter 7

Discussion of XCD

7.1 Introduction

So far, I have introduced my new XCD ADL in terms of (i) its structure and contrac-
tual behaviour specification, (ii) its precise translations in SPIN’s ProMeLa language
for formal verification, and (iii) the prototype tool support for automating the formal
verification. Lastly, in the previous chapter, I have evaluated XCD and its tool via a
number of well-known case studies.

Now, I give the discussion of how the XCD approach meets the thesis goal, which
is re-stated as follows.

to develop an architecture description language that (i) maximises the
re-usability of components in a protocol-independent way, (ii) guaran-
tees realisability by definition, (iii) offers a formal but familiar behaviour
notation, and (iv) enables formal analysis.

I show how I achieved the thesis goal via the goal requirements that are re-stated
as follows: (i) first-class support for complex connectors, (ii) glue-less connectors
for realisable architecture specifications, (iii) non-algebraic behaviour specification,
(iv) formal semantics, (v) prototype tool support, and (vi) extensibility. I discuss the
requirements in four separate sections. While the first three requirements (i,ii,and iii)
are discussed in the first three sections respectively, the following two requirements
((iv and v)) for formal analysis are discussed together in the fourth section. The final
extensibility requirement (vi) is discussed throughout the entire chapter in terms of
the possible improvements and extensions of XCD. For each section, I firstly give a
brief introduction and then discuss via XCD’s case-study evaluations how I achieved
the relevant requirement(s). Lastly, I conclude by summarising XCD’s novelty through
its support for the discussed requirements.

7.2 First-class Complex Connectors

According to my analysis of architecture description languages (ADLs), given in Sec-
tion 2.3 (page 34), most of the recently developed ADLs are inspired from the early
ADLs. Figure 7.1 shows their relations. New languages mainly follow either Dar-
win’s approach [Magee and Kramer, 1996], which ignores the first-class treatment of
complex connectors, or Wright’s approach [Allen and Garlan, 1997], which supports
first-class specification of complex connectors. Complex connectors allow designers

191

Figure 7.1: The relationships between early and recent ADLs – reprinted from Fig-
ure 2.1

to specify not just simple communication links between components but also com-
plex interaction mechanisms (i.e., interaction protocols) for the components. XCD is
among those who are inspired from Wright, providing first-class support for complex
connectors.

7.2.1 Complex Connectors in XCD

XCD offers first-class connector elements for specifying interaction protocols, whose
structure has been introduced in Section 3.2.2 (page 81). An XCD connector is spec-
ified with roles for components, which are used to describe the protocols imposed on
the components. Each role is specified with its state data and some port-variables,
representing the ports of the component playing the role. Role port-variables con-
strain the behaviours of the component ports to meet some interaction protocols.
They do so by attaching interaction contracts to the port actions that describe when
the actions can be performed and their effect on the role state. Besides roles, con-
nector specifications include the instances of some other connectors. These can be
simple link connectors that are offered by XCD for establishing communication links
between component ports. One can also instantiate user-defined complex connectors
that allow for the modular specification of connector protocols via the re-use of other
connector protocols. Note however that XCD’s tool does not support the latter case
fully. Instantiating a complex connector within another connector is possible only
for the incremental, i.e., step-wise, development of interaction protocols imposed on
the same set of interacting components. That is, designers can start with minimum
protocols for a set of components and introduce extra protocols for them by speci-
fying a new connector that instantiate the former. So, for a connector specification
to include the instance(s) of some other complex connector, both the former and the
latter must coordinate the same set of components, thus consisting of the same roles
with the same port-variables. Such connectors can only differ in the role interaction
constraints they impose on the components. Specifying connectors out of existing
connectors regardless of their structures cannot be interpreted by the tool at the
moment.

Let us consider FIPA’s english auction [FIPA TC C, 2001], which is among the case
studies that I used to evaluate XCD. Figure 7.2 gives the auction’s interaction protocol
as a UML sequence diagram. It describes the interaction of an auction initiator with

192

Figure 7.2: Conceptual diagram of FIPA english auction interaction protocol [FIPA
TC C, 2001] – reprinted from Figure 6.27

1 connector initiator2Participant(

2 initiator{auction,propose},

3 participant{auction,propose}){

4
5 role initiator{

6 bool cfpSent := false;

7 bool decisionToGive := false;

8 bool auctionStarted := false;

9 bool auctionEnded := false;

10 bool isRejected := false;

11 emitter port_variable auction{

12 @interaction{
13 waits:!auctionEnded && !auctionStarted;

14 ensures: auctionStarted := true;

15 }

16 startAuction();

17 @interaction{
18 waits: !auctionEnded && !cfpSent

19 && !decisionToGive && !isRejected;

20 ensures: cfpSent := true;

21 }

22 cfp(byte initAmount);

23 @interaction{
24 waits:!auctionEnded && decisionToGive;

25 ensures: decisionToGive := false;

26 isRejected:=true;

27 }

28 reject_proposal();

29 @interaction{
30 waits:!auctionEnded && decisionToGive;

31 ensures: decisionToGive := false;

32 }

33 accept_proposal();

34 @interaction{
35 waits:!auctionEnded && auctionStarted;

36 ensures: auctionEnded := true;

37 }

38 endAuction();

39 }

40 consumer port_variable propose{

41 @interaction{
42 waits: !auctionEnded && cfpSent;

43 ensures: cfpSent := false;

44 decisionToGive:=true;

45 }

46 propose(byte propAmount);

47 }

48 }

49 role participant{

50 consumer port_variable auction{

51 startAuction();

52 endAuction();

53 cfp(byte initAmount);

54 reject_proposal();

55 accept_proposal();

56 }

57 emitter port_variable propose{

58 propose(byte propAmount);

59 }

60 }

61 connector link1(participant{auction},

62 initiator{auction});

63 connector link2(participant{propose},

64 initiator{propose});

65 }

Figure 7.3: Initiator2Partcipant connector type specification – reprinted from Fig-
ure 6.30

participants for selling a good. Figure 7.3 gives the XCD connector specification for the
auction protocol. The full XCD specification can be found in Section 6.5 (page 175).
The initiator role in lines 5–48 of Figure 7.3 is played by an initiator component,

193

while the participant role in lines 49–60 played by a participant component. The
initiator role guarantees that the initiator component starts the auction first, calls
the participant for a participation, and then notifies the participant of the decision
upon receiving its bid proposal. The participant role does not impose any constraints
on the participant component. There are also two link connectors specified in lines
61–64, which link the communicating ports of the components.

Since I specified FIPA’s english auction protocol separately as a connector, this
makes the initiator and participant components protocol-independent, which can be
re-used in different patterns of interactions. Indeed, developers can now select the
appropriate auction protocols, according to their own contexts, e.g. dutch auction
protocol vs english auction protocol. Also, the re-usability of protocols increases too,
which can be applied at different initiator and participant(s).

Moreover, the analysability of software architectures is improved too. Interaction
protocols, such as the english auction protocol depicted in Figure 7.2, give the specific
order of interaction among system components, which is crucial for the successful
composition of the components to the whole system. The first-class specification of
interaction protocols therefore aids in the analysis of systems, making it much easier to
detect and correct incompatibilities due to erroneous protocols that prevent successful
compositions. Indeed, when I formally analysed the auction system using XCD, I
easily detected that the connector for the auction protocol, specified in Figure 7.3,
is not correct, making the system components behave in a deadlocking manner. So,
thanks to the first-class connectors, I resolved the deadlock issue without modifying
the component specifications, but replacing the deadlocking connector protocol with
the new one, which has been verified for deadlock freedom.

7.2.2 Threats to Validity

So far, I have discussed XCD’s support for complex connectors as first-class architec-
tural elements. Now, I will discuss some threats to the validity of XCD’s support for
complex connectors.

7.2.2.1 Internal Validity

According to the discussion above, supporting complex connectors enhances the mod-
ularity and re-use in architectural designs. It should be noted that I do not aim at
establishing a cause-effect relationship between connector support and re-usability.
Nor do I claim that supporting complex connectors is the only way of enhancing the
re-usability. I essentially intend to achieve the goal of CBSE for modular, reusable
component specifications that I can easily adapt through first-class complex connec-
tors. Therefore, I do not consider any threats to the internal validity of this aspect
of my work.

7.2.2.2 External Validity

The motivation for supporting complex connectors in XCD derives from the intuitive
assumption that enhancing modularity and re-usability via first-class complex con-
nectors is crucial for analysing software architectures. However, as I discussed in Sec-
tion 2.3 (page 34), many existing ADLs that are inspired from the Darwin ADL [Magee
and Kramer, 1996] support formal analysis of software architectures while ignoring
connectors as first-class elements. I consider these approaches as threats to the exter-

194

nal validity of this aspect of my work, which may prevent my assumption from being
generalised to the entire software architecture community. Supporting components
only, these languages have simpler notations; but, this may result in less modular
software architectures where components cannot easily be re-used and thus analysed.
Indeed, in these approaches, interaction protocols can be at best specified as part of
components, which makes it really hard to re-use the same components in different
configurations and analyse their behaviours under the impact of different interaction
protocols. Some languages, e.g., Rapide [Luckham, 1996], promote the specification
of interaction protocols as components. In this case, it may not be possible to iden-
tify automatically which components represent components and which ones represent
connectors, hindering the analysis again.

Besides ADLs ignoring connectors, there are also some other ADLs, e.g., AADL
[Feiler et al., 2006], Koala [van Ommering et al., 2000], and SOFA [Plasil and Vis-
novsky, 2002], which focus on generating code from software architectures instead of
their re-usable and formally analysable specifications. So, these languages are also
threats to the external validity of my work in the sense that unlike XCD, they do
not care about analysing software architectures. While the importance of generat-
ing implementation code from software architectures cannot be ignored, practitioners
already stated in various occasions (e.g., [Malavolta et al., 2012]) that they do not
specify software architectures to generate code but instead to perform formal analysis
for system properties.

7.3 Glue-less Connectors for Realisable Architecture

Specifications

My ADL analysis, given in Section 2.3 (page 34), reveals that all new languages
that follow Wright [Allen and Garlan, 1997] and thus support connectors lead to
system specifications which cannot always be realised in a decentralised manner. As I
discussed in Section 1.2.1.3 (page 17), these languages enforce designers to specify a
glue element as part connector specifications, which is a global constraint that cannot
always exist for decentralised components.

Let us remember the realisability example, i.e., the simplified nuclear power plant
[Alur et al., 2003]. The interaction therein involves two client roles (P1 and P2),
updating the amounts of the Uranium fuel (UR) and Nitric Acid (NA) server processes
in a nuclear reactor. After the update operations, the amounts of UR and NA must
be equal to avoid nuclear accidents, for which reason it is wished to allow only the
sequences shown in Figure 7.4a. The interaction of the two clients with the NA and
UR variables, can easily be specified in Wright as in Figure 7.4c. Note that Wright’s
glue specification there does two things. First it establishes bindings between clients
and servers (e.g., P1.ur→ UR.increment). Then it constrains interactions by requiring
either UR.increment → NA.increment or UR.double → NA.double. This specification
is however unrealisable [Alur et al., 2003] because it is impossible to implement it
in a decentralised manner in a way that avoids behaviours excluded by the glue,
e.g., the one depicted in Figure 7.4b. The only way to achieve the desired behaviour
is to introduce another role, for a centralised controller G. Roles P1 and P2 then
need to inform G when they wish to interact with UR and NA and have G perform
the interactions with UR and NA in their place. The resulting system is of-course
completely centralised now, and, one should expect entirely different results when

195

P2UR NAP1

inc

inc

double

double

MSC1 MSC2

P2UR NAP1

inc

inc

double

double

P2UR NAP1

inc

double

double

inc

(a) A nuclear power plant’s (unrealisable) MSCs [Alur et al.,
2003]

(b) An unavoidable bad be-
haviour in the nuclear plant
[Alur et al., 2003]

1 connector Plant_Connector =
2 role P1 = ur → na → P1.
3 role P2 = ur → na → P2.
4 role UR = inc → UR ◻ double → UR.
5 role NA = inc → NA ◻ double → NA.

6 glue = P1.ur→UR.inc → P1.na→NA.inc

7 → P2.ur→UR.double → P2.na→NA.double→glue

8 ⊓ P2.ur→UR.double → P2.na→NA.double

9 → P1.ur→UR.inc → P1.na→NA.inc → glue.

(c) Wright’s (unrealisable) connector for Alur’s plant of (a)
Note: Actions with a bar are initiated by the current process, → is the action
sequence operator, and ◻ and ⊓ are external and internal choice operators.

Figure 7.4: An unrealisable protocol/connector – reprinted from Figure 6.40

analysing it for scalability, performance, reliability, information flows, etc.
To guarantee the realisability of software architecture specifications, XCD does

not allow glues and thus the enforcement of global protocol constraints.

7.3.1 Glue-less Connectors in XCD

As already mentioned in Section 7.2, complex connectors in XCD are each specified as
a collection of (i) roles played by components and (ii) some other connector instances
that they are using. There is no glue element in XCD connectors, nor any other way
to specify global state or constraints – everything is local. Each role consists of (i)
role data that keep track of the protocol’s local state and (ii) a set of port variables to
be assumed by the role component’s ports. Roles can only constrain their own port-
variables locally and these protocol constraints are expressed on the local role data.
Non-local interaction protocol constraints cannot be expressed in XCD connectors.
When non-local constraints are desired, they can be specified as system properties
that can be verified using SPIN. If a non-local constraint property cannot be verified
successfully, designers can quickly understand that the decentralised solution (i.e., by
default) for their system needs to be turned into a centralised solution with an explicit
centralised controller component. So, designers are not allowed to specify non-local
constraints without specifying how the constraints are going to be realised – i.e.,
via a centralised controller. This guarantees that software architecture specifications
are always realisable in a way that respects the architecture. That is, the specified
system can always be implemented without having to change its architecture (e.g.,
adding additional components and connections). This is called as "communication
integrity" [Aldrich et al., 2002b].

To illustrate XCD’s support for realisability, I specified and analysed the nuclear
plant system in XCD, given in Section 6.6 of XCD’s evaluation (page 181). Therein, I

196

showed that the nuclear power plant system can be specified in XCD in a decentralised
manner with P1, P2, UR, and NA components and a decentralised connector for their
interaction. I also specified the glue of Wright, given in Figure 7.4c, as a property
– whose verification failed. This failure essentially indicates that the glue’s global
protocol constraint is not satisfied by the role behaviours of the Wright specification,
due to behaviours as that in Figure 7.4b. So, to realise the glue’s global constraint,
I introduced an explicit controller component, which is supposed to control the in-
teraction of P1 and P2 with UR and NA. Furthermore, I changed the decentralised
connector into a centralised one by adding a role for the controller. The controller
role herein guarantees the glue’s global constraint for the plant (i.e., equal amount of
UR and NA at all times). When I verified the centralised plant specification against
the glue property, the verification was successful. This shows again how global con-
straints of systems can be imposed and thus realised in the worst case, where attempts
to implement them in a decentralised fashion fail.

While I specified the nuclear power plant system in XCD successfully, I specified the
plant’s glue property using ProMeLa– not XCD. XCD, at present, does not support
property specifications. However, as discussed in Section 5.4.4 (page 141), which
introduces the verification capabilities of XCD’s prototype tool, one can still use
ProMeLa’s ltl construct or (monitor) processes to specify system properties, although
this requires the knowledge of ProMeLa. Indeed, I chose to specify the glue protocol
as a ProMeLa process that monitors the component behaviours to determine whether
they follow the glue’s protocol or not.

7.3.2 Threats to Validity

I have discussed so far how XCD guarantees the realisability of software architectures.
Below, I discuss some threats against the validity of this aspect of my work.

7.3.2.1 Internal Validity

Since I did not establish any causal relationships about XCD’s support for realisable
software architectures, I do not consider any threats to the internal validity of XCD’s
realisability notion.

7.3.2.2 External Validity

XCD’s support for realisability is essentially based on my assumption that software
architectures describe high-level design solutions for system requirements. Indeed,
to guarantee realisability, XCD does not allow (global) constraints to be specified
without describing how they are enforced. For instance, to enforce a global protocol
constraint, designers need to specify an extra controller component to sit among
other components and control their interactions to ensure the global protocol (see the
nuclear plant case-study in Section 6.6). However, the situation is the opposite in the
ADLs inspired from the Wright ADL [Allen and Garlan, 1997], which I consider as
threats to the generalisation of my assumption.

As already discussed above, connectors in Wright have a "glue" element, which
essentially represents a global protocol requirement wished to be enforced on the
component participants. That is, with glue, designers can specify what their protocol
is; but, they cannot specify how their protocol is enforced. Therefore, using such
languages, designers can specify their protocol requirements without the solutions,

197

check whether the protocol requirements can be satisfied in one way or the other,
and perform analysis on them for, e.g., reliability and security. The way in which
the protocols are enforced and realised is considered as a low-level issue. However,
analysing software architectures without guaranteeing their realisability may not nec-
essarily be useful. This is because unrealisable architectures cannot be implemented
in the way specified, which require different configurations that consist of a differ-
ent set of components and their connections. So, designers will need to modify the
high-level software architectures at lower-level designs so as to make them realisable.
These modified realisable architectures also need to re-analysed for the desired system
properties.

7.4 Design-by-Contract (DbC)

XCD extends the Design-by-Contract approach [Meyer, 1992] in its support for the
non-algebraic specification of software architectures. Below, firstly, I discuss some of
DbC’s advantages and its importance for the field of software architecture. Then, I
continue with showing how DbC is extended in XCD so as to specify the method/event
behaviours of component ports and the interaction protocols of connectors.

Formal specification. DbC is based on formal Hoare’s logic [Hoare, 1969] and
the rely-guarantee approach as introduced by Jones in VDM [Bjørner and Jones,
1978, Jones, 1983a, Jones, 1983b] and Pnueli [Pnueli, 1985]. Indeed, rely-guarantee
verification has been pursued actively since, e.g., [Jones, 1996,Xu et al., 1997,Emmi
et al., 2008,Zhu et al., 2012,Yang et al., 2012]. So, just like algebraic specifications,
contractual specifications can also be communicated precisely and formally reasoned
about their correctness.

Relatively familiar to developers. DbC was introduced with the Eiffel pro-
gramming language [Meyer et al., 1987]. Later on, it has been applied to many
programming languages, e.g., Java Modelling Language (JML) [Chalin et al., 2006]
for Java and Spec# [Barnett et al., 2005b] for C#. The DbC applications are dis-
cussed in Section 2.5 of the related work (page 63). Moreover, DbC has been found
by some academics as easy to teach and use. They use DbC to teach their undergrad-
uate students how to use formal methods to specify software behaviours and check
their correctness [Kiniry and Zimmerman, 2008]. Lastly, DbC is also highly popular
in test-driven development, whose purpose is to improve the fault detection in soft-
ware units. There are indeed ever-increasing DbC-based attempts put on this field,
e.g., [Rosenblum, 1995,Groß et al., 2003,Briand et al., 2003,Leitner et al., 2007,Pei
et al., 2014].

Gap in the field of software architecture. DbC has so far been considered
mainly for software programs and its adaptation to the architectural level of soft-
ware design is still immature. Object classes in well-known DbC based specification
languages, e.g., JML and Spec#, do not explicitly specify which other classes or in-
terfaces they need to use in order to provide their functionality. In CBSE however,
components also explicitly specify a set of interfaces that they require for their suc-
cessful behaviour. Besides methods, components can have interfaces that interact
through asynchronous events. Asynchronous events (aka “interrupts”) are not con-
sidered in DbC based specification languages either, as they tend to focus on (pos-
sibly concurrent) methods, i.e., well balanced pairs of request and response events –
SCOOP [Morandi et al., 2010] is a notable exception.

198

There are also some high-level design approaches, e.g., [Beugnard et al., 1999,
Enselme et al., 2004,Giese, 2000,Schreiner and Göschka, 2007], discussed in Section 2.5
(page 63). However, their support remains rather inadequate, failing to consider
all aspects of software components and ignoring some of the needs of practitioners.
Firstly, current design approaches do not consider asynchronous events for component
interfaces, focussing only on the synchronous method-calls. Moreover, almost all
the DbC-based approaches do not support the modular specification of component
behaviours, and thus contracts. Indeed, they neglect the separation of interaction
protocols from components’ functional behaviours, and so their separate contractual
specifications. This also makes components context specific, hindering their re-use
with different protocols. Those that treat interaction protocol contracts separately
mostly require the use of formalisms (e.g., π−calculus and Petri Nets).

7.4.1 Contracts in XCD

Component contracts. To my knowledge, XCD is the first approach that has
attempted to extend DbC in a systematic manner so that it can be applied on all as-
pects of software components and done so in a way that is both modular and close to
what practitioners use already. In XCD, components can have both (i) required and
provided interfaces for two-way (request–response) method communications and (ii)
emitter and consumer interfaces for one-way (asynchronous) event communications.
The behaviours of methods and events in these component interfaces are specified
via modular functional and interaction contracts. A functional contract basically
describes the functional behaviour of methods/events. For emitter and required in-
terfaces, an event/method functional contract (e.g., lines 4–10 of Figure 7.5 for a
required method and lines 14–16 for an emitter event) specifies (i) the parameter-
assignments for the event/method to be emitted/required (promises clause), (ii)
the pre-condition on the received method result (or exception) (requires clause)1,
and (iii) the state data-assignments for changing the state (ensures clause) if the
requires is satisfied2. For consumer and provided interfaces that receive events and
method-calls respectively, a functional contract (e.g., lines 24–29 of Figure 7.5 for a
provided method and lines 34–36 for a consumer event) specifies (i) the pre-condition
on the arguments of the received event/method-call (requires clause) and (ii) the
state data assignments for changing the state (ensures clause) if the requires is
satisfied. Note for a provided method’s functional contract that the state data as-
signments can include the assignment of the method-result too. Also, the abnormal
functional behaviours of provided methods can be specified by replacing the ensures
data-assignments with the throws. The throws clause allows to specify the method
exception, which is thrown if the requires pre-condition is met.

A method/event functional contract is processed only when its interaction con-
tract is satisfied. The interaction contract for a method/event is used to describe at
which state the component can operate that method/event. It can be in two alter-
native forms: the delaying condition (waits in line 33 of Figure 7.5) or the accepting
condition (accepts in line 23 of Figure 7.5). A delaying contract blocks a method/event
until its condition holds. It serves just as the when keyword in JML’s extension for
multi-threaded programming [Rodríguez et al., 2005], though in XCD it is separated
from functional constraints. To relate it to JML, one can think of it as a normal in-

1Emitter events cannot have requires as they cannot receive responses.
2Since emitter events cannot have requires, it is assumed to be always satisfied here.

199

1 component client(int id){

2 byte data:=-1;

3 required port service{

4 @functional{

5 promises: arg := id;

6 requires ∶ \result >= 0;

7 ensures ∶ data:=\result;

8 otherwise ∶
9 requires ∶ \result < 0;

10 ensures ∶ data:=0;}
11 int request(int arg);

12 }

13 emitter port initialisation{

14 @functional{

15 promises: arg2 := id;

16 ensures: /nothing;}

17 initialise(int arg2);

18 }

19 }

20 component server(){

21 bool isInitialised:=false;

22 provided port service{

23 @interaction{accepts:isInitialised;}

24 @functional{

25 requires: arg >= 0;

26 ensures: \result := 5;

27 otherwise ∶
28 requires: arg < 0;

29 ensures: \result := 3;}

30 int request(int arg);

31 }

32 consumer port initialisation{

33 @interaction{waits:!isInitialised;}

34 @functional{

35 requires: true;

36 ensures ∶ isInitialised := true;}

37 initialise(int arg2);

38 }

39 }

Figure 7.5: Contractual specifications of client and server – reprinted from Figure 1.3

teraction behaviour, describing a method’s acceptable concurrent behaviour. Unlike
delaying contracts, accepting contracts are not blocking. Designers can specify with
an accepting contract the condition whose violation leads to chaos, i.e., the compo-
nent does not know how to behave and is left in an illegal, and potentially unsafe,
state.

The methods and events discussed so far are processed atomically, except from the
required methods. Upon making a required method request, components receive its
response separately. There may also be cases however where a provided method may
not be processed atomically either. Instead, upon receiving a request for a method,
the component may need to make some calculation via its other ports. Then, once a
certain condition holds, the provided port resumes its process and sends the response
for its method request. So, to allow designers to express non-atomic provided method
behaviours, XCD introduces complex methods for provided ports. They are processed
non-atomically as two separate events: the receipt of a request event and the emission
of a response event. The behaviours of the request and response events for a complex
method are considered separately, each having its own functional and interaction
contracts. While the request event contracts derive from those of consumer events,
the response event contracts derive from emitter events (except that response events
are emitted with method results/exceptions, not with parameters). In Section 6.4 of
XCD’s evaluation (page 169), I have illustrated the use of complex provided methods
via the specification of the aegis combat system.

While functional and interaction contracts of component ports facilitate the mod-
ular specification of their method/event behaviours, the current structure of func-
tional contracts may sometimes cause problems. This is particularly to do with the
functional contracts of required methods and emitter events. Currently, their func-
tional contract requires a separate functional constraint for each possible parameter-
assignment sequence (promises). For instance, in Figure 7.6a, a functional contract
is given for a required method that has two constraints (lines 1–7 and 9–14). Each
functional constraint here corresponds to a unique parameter-assignment sequence,
one of which is chosen and applied non-deterministically. Note however that the
constraints share the same requires-ensures pairs (lines 3–7 are the same as lines
10–14), i.e., updating the component state with the same data-assignments under

200

1 @functional{

2 promises: arg := id;

3 requires ∶ \result >= 0;

4 ensures ∶ data:=\result;

5 otherwise ∶
6 requires ∶ \result < 0;

7 ensures ∶ data:=0;
8 otherwise ∶
9 promises: arg := id + 5;

10 requires ∶ \result >= 0;

11 ensures ∶ data:=\result;

12 otherwise ∶
13 requires ∶ \result < 0;

14 ensures ∶ data:=0;
15 }

16 int request(int arg);

1 @functional{

2 { promises: arg := id;

3 otherwise ∶
4 promises: arg := id + 5; }

5 { requires ∶ \result >= 0;

6 ensures ∶ data:=\result;

7 otherwise ∶
8 requires ∶ \result < 0;

9 ensures ∶ data:=0; }

10 }

11 int request(int arg);

(a) Required method functional contract –
current

(b) Required method functional contract –
desired

Figure 7.6: Improving functional contracts for required methods

the same conditions. So, the inability of attaching multiple promises to a single
constraint made the contract specification lengthy, with duplicate constraint specifi-
cations. Worse yet, such lengthy functional contracts may sometimes result in high
complexity and thus make functional constraints more vulnerable to incomplete be-
haviour specifications. To avoid this, the structure of functional constraints can be
improved in the future, allowing designers to specify multiple promises for the same
functional constraint as in Figure 7.6b. This will simplify the functional contract spec-
ifications and make them more manageable.

Connector role contracts. Besides components, connectors in XCD are also
specified contractually. As aforementioned, each role of a connector, played by a
component, includes port-variables that correspond to the component ports. Design-
ers can specify interaction contracts for the methods/events of role port-variables
(e.g., lines 6–8 and 12–14 of Figure 7.7). By doing so, the port methods/events of
components are further constrained with the role interaction contracts to meet the
role interaction protocols. It should be noted that the role contracts are injected in
the corresponding port’s interaction contract. The same behaviour could have been
achieved by using a wrapper around the ports, in which case consumer/provided ports
would not need to know about their role contracts. Wrappers however cannot con-
strain required/emitter ports, as these can make requests whenever their protocol
constraints allow them to do so. A wrapper of a required/emitter port could only
delay such a request but it cannot disable it entirely – the request would still be
pending. For this reason I have opted for the injection of the role contracts directly
into the component interaction contracts. This is similar to how human actors work –
they are given the script of their roles to read, as, unlike marionettes, they are active
entities which need to know when they should perform an action. Directors do not
attempt to delay actions initiated by actors during a play.

One may have already noticed that role method/event actions have interaction
contracts only. This is because roles can only delay the component port actions,
until the point where the actions are acceptable by the protocol/connector they are a
part of. Unlike component port actions, role actions have no functional contracts as
they cannot influence the component’s action parameters and its result. Nor can the
roles manipulate the component’s private data. However, this breaks the uniformity in
software architecture specifications, thereby increasing the complexity of the language
and its learning curve. Indeed, one cannot specify contracts for role actions in same the

201

1 connector client_server_conn(

2 client_r{service, initialisation}, server_r{service, initialisation}){

3 role client_r{

4 bool isInitialised := false;

5 required port_variable service{

6 @interaction{
7 waits:isInitialised;

8 ensures: /nothing;}

9 int request(int arg);

10 }

11 emitter port_variable initialisation{

12 @interaction{
13 waits:!isInitialised;

14 ensures: isInitialised:=true;}

15 initialise(int arg2);

16 }

17 }

18 role server_r{

19 provided port_variable service{

20 int request(int arg);

21 }

22 consumer port_variable initialisation{

23 initialise(int arg2);

24 }

25 }

26 connector link1(client_r{service},

27 server_r{service});

28 connector link2(client_r{initialisation},

29 server_r{initialisation});

30 }

Figure 7.7: Contractual specification of a connector for client and server – reprinted
from Figure 1.4

way as they do for component port actions – both the syntax and the semantics differ.
So, to minimise this difference in the future, contracts for connector role actions can
be modularised into functional and interaction contracts too, where role interaction
contracts can no longer update the role state, which becomes the sole responsibility
of the role functional contracts.

To illustrate XCD’s comprehensive extension of DbC, I specified a number of non-
trivial case studies, given in Chapter 6. These case studies showed that designers
can specify sufficiently complex behaviours of systems using XCD’s contractual no-
tation. It is also worth to mention that unlike other DbC based approaches, the
post-conditions of contracts (ensures) in XCD are specified as a sequence of data-
assignments. This makes the XCD language similar to programming languages, e.g.,
Java, which is more verbose but more familiar. More importantly, the use of data-
assignments instead of post-conditions makes XCD models easier to formally analyse.
Trying to ensure a post-condition like 0 ≤ x + y + z ≤ n means that it is necessary to
consider all possible combinations of x, y, z within the range [0, n], i.e., (n+1)3 states.
Instead, designers write this as x ∈ [0, n]; y ∈ [0, n − x]; z ∈ [0, n − x − y];, which has
(n+1)(n2+5n+6)/6 states 3. For n = 255, i.e., a byte, it is therefore needed to explore
2.8 M instead of 16.7 M states. The same applies when specifying the parameters of
method/event requests.

7.4.2 Threats to Validity

I discussed above how I extended DbC in XCD so as to let designers specify the
behaviours of architectural elements contractually. By extending DbC, I essentially
aim at liberating designers from having to learn and use process algebras for specifying
software architectures, as is the case with other ADLs. Now, I discuss some potential
threats for XCD’s DbC-based notation.

7.4.2.1 Internal Validity

I did not establish any causal relationships for XCD’s extension of DbC. Therefore, I
do not consider any threats to the internal validity of this aspect of my work.

3Wolfram Alpha: https://www.wolframalpha.com/input/?i=sum_x=0^n+sum_y=
0^(n-x)+sum_z=0^(n-x-y)+1,n=255

202

https://www.wolframalpha.com/input/?i=sum_x=0^n+sum_y=0^(n-x)+sum_z=0^(n-x-y)+1,n=255
https://www.wolframalpha.com/input/?i=sum_x=0^n+sum_y=0^(n-x)+sum_z=0^(n-x-y)+1,n=255

7.4.2.2 External Validity

According to my ADL analysis given in Section 2.3, XCD is the only language that
supports the formal analysis of software architectures without using process algebras,
offering instead a DbC-based notation. My motivation for using contracts has been
driven by my assumption that contracts are more familiar to practitioners than process
algebras. However, given the number of algebraic ADLs, such an assumption may not
necessarily be generalised.

I discussed many ADLs in Section 2.3 that use process algebras for specifying the
behaviours of architectural elements. So, process algebras are quite popular among
language developers who offer algebraic notations for their languages. This can be
attributed to a number of advantages of process algebras. Indeed, algebraic ADLs
have formally defined semantics that lead to precise and formal specifications. Alge-
braic specifications can also be analysed exhaustively using their supporting model
checkers to detect any design errors, e.g., deadlocking behaviours. Last but not least,
process algebras are turing complete [Vaandrager, 1993]. This means that one can
express any computational behaviours using algebraic ADLs. On the other hand,
there is an undeniable lack of interest shown by practitioners towards process alge-
bras. Practitioners have already stated in some occasions, e.g., Malavolta et al.’s
survey [Malavolta et al., 2012] that they find process algebras as requiring a steep
learning curve. Therefore, I strongly believe that were the formal specification done
in a contractual language similar to JML [Cheon and Leavens, 2002], practitioners
would adopt it overwhelmingly and actively use tools to analyse their designs, even
those that currently only use them for communication. JML was also an inspiration
to XCD and led to the extension of DbC for the formal, but contractual, specification
of software architectures.

7.5 Formal Semantics in SPIN’s ProMeLa

I used SPIN’s ProMeLa language [Holzmann, 2004] to formally define the semantics
of the XCD language and introduced in Section 4.4 (page 119) the precise translation
of XCD models into ProMeLa models. The ProMeLa language has the following
distinguishing features, which helped in defining the precise translation of XCD and
also facilitate the formal analysis of software architectures.

Firstly, I defined the high-level semantics of XCD using Dijkstra’s guarded com-
mand language [Dijkstra, 1975], given in Section 3.4 (page 90). ProMeLa has also its
roots in Dijkstra’s language, which made it easier to define XCD’s semantics using
ProMeLa.

Another decisive factor is the advanced model checker offered by SPIN. Unlike
many model checkers, the SPIN model checker does not attempt to construct the
state-space of each process as it is defined but only does so on-the-fly, as needed.
It is also free and open-source, which can easily be installed and even modified by
designers according to their own interest. Another good thing about SPIN is that it
deals with the state space explosion problem of model checking effectively and provides
(i) various search techniques, e.g., depth-first search and breadth-first search, and (ii)
state storage techniques, e.g., bit-state hashing [Holzmann, 1998]. Furthermore, SPIN
offers various simulation techniques too, e.g., interactive, random, and guided.

Unlike other formalisms (e.g., FSP [Magee and Kramer, 2006], CSP [Hoare, 1978],
and π-calculus [Milner et al., 1992]), ProMeLa offers a more user-friendly notation,

203

which resembles in some cases the C programming language. This can therefore help
designers in editing the ProMeLa translation of their XCD specifications for specifying
system properties (see Section 5.4.4 in page 141). Resembling C, ProMeLa allows
designers to specify C code as part of ProMeLa models via its constructs, e.g., c_code4

and c_expr5. Furthermore, ProMeLa accepts C macro definitions too, e.g., #define
and #include. Indeed, as discussed in the tool support chapter (i.e., Chapter 5), I
was able to separate the entire ProMeLa translation of an XCD specification into re-
usable files and include them within each other using the #include macro. Besides its
C constructs, ProMeLa also offers some syntactic sugars, which enhance its practical
use. For instance, I use ProMeLa’s select(x ∶ min..max) construct for mapping non-
deterministic assignments of range expressions, which are used in contracts. Last but
not least, ProMeLa offers constructs for specifying temporal properties (e.g., ltl and
never claims).

Given ProMeLa’s advantages such as C-like notation and support for linear tem-
poral logic properties, one might wonder why XCD does not use (or extend) ProMeLa
in its notation. This is firstly because XCD is intended as an architecture modelling
language while ProMeLa is a verification modelling language. That is, XCD offers ar-
chitectural constructs (e.g., components, interfaces, and connectors), while ProMeLa
offers algebraic constructs (e.g., processes and channels). So, one cannot easily use
ProMeLa processes and channels to specify software architectures. Components may
be considered as processes and connectors as channels; but, the ports of components
or the interaction protocols of connectors cannot be associated with any ProMeLa
constructs. Worse, interaction protocols will probably need to be specified as part of
component processes and thus hinder their re-use. Moreover, representing ports or
method/event behaviours of ports may require a bunch of ProMeLa code due to lower-
level operations required in ProMeLa, such as channel I/O operations. There are cases
where some architectural notions cannot even be expressed in ProMeLa explicitly. For
instance, delaying interaction contracts cannot be expressed as ProMeLa does not al-
low the conditional receipt of method/event messages from channels. Therefore, this
needs to be simulated in ProMeLa with large and complex code. The end result is
the very large ProMeLa models that are highly difficult to specify, communicate, and
prone to errors. Indeed, when I translate XCD architectures into ProMeLa models,
the resulting ProMeLa models are always far much larger in size.

7.5.1 Tool Support – Automated Translation into ProMeLa

XCD is supported by a prototype tool [Xcd, 2013], introduced in Chapter 5, which
automates the translation of XCD specifications to formal models in SPIN’s ProMeLa
language in accordance with XCD’s ProMeLa semantics. As aforementioned, Chap-
ter 6 gives the evaluation of the XCD language and its prototype tool via several
well-known case studies. These case studies are the lunar lander system [Taylor et al.,
2010,Bagheri and Sullivan, 2010,Maoz et al., 2013], the gas station system [Naumovich
et al., 1997], the aegis weapons system [Allen and Garlan, 1996], FIPA’s english auc-
tion [FIPA TC C, 2001], and finally, the nuclear power plant system [Alur et al., 2003].
I specified each of these systems in XCD and translated them into ProMeLa models
via the tool so as to verify a number of properties that are encoded in XCD’s ProMeLa
translation. First of all, I verified that users of the services offered by components

4http://spinroot.com/spin/Man/c_code.html
5http://spinroot.com/spin/Man/c_expr.html

204

http://spinroot.com/spin/Man/c_code.html
http://spinroot.com/spin/Man/c_expr.html

respect the services’ interaction constraints, i.e., no chaotic behaviours are possible.
Second, I verified that the functional pre-conditions of services are complete when
their interaction constraints are satisfied. Third, I verified against race-conditions,
both write-read and write-write ones. Fourth, I verified that when components have
event communications, the events emitted by emitters do not overflow the finite-size
event buffers of consumers. Finally, Spin by itself verified (global) deadlock-freedom,
which can be caused when protocol constraints delay some requests indefinitely.

I also specified and verified some system properties for the gas station and nuclear
power plant systems. Since XCD does not yet offer a (sub) language for specifying
properties (e.g., the glue property of the nuclear power plant discussed in Section 6.6),
I had to edit the translated ProMeLa models from the XCD architectures. As I showed
in the tool support chapter (Section 5.4.4 in page 141), designers can use either
ProMeLa’s (i) ltl construct to specify temporal logic formulas or (ii) process notation
to specify monitors over the interacting components. According to my experiences,
both techniques have their own advantages and disadvantages. While LTL allows
for specifying both safety and liveness properties, monitor processes may only be
used for safety properties. LTL is more appropriate for general system properties;
whereas, monitor processes aid particularly in specifying specific system properties
(e.g., global protocol constraints). Lastly, it is also worth to note that LTL properties
do not require designers to modify the translated component processes, which monitor
processes do however. When using monitor processes, it is essential to add channel
I/O operations within the component processes so as to monitor the executions of
their method/event actions.

Another downside of XCD is that components and connectors cannot be analysed
in isolation, as SPIN requires a closed system. So for each component one wishes to
analyse they need to specify a corresponding testing component. Similarly, for each
connector one wishes to analyse they need to provide a testing component for each of
its roles. The current version of the tool does not produce these automatically.

7.5.2 Threats to Validity

Above, I discussed XCD’s precise translation in SPIN’s ProMeLa formal verification
language, which enables the formal verification of XCD architectures using the SPIN
model checker. As again discussed, the translation process herein is automated via
the prototype tool that I developed. Given an XCD specification, XCD’s tool firstly
checks the syntax of the XCD specification. If the XCD specification is free of any
syntax errors, then, the tool checks for well-definedness. If the XCD specification
is well-defined, the tool translates the XCD specification into a ProMeLa model for
formal verification purposes.

Now, I discuss the threats to the validity of XCD’s ProMeLa translation and its
translation tool.

7.5.2.1 Internal Validity

Having developed XCD’s translation tool, I assumed that the tool always performs
the translation from XCD to ProMeLa correctly. This essentially leads to the causal
relationship that a syntactically correct and well-defined XCD specification causes a
ProMeLa model that is translated by the tool correctly. However, XCD’s tool does
not have any mechanism to verify the semantical equivalence between any given XCD

specification and its translated ProMeLa model. So, the tool may work correctly

205

because I have chosen similar case-studies to evaluate the tool so far. There may be
some hidden errors in the tool that can only be caught when translating particular
XCD specifications which I have not used for evaluation purposes yet.

In fact, verifying tool correctness is not something new. Several attempts have
been made so far, e.g., [Dave, 2003, Leinenbach and Petrova, 2008, Leroy, 2009,
Lochbihler, 2010]. It is one of my future plans to research these approaches and de-
velop a verifier for XCD’s translation tool so that designers can be warned against any
semantical differences between the XCD specifications and their translated ProMeLa
models. However, it is worth to remind that XCD’s tool does not translate XCD

specifications directly. The tool firstly ensures that the given XCD specification is
syntactically correct and well-defined. Moreover, as discussed in Chapter 6, I already
gained high confidence via various system specifications. I considered different con-
figurations of these systems whose components exhibit diverse behaviours under the
impact of some connector protocols. XCD’s tool translated each considered config-
uration into a ProMeLa model successfully, which was then formally verified using
the SPIN model checker. I did not encounter any unexpected cases during the SPIN
verifications. Whenever there was a verification error, I justified that it is due to some
wrongly specified behaviours.

7.5.2.2 External Validity

I cannot think of any assumptions I have made that prevent XCD’s ProMeLa trans-
lation along with its tool from being applied into different settings.

206

ADL High-
level
components

User-
defined
complex
connectors

Formal
behaviour
specification

Formally
analysable

Always
realisable

Darwin Yes No FSP Yes Yes
Olan Yes No No No Yes

Wright Yes Yes CSP Yes Potentially
no

UniCon Yes No No No Yes

Rapide Yes No Event patterns Yes Potentially
no

C2 Yes No Method call ordering Yes Yes

MetaH
Built-in
low-level

components
No linear hybrid automata Yes Yes

ACME Yes Yes No No Potentially
no

LEDA Yes No π Calculus Yes Yes
Koala Yes No No No Yes

SOFA Yes No Behaviour Protocols
(simplified CSP)

Only
Components

Potentially
no

XADL Yes Yes No No Potentially
no

PiLar Yes Yes CCS Yes Potentially
no

RADL Yes No FSM Yes Yes

CBabel Yes Yes Rewriting Logic Yes Potentially
no

PRISMA Yes Yes OASIS Yes Potentially
no

COSA Yes Yes No No Potentially
no

ADLMAS Yes No Object-oriented Petri
nets

Yes Yes

SKwyRL Yes No No Yes Yes

AADL
Built-in
low-level

components
No automata Yes Yes

Archface Yes No No Yes Yes

CONNECT Yes Yes FSP Yes Potentially
no

MontiArc Yes No No No Yes
XCD

ADL
Yes Yes Design-by-Contract Yes Yes

Table 7.1: ADL analysis results - reprinted from Table 2.4

7.6 Summary of Contributions

XCD is intended as a formal ADL that can be used by both academics and also
practitioners in industry, who have so far shown a lack of interest in formal ADLs.
To this end, XCD comes with four main contributions: (i) modular and re-usable
specification of software architectures in terms of separate connectors (i.e., interac-
tion protocols) and components, (ii) realisable software architectures with glue-less
connectors that can always be implemented as specified (iii) relatively familiar nota-
tion with the extension of design-by-contract approach, and (iv) automated formal
analysis of software architectures via the tool support for translating XCD specifica-
tions to formal models in SPIN’s ProMeLa language. To the best of my knowledge,
XCD is the only language developed so far that makes all these contributions to
software architecture in one place. Indeed, according to my analysis of more than
twenty different ADLs, whose results are re-depicted in Table 7.1, none of the exist-
ing ADLs supports realisable and formally-analysable software architectures that can
be specified using non-algebraic, i.e., familiar, notation in terms of first-class compo-
nents and complex connectors. The languages that do support complex connectors
require designers to specify a connector glue (i.e., a global constraint) for component
coordinations, which however leads to potentially unrealisable specifications. Those

207

languages that do support formal analysis require the use of process algebras. There
are also languages that enable realisable (and also formally analysable) specifications
by omitting the first-class specification of complex connectors. This is, as aforemen-
tioned, not a modular approach, which reduces component’s re-usability and also
makes them protocol-dependent and more complicated to specify.

7.6.1 Threats to Validity

In this chapter, I discussed how I achieved the thesis goal with the XCD language,
and, to the best of my knowledge, XCD is the only known ADL that (i) maximises the
re-usability of components in a protocol-independent way, (ii) guarantees realisability
by definition, (iii) offers a formal but familiar behaviour notation, and (iv) enables
formal analysis. Now, I discuss the threats to the validity of XCD’s novelty.

7.6.2 Internal Validity

I did not establish any causal relationships with regard to my statement above about
XCD’s novelty. So, any threats to internal validity of XCD’s novelty are not considered
herein.

7.6.3 External Validity

The statement of XCD’s novelty depends on my analysis of twenty-three different
ADLs, depicted in Table 7.1. I have chosen the ADLs to be analysed in two parts,
where the first part includes the well-known ADLs developed in the nineties and the
second part includes those developed in the two thousands. While the chosen ADLs
in both time frame allowed to explore the specific architectural notations for domains
such as embedded systems, multi-agent systems, distributed systems, and dynamic
systems, I have not made it explicit in the analysis which domains of languages have
been considered. Therefore, it may be that I have missed the ADLs of some particular
domains which can threaten the novelty of the XCD language. In the future, I am
planning to follow a better methodology and categorise the list of the analysed ADLs
according to the domains they belong to. By doing so, I can identify the missing
domains and extend my analysis with the ADLs of those domains.

208

Chapter 8

Conclusions

8.1 Summary of the Thesis

In this PhD, I investigated the reasons that prevent architecture description languages
(ADLs) from gaining the expected momentum among practitioners. To this end, I
conducted a comprehensive study of the current literature, including the analysis of
more than twenty different ADLs. The studied works are all discussed in Chapter 2.
Having studied the literature, I established the motivation for this PhD, presented in
Chapter 1, which is based on the three identified problems that none of the studied
approaches satisfy together. Firstly, I determined that many ADLs adopt formalisms,
e.g., process algebras, for specifying the behaviours of architectural elements. How-
ever, process algebras are too different from the way in which practitioners are used to
model their software (e.g., using UML’s visual notations). Secondly, there are many
ADLs that have limited or no support for complex connectors (i.e., interaction pro-
tocols), treating connectors as simple connections and supporting components only.
Using these languages, designers may even omit the interaction protocols in their
specifications, which may prevent the components from being composed to a sys-
tem successfully – i.e., architectural mismatch. Or, the protocols can be specified
within components themselves, which hinders the re-use of the components in dif-
ferent contexts that require different protocols. The last problem is the potential
for unrealisable architecture specifications. The current languages that do support
connectors force designers to specify a glue as part of connector specifications. The
glue herein is a global constraint that is imposed on the communicating components
to coordinate their behaviours. However, global constraints can only be imposed on
centralised systems where components have the full observability of the system state.
It may cause unrealisable specifications for decentralised systems.

So, in this PhD, I addressed the aforementioned three problems that, I think,
hinder the practical use of the current architecture description languages. I introduced
a new architecture description language XCD (standing for Connector-centric Design)
so as to meet the thesis goal re-stated as follows.

to develop an architecture description language that (i) maximises the
re-usability of components in a protocol-independent way, (ii) guaran-
tees realisability by definition, (iii) offers a formal but familiar behaviour
notation, and (iv) enables formal analysis.

In Chapter 3, I introduced the structure, behaviour specification, and high-level
semantics of the XCD ADL. XCD offers first-class connectors for designers to separate

209

the specification of interaction protocols from components, which can then be re-used
easily with different interaction protocols. Furthermore, the interaction protocols of
connectors can also be re-used for the coordination of different sets of components. To
guarantee realisable specifications, connectors in XCD are glue-less that cannot im-
pose global constraints on the components – XCD connectors impose local constraints
only. XCD also extends the Design-by-Contract approach (DbC), which is a simple
to understand and, when compared to process algebras, yet still formal language for
specifying software behaviours. XCD’s extension of DbC enables the application of
contracts to the architectural level of software design. So, contracts can be used to
specify the behaviours of (i) methods that are requested or offered via component
interfaces and (ii) asynchronous events that are emitted or consumed via component
interfaces. At the same time, XCD applies contracts modularly in terms of functional
and interaction contracts, distinguishing between the functional and interaction be-
haviours of methods/events. The interaction protocols of connectors are specified
contractually too, as well as components.

In Chapter 4, I initially introduced the formal syntax of the XCD language using
the Extended Backus-Naur Form (EBNF) notation. This aids the reader in under-
standing the rules for specifying syntactically correct XCD architectures. However,
the syntax rules are not enough by themselves; XCD architectures should also be well-
defined and thus valid. So, having introduced the syntax rules, I also introduced the
semantic rules for the well-definedness of XCD specifications using first-order logic.
Finally, I introduced the algorithms that are followed in translating syntactically cor-
rect and well-defined XCD specifications into formal models in SPIN’s ProMeLa. By
doing so, formal verification of XCD architectures can be performed for some proper-
ties using the SPIN model checker. Indeed, I considered a number of properties in the
ProMeLa translations of XCD, which are basically (i) the wrong use of services offered
by components (ii) the complete behaviour of components (iii) race-conditions, (iv)
deadlock, and (v) overflow of event buffers for systems whose components perform
event communications.

In Chapter 5, I introduced my prototype tool for checking the syntax and well-
definedness of XCD architectures and then translating valid architectures into ProMeLa
models. I demonstrated the tool via the simple shared-data case study. Firstly, I il-
lustrated how designers can use the tool to translate XCD architectures into formal
ProMeLa models automatically. Then, I illustrated how the SPIN model checker can
be used to formally verify the ProMeLa models for the aforementioned properties.
Furthermore, designers may wish to specify properties for their high-level system re-
quirements. So, I showed the possible ways of specifying system properties (e.g., linear
temporal logic properties) and their verifications. I ended this chapter by discussing
how designers can deal with the verification errors for XCD architectures and trace
the errors.

In Chapter 6, I evaluated the XCD language and its prototype tool via a number
of well-known case studies. Through these evaluations, I illustrated (i) the expressive-
ness of XCD’s contractual notation, which can even be used for specifying non-trivial
system behaviours, (ii) the automated formal analysis of XCD architectures for the
aforementioned properties using SPIN, (iii) the facilitated detection of erroneous in-
teraction protocols and their corrections via the first-class complex connectors, (iv)
the facilitated exploration of different design solutions for systems via the first-class
complex connectors, and lastly (v) the guaranteed realisability of XCD architectures,
where global protocol constraints can only be specified as system properties and if

210

1 component sharedData() {

2 component user userIns[2]();

3 component memory mem(2);

4
5 connector memory2user x1(userIns[0]{puser_r,puser_e}, mem{pmem_p[0],pmem_c[0]});

6 connector memory2user x2(userIns[1]{puser_r,puser_e}, mem{pmem_p[1],pmem_c[1]});

7 }

Listing 8.1: Supported connector specification by the tool

1 component sharedData() {

2 component user userIns[2]();

3 component memory mem(2);

4
5 connector memory2user x(userIns{puser_r,puser_e}, mem{pmem_p,pmem_c});

6 }

Listing 8.2: Unsupported connector specification by the tool

unverified the global protocols can be enforced in systems via explicit centralised
controllers.

Finally, in Chapter 7, I summarised the contributions of XCD to the field of
software architecture. According to my ADL analysis, XCD is the only language
developed so far that supports the following features in one place: (i) first-class com-
plex connectors, (ii) glue-less connectors for realisable architecture specifications, (iii)
design-by-contract based behaviour specifications for components and connectors, and
(iv) automated formal verification of software architectures for a number of proper-
ties using SPIN. Indeed, the existing ADLs that support complex connectors force
designers to specify a global glue constraint as part of connector specifications, which
however leads to potentially unrealisable specifications. The ADLs that enable formal
verification of software architectures have algebraic notations for behaviour specifi-
cations. There are also some ADLs that enable realisable (and formally analysable)
specifications, but, they do this by omitting the first-class specification of complex
connectors.

8.2 Further Work

As discussed in Chapter 7, XCD is successful enough in meeting the thesis goal and
its requirements. However, it can still be improved in the future. So, I discuss below
the possible improvements for XCD in four parts that are given in the order of their
importance from least to most important, i.e., (i) the tool deficiencies, (ii) the tool
extensions, (iii) further evaluations for the language and the tool, and (iv) the theory
of the language.

8.2.1 Current Tool Deficiencies

XCD’s prototype tool has been successful in translating a number of real-world non-
trivial systems into SPIN’s ProMeLa for formal verification. I presented these systems
in XCD’s evaluation, given in Chapter 6 (page 151). However, the prototype tool can
be improved further, (i) to resolve some deficiencies that have been omitted in the
current version due to the time restriction and (ii) to automate some manual activities
of designers. Below, I discuss some of these tool improvements.

211

8.2.1.1 Support for arrays

As I introduced XCD’s composite component structure in Section 3.2.3 (page 83), a
composite component is specified with sub-components and sub-connectors. A sub-
component is specified either as a single instance of some component type or an
array of instances. These sub-components, along with their ports, are then used to
initialise the sub-connectors. That is, component instances are essentially passed via
parameters to the connector instances, so as to enable the association (i) between
component and roles and (ii) between the component ports and role port-variables.
However, XCD’s prototype tool currently allows only single component instances, with
their ports in single form too, to be passed to a connector – arrays of instances (and
also array of ports) cannot be passed as a whole.

Let us consider Listing 8.1 and Listing 8.2 for better illustrating what is supported
and what is not. Listing 8.1 shows that for the interactions of a user component
array that has 2 users with a single memory component, two different connectors are
instantiated, each passed with a distinct user of the user array but the same memory
component. Note that the memory component has two port arrays (pmem_c and
pmem_p), each holding two port instances. The first port of both port arrays are
used in the memory’s interaction via the first connector in line 5 of Listing 8.1 and
the second port of them are used in the second connector in line 6. Currently, the
tool cannot process the same interactions if specified in the form given in Listing 8.2.
Therein, an array of user components is again created for holding the two users. But
this time, the whole user array is passed to the connector instance, which is supposed
to coordinate the interaction of the users in the array with the memory. This however
cannot be interpreted by the tool. Moreover, the port arrays of the memory are also
passed as a whole to the connector, which cannot be interpreted either.

XCD’s prototype tool can be modified in the future to provide support for compo-
nent arrays (and their port arrays); so that the component arrays (along with their
port arrays, if any) can also be used as a whole in initialising the connectors, as
depicted in Listing 8.2. Basically, the tool needs to be capable of translating role
arrays for connector specifications, which can therefore be associated with some com-
ponent arrays via connector parameters. The translation of port-variable arrays in
role specifications is also required, which can be associated with the component port
arrays.

8.2.1.2 Specifying Complex Connectors out of Existing Complex Connec-
tors

As I introduced its structure in Section 3.2.2 (page 81), a connector consists of roles for
components and (sub) connector instances. The sub connector instances can be either
simple link connectors for connecting the component ports or complex connectors for
re-using their role interaction protocols. However, XCD’s prototype tool currently
supports only a special sub-case of the latter case. That is, for a connector type X1

to instantiate another complex connector X2, both X1 and X2 must have the same
structure, consisting of the same roles that have the same port-variables. Otherwise,
the tool cannot process the sub connector instances specified as part of connector
types. X1 and X2 currently can differ only by the role interaction protocols specified
for the component port actions. Essentially, X1 introduces extra interaction protocols
for the connector X2, but does so by specifying the instance of X2 as part of its
specification without re-specifying X2’s protocol contracts from scratch.

212

The tool can be modified in the future so that a connector type can include the
instances of any connectors, regardless of their structure. This would increase modu-
larity and reuse of connectors. Indeed, a connector would simply pass its components
(received via parameters) to its sub-connectors (via their parameters again). By do-
ing so, the components are constrained with the role protocols of the sub-connectors.
So, designers would not necessarily have to specify the interaction protocols of con-
nectors from scratch. Instead, they could re-use the protocols of other connectors
by instantiating them. The understandability of connectors would be enhanced too,
making their specifications simpler and looking more like Java methods calling other
methods.

8.2.2 Extensions

XCD’s prototype tool can be extended with extra features so as to provide designers
with alternative ways of specifying software architectures. Below, I discuss the only
possible extension for XCD’s tool that I could identify so far.

8.2.2.1 Support for Graphical User Interface

Currently, XCD’s prototype tool can only accept textual specifications for checking
their syntax and subsequently translating them into ProMeLa models in accordance
with XCD’s semantics.

As a future work, the tool can be augmented with a graphical user interface
that allows designers to specify software architectures visually. So, the structure of
systems can, for instance, be specified as a boxes-and-lines diagram, where two types
of boxes can be offered, one for specifying components and the other for connectors.
To specify the behaviour of systems, contracts can be specified and attached to the
methods/events of component/connector interfaces via some context sensitive user
interface. This could reduce the amount of text that designers need to type for
specifying their systems and potential syntax errors can be minimised too.

8.2.3 Evaluation

XCD’s evaluation presented in Chapter 6 can be further extended in the future. I
discuss below some of the possible evaluation methods that can be applied.

8.2.3.1 Specifying Patterns in XCD

Design patterns have emerged as object-oriented design solutions to the common prob-
lems encountered in software development [Holzner, 2006]. They are classified into
three groups: creational patterns, structural patterns, and behavioral patterns. Cre-
ational patterns provide design solutions for the problems with creating classes and
their objects. Structural patterns provide solutions for the compositions of class ob-
jects into entire systems and the relationships among the objects. Lastly, behavioural
patterns provide solutions for the functional behaviours of objects and the protocols
specified for the interaction of objects.

Design patterns are considered as low-level design solutions, which are essentially
concerned with how software systems should be implemented to meet the pattern
solutions. There are also architectural patterns that represent the highest-level de-
sign solutions to the common software development problems, e.g., pipes-and-filters,

213

blackboard, and model-view-controller [Buschmann et al., 1996]. Architectural pat-
terns focus on the specification of systems in terms of sub-systems that interact with
each other via their external interfaces and the protocols for their interactions to meet
particular system properties.

Given the popularity of patterns in the software engineering community, it would
be interesting to specify the design and architectural patterns with XCD in terms of
components and connectors. This would aid in further evaluating the expressiveness
of XCD and its applicability for well-known software problems. Also, the XCD spec-
ifications of the patterns can be re-used by developers in their XCD architectures.
Indeed, those who wish to employ patterns in their software systems will not need to
specify their systems from scratch and instead use the pattern specifications that I
will provide.

8.2.3.2 Survey Among Practitioners

As discussed in Chapter 7, XCD is distinguished in that it guarantees the realisability
and formal analysability of software architectures that are specified contractually (i.e.,
non-algebraic) in terms of first-class components and connectors. Essentially, XCD

aims at promoting the application of architecture description languages in practice,
which has not been successful with the previous architecture description languages
so far. Therefore, in the future, a survey could be conducted among a sufficient
number of architects working in industry, to understand their thoughts about the
practicality of the XCD language. To this end, architects can initially be requested
for answering some questions like the following: (i) do you have any experience with
formal methods (e.g., process algebras)? would you like to learn and use process
algebras for specifying and analysing software architectures? (ii) do you have any
experience with the design-by-contract (DbC) approach? would you prefer DbC over
process algebras for specifying software architectures? (iii) what is your opinion
about the importance of enhanced modularity in specifying software architectures?
and finally (iv) what is your opinion about the realisability of software architectures?
would you use an ADL for architecture specification and analysis that may lead to
software architectures which cannot be implemented in the way specified?

I could further request architects for having a quick practical experience with XCD

and then answer some questions like the following: (v) do you find XCD’s extension
of DbC practical to use? (vi) do you find XCD expressive? did you have any diffi-
culties in expressing your system behaviour with XCD’s contractual notation? (vii)
do you find XCD’s modular nature (i.e., first-class components and connectors) useful
in specifying software architectures and their analysis? (viii) what is your opinion
about the verification capabilities of XCD? did you catch any errors via the SPIN
verifications? if so, were you able to manage the errors effectively via XCD’s modular
nature? and finally (ix) are there any shortcomings of XCD that you observed?

8.2.3.3 Specifying and Analysing Very Complex Systems

I have evaluated XCD by specifying and analysing a number of real-system case stud-
ies. These were gas station, aegis, FIPA’s english auction protocol, lunar lander, and
nuclear power plant. They helped a lot in evaluating basically the XCD’s (i) mod-
ular nature that enhances the re-usability in design and eases the error detections
and corrections, (ii) contractual notation for non-algebraic behaviour specifications
and its expressiveness, and finally (iii) automated formal verification for a number

214

of properties. While these case-studies are certainly nontrivial, I could go further
and evaluate XCD with much more complex case studies in the future. This would
increase my confidence about XCD’s expressiveness and its prototype tool for formal
verification. Moreover, using complex case-studies would also help identify any hidden
shortcomings in XCD.

Roxana et al. has formally specified and analysed fault toleant, replicated dis-
tributed file systems of Google (GFS), Microsoft (Niobe), and another one (Chain)
[Geambasu et al., 2008]. These file systems are considered as highly complex systems
due to their complex protocols. So, I could also try to specify them in XCD and
perform their formal verifications using SPIN.

8.2.4 Theory

The last but the most important part of the further work is the theory of the XCD

language, which is concerned with the improvements on the language syntax and
semantics.

8.2.4.1 Optimising XCD’s Semantics

In XCD, each primitive component behaviour is described as a process that executes
the component’s port actions within an infinite loop. The loop herein simulates the
concurrent execution of component ports, where any action of any port is chosen
non-deterministically. Note that port actions cannot be executed in an interleaving
manner in XCD– they are each mapped into atomic block(s) in ProMeLa (see the
port semantics in Section 4.4.7 of page 124). Figure 8.1a shows the current semantics
of the primitive components. There are two alternative approaches for defining the
component semantics that are discussed as follows.

Alternative A. Instead of describing each primitive component as a single pro-
cess, one can describe each component port itself as a process, in which case the
primitive component will be the concurrent execution of its port processes. As shown
in Figure 8.1b, such a port process basically includes an infinite loop again that ex-
ecutes the port actions nondeterministically. Intuitively, defining each component
port as a concurrent process is a sensible approach. As aforementioned, XCD views
ports as the concurrently executing units of components and they act as monitors
over their methods/events. I experimented with this way of describing the compo-
nent semantics in SPIN’s ProMeLa. However, I observed that introducing a separate
process per port is relatively inefficient. It causes memory to be run out more quickly
during the formal verification of systems, which hinders the full verification and thus
hides potential errors. This led me to prefer the current semantics definition shown
in Figure 8.1a – one concurrent process per component.

Alternative B. The other alternative way for defining the component semantics
is that an entire system behaviour can be described with a single process. As depicted
in Figure 8.2b, such a process could include an infinite loop that executes the port
actions of each individual component, which together composes the system under the
protocols of some connectors. By doing so, essentially, the risk of exceeding the limit
of running processes in ProMeLa (i.e., 256) is avoided. So, as long as sufficient amount
of memory is available, designers can always perform the verification of their system
behaviours, no matter how many components it is composed of.

215

1FORALL c ∈ Model . Components
2 proce s s c . . . {
3 // i n i t i a l i z a t i o n o f data
4 Star t :
5 do
6 FORALL p ∈ c . EmitterPorts
7 FORALL e ∈ p . Events
8 // see Figure 3.12a
9 FORALL p ∈ c . RequiredPorts

10 FORALL m ∈ p .Methods
11 // see Figure 3.12b
12 FORALL p ∈ c . ConsumerPorts
13 FORALL e ∈ p . Events
14 // see Figure 3.12c
15 FORALL p ∈ c . ProvidedPorts
16 FORALL m ∈ p .Methods
17 // see Figure 3.12d
18 FORALL cm ∈ p .ComplexMethods
19 // see Figure 3.15a and Figure 3.15b
20 [] t rue → skip ; // do nothing
21 od
22 }

1FORALL c ∈ Model . Components
2 FORALL p ∈ c . EmitterPorts
3 proce s s p . . . {
4 // i n i t i a l i z a t i o n o f data
5 Star t :
6 do
7 FORALL e ∈ p . Events
8 // see Figure 3.12a
9 [] t rue → sk ip ; // do nothing

10 od
11 }
12FORALL c ∈ Model . Components
13 FORALL p ∈ c . ConsumerPorts
14 proce s s p . . . {
15 // i n i t i a l i z a t i o n o f data
16 Star t :
17 do
18 FORALL e ∈ p . Events
19 // see Figure 3.12c
20 od
21 }
22FORALL c ∈ Model . Components
23 FORALL p ∈ c . RequiredPorts
24 proce s s p . . . {
25 // i n i t i a l i z a t i o n o f data
26 Star t :
27 do
28 FORALL e ∈ p .Methods
29 // see Figure 3.12b
30 od
31 }
32FORALL c ∈ Model . Components
33 FORALL p ∈ c . ProvidedPorts
34 proce s s p . . . {
35 // i n i t i a l i z a t i o n o f data
36 Star t :
37 do
38 FORALL e ∈ p .Methods
39 // see Figure 3.12d
40 FORALL cm ∈ p .ComplexMethods
41 // see Figure 3.15a and Figure 3.15b
42 od
43 }

(a) Current semantics of components –
reprinted from Figure 8.1a

(b) Non-optimised semantics of components

Figure 8.1: Semantics of components

8.2.4.2 Improving Functional Contracts of Required Methods and Emit-
ter Events

Functional contracts for required methods and emitter events consist of functional
constraint(s), one for each promises parameter-assignment sequence. Figure 8.3a
repeats their syntax that I introduced in XCD’s syntax descriptions, given in Sec-
tion 4.2.3.3 (page 103). So, designers have to specify a separate constraint for each
alternative promises parameter-assignment sequence of their method request (or
event emission), one of which is chosen and applied nondeterministically. However,
as discussed in Section 7.4.1 (page 199), specifying multiple functional constraints
increases the complexity and thereby makes the contract specifications more prone
to incompleteness errors. To resolve this issue, the grammar rules in Figure 8.3a can
be modified as Figure 8.3b. So now, each functional constraint can be attached with
multiple promises. Besides the syntax, the semantics of XCD and also its prototype
tool need to be updated too, so as to support the modified structure of functional
contracts for required methods and emitter events.

216

1 FORALL c ∈ Model.Components

2 proce s s c . . . {
3 // i n i t i a l i z a t i o n o f data
4 Star t :
5 do
6 FORALL p ∈ c . EmitterPorts
7 FORALL e ∈ p . Events
8 // see Figure 3.12a
9 FORALL p ∈ c . RequiredPorts

10 FORALL m ∈ p .Methods
11 // see Figure 3.12b
12 FORALL p ∈ c . ConsumerPorts
13 FORALL e ∈ p . Events
14 // see Figure 3.12c
15 FORALL p ∈ c . ProvidedPorts
16 FORALL m ∈ p .Methods
17 // see Figure 3.12d
18 FORALL cm ∈ p .ComplexMethods
19 // see Figure 3.15a and Figure 3.15b
20 [] t rue → skip ; // do nothing
21 od
22 }

1 proce s s config . . . {
2 // i n i t i a l i z a t i o n o f data
3 Star t :
4 do

5 FORALL c ∈ Model.Components

6 FORALL p ∈ c . EmitterPorts
7 FORALL e ∈ p . Events
8 // see Figure 3.12a
9 FORALL p ∈ c . RequiredPorts

10 FORALL m ∈ p .Methods
11 // see Figure 3.12b
12 FORALL p ∈ c . ConsumerPorts
13 FORALL e ∈ p . Events
14 // see Figure 3.12c
15 FORALL p ∈ c . ProvidedPorts
16 FORALL m ∈ p .Methods
17 // see Figure 3.12d
18 FORALL cm ∈ p .ComplexMethods
19 // see Figure 3.15a and Figure 3.15b
20 [] true → skip ; // do nothing
21 od
22 }

(a) Current semantics of components –
reprinted from Figure 8.1a

(b) Optimised semantics of components

Figure 8.2: Semantics of components - 2

1 FC_required = @functional , "{" , RequiredFConsSet , "}" ;
2 RequiredFConsSet = FCons_promReqEns , {otherwise , FCons_promReqEns } ;
3 FC_emitter = @functional , "{" , EmitterFConsSet , "}" ;
4 EmitterFConsSet = FCons_promEns , {otherwise , FCons_promEns } ;
5
6 FCons_promEns = promises ∶ , AssignmentSeq , ensures ∶ , AssignmentSeq ;
7 FCons_promReqEns = promises ∶ , AssignmentSeq , {FCons_reqEns } ;

(a) Current grammar rules – reprinted from Figure 4.6b

1 FC_required = @functional , "{" , RequiredFConsSet , "}" ;
2 RequiredFConsSet = FCons_promReqEns , {otherwise , FCons_promReqEns } ;
3 FC_emitter = @functional , "{" , EmitterFConsSet , "}" ;
4 EmitterFConsSet = FCons_promEns , {otherwise , FCons_promEns } ;
5 //Modified functional constraint rules - the FCons_promises rule (line 9) used for promises
6 FCons_promEns = FCons_promises , ensures ∶ , AssignmentSeq ;

7 FCons_promReqEns = FCons_promises , {FCons_reqEns } ;

8 //Newly introduced rule for matching multiple promises − used by the rules in line 7 and 8
9 FCons_promises=promises ∶ , AssignmentSeq {otherwise , promises ∶ , AssignmentSeq } ;

(b) Improved grammar rules

Figure 8.3: Grammar rules for required method and emitter event functional contracts

8.2.4.3 Improving Connector Role Contracts

Besides the functional contracts of required methods and emitter events discussed
above in Section 8.2.4.2, contracts for specifying role interaction protocols can also
be improved. Figure 8.4a gives the current syntax for the interaction contracts of
role port-variable actions that I introduced in XCD’s syntax description, given in Sec-
tion 4.2.4.2 (page 106). Unlike component ports, role port-variables do not include
functional contracts as roles are not allowed to access to the method/event parame-
ters and method results. So, to update the role state, ensures was introduced in
role interaction contracts, which contrasts with the side-effect-free interaction con-
tracts of component ports. As discussed in Section 7.4.1 (page 199), these structural

217

1 IC_waits_ensures=@interaction , "{" ,waits ∶ , Express ion , ensures ∶ , AssignmentSeq , " } " ;

(a) Current grammar rules – reprinted from Figure 4.9

1 //Interaction contracts can only delay the actions now
2 IC_waits=@interaction , "{" , waits ∶ , Express ion ;
3 //Functional contracts are newly introduced, which update the role state
4 FC_ensures=@functional , "{" , ensures ∶ , AssignmentSeq , " } " ;

(b) Improved grammar rules

Figure 8.4: Grammar rule for role interaction contracts

differences between component and role contracts damage the uniformity in software
architecture specifications. To avoid this, one simple solution could be modularising
the role contracts into functional and interaction contracts too, just like component
port contracts. As depicted in Figure 8.4b, while the role interaction contracts can
only cause delays, the role state is now updated by the role functional contracts.

8.2.4.4 Specifying System Properties

XCD at present does not support specifying system properties for checking high-
level system requirements, e.g., global glue constraints. However, as explained in
Section 5.4.4 (page 141), designers can still specify system properties by editing the
produced ProMeLa models of their XCD specifications. Indeed, in the gas station case
study given in Section 6.2 (page 152), I used ProMeLa’s LTL construct to specify and
verify temporal system properties. I also specified a glue property for the nuclear
power plant, given in Section 6.6 (page 181), for which I had to specify a process in
the ProMeLa model that acts as a monitor for the plant components and ran this
process concurrently with the processes corresponding to the plant components.

While I was able to use the ProMeLa language successfully to specify and ver-
ify system properties, this is certainly not a user-friendly approach. First of all, it
requires designers to edit the translated ProMeLa models, which consist of low-level
operations, e.g., channel I/O operations. Furthermore, despite having a C-like nota-
tion, ProMeLa is not a modeling language, but instead a verification language with
algebraic operations, such as parallel composition. Therefore, as a future work, XCD

can be supported by a (sub-)language that allows the user-friendly way of specifying
general system properties.

8.2.4.5 Supporting Real-time Systems

Currently, XCD does not support real-time systems, which are in general safety-
critical systems (e.g., railway signalling systems and traffic control systems) whose
failure may have catastrophic consequences. In these systems, component activities
have deadlines, whose actions are restricted to take place within certain specified
time-frames. So, for a successful composition of components to an entire system, it
is not enough to guarantee that components interact with each other under some
time-agnostic protocols but also action requests and responses are sent/received at
the specified times.

As a future work, the syntax and semantics of XCD can be extended with clock
variables, which can be specified by designers in their system specifications. Then,
these variables can be employed in contract expressions of methods/events for con-

218

straining their processing to take place at the expected time frames. Indeed, ProMeLa
has already been extended with real-time features [Tripakis and Courcoubetis, 1996,
Groce and Musuvathi, 2011,Gallardo and Panizo, 2013]; so, these approaches can be
used to define the semantic of the clock variables and their use in contract expressions.

A(m,n) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

n + 1 if m = 0;

A(m − 1,1) if m > 0 and n = 0

A(m − 1,A(m,n − 1)) if m > 0 and n > 0.

(8.1)

8.2.4.6 Recursive Algorithms as Connectors

My XCD approach essentially attempts to apply Wirth’s equation “Algorithms + Data
Structures = Programs” [Wirth, 1975] at an architectural level. I advocate that “Con-
nectors + Components = Systems”, with connectors being essentially decentralised
algorithms and components the equivalent to data structures [Kloukinas, 2009]. Al-
gorithms herein may require a recursive behaviour too, which is a function calling
itself until a base (i.e., terminating) case is reached. The equation in formula 8.1,
for instance, gives the ackermann recursive function1 that has one base case (line
1) and two recursive cases (lines 2–3). Since connectors are considered in XCD as
abstractions over algorithms, connectors may also be wished by designers to support
recursive algorithms.

In introducing the structure of connectors, given in Section 3.2.2 (page 81), I
showed that complex connector types can include instances of other complex connec-
tors too, re-using their role protocols. The (sub) connector instances do not necessarily
have to be of different connector types from the (super) connector type containing
them, but could be of the same type. Indeed, this may particularly aid in recursive
algorithms to be specified as connectors at the architecture level of design. How-
ever, the syntax and semantics of XCD currently lack in proper support for recursive
specification of connectors. Therefore, as a further work, the XCD language can be
extended to accept connector types for recursive algorithms, as well as specifying base
recursion cases and recursion alternatives. The tool needs to be modified too, so as
to be capable of translating recursive connector specifications.

1http://mathworld.wolfram.com/AckermannFunction.html

219

http://mathworld.wolfram.com/AckermannFunction.html

Appendix A

An Introduction to the
ProMeLa Language

SPIN [Holzmann, 2004] has been developed as a formal verification tool, which allows
to verify concurrent systems for properties such as deadlock and liveness. SPIN’s input
language is ProMeLa1, through which systems can be specified as a set of concurrently
executing processes that interact with each other via communication channels. In the
rest of this chapter, I introduce the ProMeLa constructs that are used in translating
XCD’s architectural models into ProMeLa models for formal verification, discussed
in Section 4.4 (page 119). For each construct introduced, I give its sample use in
Listing A.1 for better understanding.

ProMeLa offers explicit channel construct (chan) for sending/receiving messages
between any two processes. A channel in ProMeLa is declared with (i) a communi-
cation style that can be either synchronous (e.g., lines 5 in Listing A.1) or buffered
asynchronous (e.g., lines 3) and (ii) a message structure (e.g., int in lines 3 and 4)
that specifies the sequence of data types for the channel messages. Note that channels
must be declared globally, as in lines 1–5, so as to allow the communicating processes
to reach the channels for sending/receiving messages.

A process in ProMeLa is the main unit of execution in SPIN, which is used in
describing a component behaviour in XCD. Each process is declared using the proctype
construct (proctype name ([decl_lst]) sequence). As shown in lines 9–42, a process
declaration can contain local variable declarations, loops, if-else control blocks, etc.
Variables in a process declaration are each declared with one of the pre-defined types
(i.e., bit, bool, byte, short, int, and unsigned) or a user-defined enumeration type
(mtype). The mtype is defined globally outside the process declaration with a set
of constant values representing its type range. ProMeLa allows the assignment of
variables not only using an equality operator (=) but also using its select construct
(e.g., line 26). ProMeLa’s select operator allows to specify range of expressions one
of which is chosen nondeterministically to be assigned a variable.

The process loops are specified as a repetition construct in ProMeLa (do :: se-
quence [:: sequence]* od). As shown in lines 21–31, a repetition construct is a
set of option sequences (::) that are executed iteratively. A single option is selected
non-deterministically, and, if its guard statement is satisfied (e.g., a message is read
from a channel), this causes a sequence of statements for that option to be executed.
If none of the option sequence guards are met, then, the repetition construct may not

1ProMeLa’s user manual is accessible via the link http://spinroot.com/spin/Man/.

220

http://spinroot.com/spin/Man/

be executed and blocks the process it is declared in. Note that to prevent blocking
cases, one can use else statement (e.g., line 30), which evaluates to true if none of
the options are met. Moreover, an option sequence in a process can also be specified
atomically with atomic{..}, which forces the sequence of statements to be executed
in a single step without allowing any other processes to interleave. For instance, the
option sequence in lines 24–29 is executed atomically when its guard is satisfied. Like
repetition constructs, ProMeLa’s selection construct (if :: sequence [:: sequence]*
fi) is also specified with guarded option sequences (e.g., lines 34–38), one of which
is chosen non-deterministically and executed if its guard is satisfied. However, a
selection construct may be executed once only.

ProMeLa offers several other constructs, which facilitate the formal specifications
of systems. For instance, the run operator (e.g., line 17) is used to create an instance
of a process that is already declared and executes the created process instance concur-
rently with other running processes. Note also that ProMeLa offers _pid construct
that are used in process declarations to reach their IDs when they are instantiated
and run (line 23). Furthermore, ProMeLa accepts C macro definitions and C codes
via its constructs, e.g., c_code, c_decl, and c_expr. It also offers constructs such as
break (line 35) and goto (line 36) that are commonly used in programming languages
such as C. Another important construct of ProMeLa is the assert operator, through
which designers can specify safety properties as part of their process specifications
and verify them during the formal verification. If an assert statement (e.g., line 40)
fails, this will halt the formal verification.

1 // channel d e c l a r a t i o n s
2 //BUFFERED
3 chan channelID1 = [1] of { i n t } ;
4 //SYNCHRONOUS
5 chan channelID2 = [0] of { i n t } ;
6
7 mtype = { ack , nak , err , next , accept }
8
9 proctype ID(i n t arg){

10
11 //data d e c l a r a t i o n s
12 int dataID1 ;
13 int dataID2 ;
14 mtype dataID3 ;
15
16 // proce s s i n s t a n t i a t i o n s v ia run ope ra to r s
17 run process ID (arg) ;
18
19 // r e p e t i t i o n con s t ru c t s
20 Star t :
21 do

22 : : channelID1 ? dataID1 → dataID2 = 0 ; break

23 : : channelID2 ? dataID2 → channelID2 ! _pid; break

24 : : atomic{
25 dataID2 == 4 →
26 dataID1 = dataID2 ∗ 3 ;
27 select(dataID3 : dataID2 . . dataID2 + 4) ;
28 channelID2 ! dataID1 ;
29 }
30 : : else→ skip

31 od

32
33 //selection con s t ru c t s

221

34 if

35 : : dataID1 == 1 → dataID2 = 0 ; break

36 : : dataID1 == 3 → dataID2 = 2 ; goto Star t
37 : : else→ skip

38 fi

39
40 // check ing p r op e r t i e s
41 assert(dataID1 == dataID2) ;
42 }

Listing A.1: Using SPIN’s ProMeLa verification language

222

Appendix B

Nuclear Power Plant System’s
Global Protocol in ProMeLa

In Section 6.6 (page 181), I have given the XCD specification of the nuclear power
plant system and its formal verification. Having specified the nuclear plant system,
I essentially aimed at verifying the plant system for the global constraint property
which requires that the Nitric Acid (NA) and Uranium (UR) are always the same
in the plant. I specified the global constraint property as a process in ProMeLa
that is given in Listing B.1. The process herein is used to monitor the NA and UR
component processes of the plant, running concurrently with them and communicat-
ing asynchronously via the monitorChannel that I declared globally. To enable this
monitoring, I modified the NA and UR component processes whose atomic blocks
translated from their inc and double provided methods will need to write messages in
the monitorChannel to indicate their processing. Listing B.2 gives, for instance, the
atomic block of the NA process, which is produced separately for the inc and dou-
ble provided methods of the NA. UR process’s atomic blocks for its inc and double
methods are just the same and modified in the same way. As shown in line 20 of
the atomic block, I added an extra channel operation that writes a message (i.e., the
method name) into monitorChannel just before sending the method response. The
monitor process uses the monitorChannel and reads the messages from the channel to
determine any sequence of method-calls that violates the global protocol constraint.

1 proctype glue_property (){
2 Q0_init :
3 do

4 : : monitorChannel ?incUR → goto Q02
5 : : monitorChannel ?doubleUR → goto Q12
6 : : monitorChannel ?doubleNA → a s s e r t (f a l s e)
7 : : monitorChannel ? incNA→ a s s e r t (f a l s e)
8 od ;
9 /∗ inc ’ s first ∗/

10 Q02 :
11 do

12 : : monitorChannel ?incNA → goto Q03
13 : : monitorChannel ?doubleNA → a s s e r t (f a l s e)
14 : : monitorChannel ?doubleUR → a s s e r t (f a l s e)
15 : : monitorChannel ?incUR→ a s s e r t (f a l s e)
16 od ;
17 Q03 :
18 do

19 : : monitorChannel ?doubleUR → goto Q04

223

20 : : monitorChannel ?doubleNA → a s s e r t (f a l s e)
21 : : monitorChannel ?incUR → a s s e r t (f a l s e)
22 : : monitorChannel ?incNA → a s s e r t (f a l s e)
23 od ;
24 Q04 :
25 do

26 : : monitorChannel ?doubleNA → goto Q0_init
27 : : monitorChannel ?doubleUR → a s s e r t (f a l s e)
28 : : monitorChannel ?incNA → a s s e r t (f a l s e)
29 : : monitorChannel ?incUR → a s s e r t (f a l s e)
30 od ;
31 /∗ double ’ s first ∗/
32 Q12 :
33 do

34 : : monitorChannel ?doubleNA → goto Q13
35 : : monitorChannel ?incNA → a s s e r t (f a l s e)
36 : : monitorChannel ?doubleUR→ a s s e r t (f a l s e)
37 : : monitorChannel ?incUR → a s s e r t (f a l s e)
38 od ;
39 Q13 :
40 do

41 : : monitorChannel ?incUR → goto Q14
42 : : monitorChannel ?doubleNA→ a s s e r t (f a l s e)
43 : : monitorChannel ?doubleUR→ a s s e r t (f a l s e)
44 : : monitorChannel ?incNA → a s s e r t (f a l s e)
45 od ;
46 Q14 :
47 do

48 : : monitorChannel ?incNA → goto Q0_init
49 : : monitorChannel ?doubleNA→ a s s e r t (f a l s e)
50 : : monitorChannel ?doubleUR→ a s s e r t (f a l s e)
51 : : monitorChannel ?incUR→ a s s e r t (f a l s e)
52 od ;
53 }

Listing B.1: Monitor process for the glue property of nuclear power plant

1 : : atomic{
2 pop(method , Inte ract ionWait sAccepts ∧ requestedMethod(port) = nu l l) →
3 ContractAssignment2Promela (ro l ePostEnsures) ; //simple role method
4 ContractAssignment2Promela (ro lePostEnsures_req) ; //complex role method’s request
5 FORALL var ∈ updatedVarSet (ro lePostEnsures_req)//complex role method’s request
6 pre_state_copy(port , var) = pre_state(var) ;
7 pre_state(var) = post_state(var) ;
8 if

9 : : ro leAwait_res → //roleAwait_res evaluates to true for simple role methods
10 ContractAssignment2Promela (ro lePostEnsures_res) ; //complex role method
11 if

12 FORALL f c ∈ method . FC_provided . ProvidedFConsSet
13 : : f c . Requires →
14 ContractAssignment2Promela (f c . Ensures) ;
15 : : e l s e →printf ("incomplete functional constraints ") ; a s s e r t (f a l s e) ;
16 fi;

17 FORALL var ∈ updatedVarSet (f c . Ensures ∪ ro lePostEnsures_res) ;
18 pre_state_copy(var) = post_state(var) ;
19 pre_state(var) = post_state(var) ;

20 monitorChannel ! incNA; // OR monitorChannel ! doubleNA;

21 responseChannelID(port) ! methodResponseMessage(method) ;
22 : : else →
23 FORALL var ∈ updatedVarSet (ro lePostEnsures_req)
24 pre_state(var) = pre_state_copy(var) ;
25 post_state(var) = pre_state_copy(var) ;

224

26 push (port ,methodRequestMessage(method)) ;
27 fi

28 }

Listing B.2: Modified atomic block translation for NA’s inc/double method

225

Appendix C

SPIN’s Verification Results for
the Evaluated Case-studies

In this part of the Appendix, I initially present the error traces obtained upon using
SPIN to verify the case-study specifications that are discussed in Chapter 6, namely
gas station, FIPA’s english auction protocol, and the nuclear power plant. Lastly,
I present SPIN’s verification result for the aegis combat system that reports some
unreachable code for the aegis component processes.

C.1 Gas Station

Section 6.2.2 (page 155) gives the analysis of the gas station system architecture.
Therein, an assertion violation is discussed, which occurred during the formal verifi-
cation of the gas station. Listing C.1 gives the error trail of the assertion violation
error (pertaining to the configuration with one customer). Line 1 indicates that the
wrong use of services causes the assertion violation error. Line 10 indicates that the
customer component process stopped while it was listening to the result of the pump
method from the pump component. Line 12 indicates that the cashier component
process stopped while it was executing its code located in line 24 of the cashier pro-
cess file. Line 14 indicates that the pump component process stopped while it was
executing its code located in line 148 of the pump process file. When I inspected the
code of each process, I identified the cause of the assertion violation. Indeed, the code
of the pump process indicates that the accepting interaction constraint for the pump
method is violated, thus causing the assertion violation. So, the assertion violation
is due to the pump component whose pump method is requested at an unacceptable
state.

1 Wrong use of s e r v i c e s
2 pan : 1 : assertion v i o l a t ed 0 (at depth 68)
3
4#proc e s s e s 5 :
5 68 : proc 0 (: i n i t :) configuration.pml :19 (s t a t e 2)
6 −end−
7 68 : proc 1 (GasStation_0_0) configuration.pml :11 (s t a t e 4)
8 −end−
9 68 : proc 2 (Customer_cust1_0) configuration.pml :28 (s t a t e 147)

10 CHANNELRES_Customer_VAR_PORT_gas?_pid , eva l (pump) ,
11 0 ,Customer_VAR_PORT_gas_ACTION_pump_RESULT
12 68 : proc 3 (Cashier_cash1_0) configuration.pml :24 (s t a t e 44)
13 Cashier_VAR_PORT_customer_INDEX = 0

226

14 68 : proc 4 (Pump_pump1_0) configuration.pml :148 (s t a t e 147)

Listing C.1: Error trail for the gas station verification - assertion violation error due
to wrong use of services

C.2 FIPA English Auction Protocol

Section 6.5.2 (page 179) gives the analysis of the FIPA english auction system ar-
chitecture. Therein, a deadlock is discussed, which occurred during the verification
of the auction system and was indicated with an invalid end state error. Listing C.2
gives the error trail of the invalid end state error (pertaining to the configuration with
two participants). Lines 7–8 shows that the initiator gets blocked writing cfp event.
Lines 9–10 and 11–12 show that the two participants each get blocked writing their
propose events to the communication channels.

1
2#proc e s s e s 5 :
3 350 : proc 0 (: i n i t :) con f i gurat ion . pml :19 (s t a t e 2)
4 −end−
5 350 : proc 1 (auctionProtocol_open_0_0) configuration.pml :11 (s t a t e 4)
6 −end−
7 350 : proc 2(in i t i a to r_ in In s_0)configuration.pml : 189 (s t a t e 235)(i n v a l i d end s t a t e)
8 CHANNEL_participant_partIns1_0_PORT_auction ! cfp , initiator_VAR_initAmount [0]
9 350 : proc 3(part ic ipant_partIns1_0)configuration.pml : 336 (s t a t e 243)(i n v a l i d end s t a t e)

10 CHANNEL_initiator_inIns_0_PORT_propose ! propose , participant_VAR_propAmount [0]
11 350 : proc 4(part ic ipant_partIns2_0)configuration.pml : 336 (s t a t e 243)(i n v a l i d end s t a t e)
12 CHANNEL_auctionProtocol_open_0_initiator_inIns_0_PORT_propose !
13 propose , participant_VAR_propAmount [0]

Listing C.2: Error trail for the FIPA english auction verification - invalid end state
error due to deadlock

C.3 Nuclear Power Plant

In Sections 6.6.2 and 6.6.4 (pages 183 and 188), the analysis of the nuclear power
plant system architecture is discussed. Therein, the plant architecture was verified
for the global protocol depicted in Figure 6.40a (page 184). Appendix B gives the
monitor process that I have specified which monitors the system behaviour for the
global protocol. However, the monitor process raised an assertion violation error
during the verification of the plant architecture’s decentralised solution. Listing C.3
gives the error trail that has been generated due to the assertion violation. The
error trail shows that the monitor process observes the following sequence of action
executions which violates the global protocol: UR responds to the double method
request received from P2 (line 3), NA responds to the double method request received
from P2 (line 6), and UR responds again the double from P2 (line 9).

1
2 186 : proc 5 (UR_urinst_0)configuration.pml :89 (s t a t e 112) [break]
3 187 : proc 6(glue_property)configuration.pml :22 (s t a t e 9) [monitorChannel ?doubleUR]
4
5 287 : proc 4 (NA_nainst_0) configuration.pml :89 (s t a t e 112) [break]
6 288 : proc 6(glue_property)configuration.pml : 6 5 (s t a t e 53) [monitorChannel ?doubleNA]
7
8 372 : proc 5 (UR_urinst_0) configuration.pml :89 (s t a t e 112) [break]
9 373 : proc 6(glue_property)configuration.pml :75 (s t a t e 64) [monitorChannel ?doubleUR]

10 pan : 1 : a s s e r t ion v i o l a t ed 0 (at depth 374)
11 sp in : t r a i l ends a f t e r 374 s t ep s

227

12

Listing C.3: Error trail for the nuclear power plant - assertion violation error due to
user-defined property violation

C.4 AEGIS Combat System

Listing C.4 gives SPIN’s verification result for the aegis combat system, whose speci-
fication and verification are discussed in Section 6.4. In lines 29-63 of Listing C.4, the
unreachable code (i.e., the ProMeLa code that cannot be executed) for the aegis com-
ponent processes are reported. Each unreachable code statement for a component pro-
cess gives respectively (i) the name of the file storing the process concatenated with the
line number of the unreachable code in the process (e.g., server_INSTANCE.pml:229)
and (ii) the unreachable code itself within double quotes. For instance, line 30 of
Listing C.4 states that line 229 of the process of the experimentControl component is
unreachable, and, this unreachable code is also given in line 31.

In lines 30-34 of Listing C.4, the unreachable code for the experimentControl
component process are given, which consist of two separate code, i.e., lines 30-31
and 33-34. When I inspected the unreachable code in the given lines of the process,
I identified that the experimentControl component does not receive request from the
components connected to experimentControl via the connectors deadlock_cs_2 and
deadlock_cs_3. That is, experimentControl receives requests from the component
connected via the connector deadlock_cs_1 only (i.e., doctrineAuthoring).

The rest of the unreachable code in lines 36-63 are concerned with the other aegis
component processes and state their channel I/O operations that cannot be executed.
If the unreachable code below refers to CHANNELRES, this means that the response
channel of the component process does not emit any method response. That is, the
component process does not receive any method requests. For instance, lines 37-38
give the unreachable code for the doctrineAuthoring component process. It indicates
that the component does not receive requests from its environment. If CHANNEL-
REQ is referred, this means here that the corresponding component does not make
any requests to the server port which uses the channel for receiving requests. Note
also that the respective unreachable code indicates which component’s server port
does not receive any requests via the channel. For instance, lines 41-42 and lines 43-
44 give the port channels for the the doctrineAuthoring and trackServer components
that do not receive requests from the doctrineValidation component.

1 (Spin Vers ion 6 . 3 . 2 −− 17 May 2014)
2 + Par t i a l Order Reduction
3
4 Bit s t a t e spac e search for :
5 never c la im − (none specified)
6 a s s e r t ion v i o l a t i o n s +
7 cy c l e checks − (d i s ab l ed by −DSAFETY)
8 i n v a l i d end s t a t e s +
9

10 State −vector 628 byte , depth reached 49999 , e r r o r s : 0
11 67484388 s ta t e s , s to r ed
12 3.2394288 e+08 s ta t e s , matched
13 3.9142726 e+08 t r a n s i t i o n s (= sto r ed+matched)
14 5.5051603 e+08 atomic s t ep s
15
16 hash f a c t o r : 1 .98887 (best if > 100 .)
17
18 b i t s s e t per s t a t e : 3 (−k3)
19

228

20 Stat s on memory usage (in Megabytes) :
21 41704.067 equ iva l en t memory usage for s t a t e s (s to r ed ∗(State −vector + overhead))
22 16.000 memory used for hash array (−w27)
23 0 .381 memory used for b i t s tack
24 2 .670 memory used for DFS stack (−m50000)
25 19.643 other (proc and chan s tack s)
26 38.778 t o t a l ac tua l memory usage
27
28
29 unreached in proctype server_experimentControl_0
30 . / server_INSTANCE . pml : 229 , s t a t e 253 ,
31 "client2server_deadlock_cs_2_0_ROLE_server_VAR_serverIndex [0]<=(3−1)"
32
33 . / server_INSTANCE . pml : 229 , s t a t e 265 ,
34 "client2server_deadlock_cs_3_0_ROLE_server_VAR_serverIndex [0] <(3 −1) "
35
36 unreached in proctype mixedComponent_doctrineAuthoring_0
37 . /mixedComponent_INSTANCE . pml : 460 , s t a t e 548 ,
38 "CHANNELRES_doctrineAuthoring_0_PORT_server [. . .] !
39
40 unreached in proctype c l i ent_doct r ineVa l idat ion_0
41 . / client_INSTANCE . pml : 217 , s t a t e 254 ,
42 "CHANNELREQ_doctrineAuthoring_0_PORT_server [0] ! _pid , r eques t "
43
44 . / client_INSTANCE . pml : 217 , s t a t e 256 ,
45 "CHANNELREQ_trackServer_0_PORT_server [0] ! _pid , r eques t "
46
47 unreached in proctype mixedComponent_trackServer_0
48 . /mixedComponent_INSTANCE . pml : 460 , s t a t e 548 ,
49 "CHANNELRES_trackServer_0_PORT_server [mixedComponent_VAR_PORT_server_INDEX] !
50
51 unreached in proctype mixedComponent_geoServer_0
52 . /mixedComponent_INSTANCE . pml : 394 , s t a t e 394 ,
53 "CHANNELREQ_trackServer_0_PORT_server [2] ! _pid , r eques t "
54
55 . /mixedComponent_INSTANCE . pml : 460 , s t a t e 469 ,
56 "CHANNELRES_geoServer_0_PORT_server [mixedComponent_VAR_PORT_server_INDEX] !
57
58 unreached in proctype c l ient_doctr ineReasoning_0
59 . / client_INSTANCE . pml : 217 , s t a t e 256 ,
60 "CHANNELREQ_trackServer_0_PORT_server [1] ! _pid , r eques t "
61
62 . / client_INSTANCE . pml : 217 , s t a t e 256 ,
63 "CHANNELREQ_geoServer_0_PORT_server [0] ! _pid , r eques t "
64
65
66 pan : e lapsed time 228 seconds
67 pan : ra t e 296543.43 s t a t e s / second

Listing C.4: Unreached code for the AEGIS combat system verification

229

Bibliography

[Arc, 2009] (2009). The Open Group ArchiMate® 1.0 Specification. Technical Stan-
dard.

[Bro, 2010] (2010). Failures-Divergence Refinement, FDR2 User Manual. Formal
Systems (Europe) Ltd., Oxford University Computing Laboratory, 2.91 edition.

[Abrial, 2005] Abrial, J.-R. (2005). The B-book - assigning programs to meanings.
Cambridge University Press.

[Aldrich et al., 2002a] Aldrich, J., Chambers, C., and Notkin, D. (2002a). Architec-
tural reasoning in archjava. In [Magnusson, 2002], pages 334–367.

[Aldrich et al., 2002b] Aldrich, J., Chambers, C., and Notkin, D. (2002b). Archjava:
Connecting software architecture to implementation. In [Tracz et al., 2002], pages
187–197.

[Aldrich et al., 2003] Aldrich, J., Sazawal, V., Chambers, C., and Notkin, D. (2003).
Language support for connector abstractions. In Cardelli, L., editor, ECOOP,
volume 2743 of Lecture Notes in Computer Science, pages 74–102. Springer.

[Allen, 1997] Allen, R. (1997). A Formal Approach to Software Architecture. PhD
thesis, Carnegie Mellon, School of Computer Science. Issued as CMU Technical
Report CMU-CS-97-144.

[Allen and Garlan, 1996] Allen, R. and Garlan, D. (1996). A case study in archi-
tectural modelling: The aegis system. In Proceedings of the Eighth International
Workshop on Software Specification and Design (IWSSD-8), pages 6–15, Pader-
born, Germany.

[Allen and Garlan, 1997] Allen, R. and Garlan, D. (1997). A formal basis for archi-
tectural connection. ACM Trans. Softw. Eng. Methodol., 6(3):213–249.

[Alur et al., 2003] Alur, R., Etessami, K., and Yannakakis, M. (2003). Inference of
message sequence charts. IEEE Trans. Software Eng., 29(7):623–633.

[Alur et al., 2005] Alur, R., Etessami, K., and Yannakakis, M. (2005). Realizability
and verification of MSC graphs. Theor. Comput. Sci., 331(1):97–114.

[Arbab, 2004] Arbab, F. (2004). Reo: A channel-based coordination model for com-
ponent composition. Mathematical Structures in Computer Science, 14(3):329–366.

[Arbab and Rutten, 2002] Arbab, F. and Rutten, J. J. M. M. (2002). A coinductive
calculus of component connectors. In Wirsing, M., Pattinson, D., and Hennicker,
R., editors, WADT, volume 2755 of Lecture Notes in Computer Science, pages
34–55. Springer.

230

[Bagheri and Sullivan, 2010] Bagheri, H. and Sullivan, K. J. (2010). Monarch: Model-
based development of software architectures. In Petriu, D. C., Rouquette, N., and
Haugen, Ø., editors, MoDELS (2), volume 6395 of Lecture Notes in Computer
Science, pages 376–390. Springer.

[Barnes, 2003] Barnes, J. G. P. (2003). High Integrity Software - The SPARK Ap-
proach to Safety and Security. Addison-Wesley.

[Barnett et al., 2005a] Barnett, M., Chang, B.-Y. E., DeLine, R., Jacobs, B., and
Leino, K. R. M. (2005a). Boogie: A modular reusable verifier for object-oriented
programs. In de Boer, F. S., Bonsangue, M. M., Graf, S., and de Roever, W. P.,
editors, FMCO, volume 4111 of Lecture Notes in Computer Science, pages 364–387.
Springer.

[Barnett et al., 2005b] Barnett, M., Leino, K. R. M., and Schulte, W. (2005b). The
spec# programming system: an overview. In Proceedings of the 2004 international
conference on Construction and Analysis of Safe, Secure, and Interoperable Smart
Devices, CASSIS’04, pages 49–69, Berlin, Heidelberg. Springer-Verlag.

[Basu et al., 2011] Basu, A., Bensalem, S., Bozga, M., Combaz, J., Jaber, M.,
Nguyen, T.-H., and Sifakis, J. (2011). Rigorous component-based system design
using the bip framework. IEEE Software, 28(3):41–48.

[Basu et al., 2012] Basu, S., Bultan, T., and Ouederni, M. (2012). Deciding chore-
ography realizability. In Field, J. and Hicks, M., editors, POPL, pages 191–202.
ACM.

[Bauer et al., 2001] Bauer, B., Müller, J. P., and Odell, J. (2001). Agent uml: A
formalism for specifying multiagent software systems. International Journal of
Software Engineering and Knowledge Engineering, 11(3):207–230.

[Bellissard et al., 1996] Bellissard, L., Atallah, S., Boyer, F., and Riveill, M. (1996).
Distributed application configuration. In Distributed Computing Systems, 1996.,
Proceedings of the 16th International Conference on, pages 579–585.

[Bellissard et al., 2000] Bellissard, L., De Palma, N., and Féliot, D. (2000). The olan
architecture definition language. Technical report, C3DS Technical Report.

[Beneken et al., 2003] Beneken, G., Hammerschall, U., Broy, M., Cengarle, M., Jür-
jens, J., Rumpe, B., and Schoenmakers, M. (2003). Componentware - State of the
Art 2003.

[Bergstra, 2001] Bergstra, J. A. (2001). Handbook of Process Algebra. Elsevier Science
Inc., New York, NY, USA.

[Bernardi et al., 2002] Bernardi, S., Donatelli, S., and Merseguer, J. (2002). From uml
sequence diagrams and statecharts to analysable petri net models. In Proceedings
of the 3rd International Workshop on Software and Performance, WOSP ’02, pages
35–45, New York, NY, USA. ACM.

[Bettini, 2013] Bettini, L. (2013). Implementing Domain-Specific Languages with
Xtext and Xtend.

[Beugnard et al., 1999] Beugnard, A., Jézéquel, J.-M., and Plouzeau, N. (1999). Mak-
ing components contract aware. IEEE Computer, 32(7):38–45.

231

[Binns et al., 1996] Binns, P., Englehart, M., Jackson, M., and Vestal, S. (1996).
Domain-specific software architectures for guidance, navigation and control. Inter-
national Journal of Software Engineering and Knowledge Engineering, 6(2):201–
227.

[Bjørner and Jones, 1978] Bjørner, D. and Jones, C. B., editors (1978). The Vienna
Development Method: The Meta-Language, volume 61 of Lecture Notes in Com-
puter Science. Springer.

[Bloom, 1970] Bloom, B. H. (1970). Space/time trade-offs in hash coding with allow-
able errors. Commun. ACM, 13(7):422–426.

[Booch, 1995] Booch, G. (1995). Object-oriented analysis and design with applica-
tions (2. ed.). Benjamin/Cummings series in object-oriented software engineering.
Addison-Wesley.

[Booch et al., 1997] Booch, G., Rumbaugh, J., and Jacobson, I. (1997). UML Seman-
tics (Version 1.1). Rational Corporation, Santa Clara.

[Boyapati et al., 2002] Boyapati, C., Khurshid, S., and Marinov, D. (2002). Korat:
automated testing based on java predicates. In ISSTA, pages 123–133.

[Brauer et al., 1987] Brauer, W., Reisig, W., and Rozenberg, G., editors (1987). Petri
Nets: Central Models and Their Properties, Advances in Petri Nets 1986, Part II,
Proceedings of an Advanced Course, Bad Honnef, 8.-19. September 1986, volume
255 of Lecture Notes in Computer Science. Springer.

[Breivold and Larsson, 2007] Breivold, H. P. and Larsson, M. (2007). Component-
based and service-oriented software engineering: Key concepts and principles. In
EUROMICRO-SEAA, pages 13–20. IEEE Computer Society.

[Briand et al., 2003] Briand, L. C., Labiche, Y., and Sun, H. (2003). Investigating the
use of analysis contracts to improve the testability of object-oriented code. Softw.,
Pract. Exper., 33(7):637–672.

[Briclet et al., 2004] Briclet, F., Contreras, C., and Merle, P. (2004). Openccm : une
infrastructure a composants pour le deploiement d’applications a base de com-
posants corba. CoRR, cs.NI/0411059.

[Broy et al., 1992] Broy, M., Dederich, F., Dendorfer, C., Fuchs, M., Gritzner, T.,
and Weber, R. (1992). The Design of Distributed Systems - An Introduction to
FOCUS. Technical Report TUM-I9202.

[Broy and Stølen, 2001] Broy, M. and Stølen, K. (2001). Specification and Devel-
opment of Interactive Systems: Focus on Streams, Interfaces, and Refinement.
Springer-Verlag New York, Inc., Secaucus, NJ, USA.

[Brucker and Wolff, 2008] Brucker, A. D. and Wolff, B. (2008). HOL-OCL: A formal
proof environment for UML/OCL. In Fiadeiro, J. L. and Inverardi, P., editors,
Fundamental Approaches to Software Engineering, 11th International Conference,
FASE 2008, Held as Part of the Joint European Conferences on Theory and Practice
of Software, ETAPS 2008, Budapest, Hungary, March 29-April 6, 2008. Proceed-
ings, volume 4961 of Lecture Notes in Computer Science, pages 97–100. Springer.

232

[Bruneton et al., 2006] Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., and
Stefani, J.-B. (2006). The fractal component model and its support in java. Softw.,
Pract. Exper., 36(11-12):1257–1284.

[Burdy et al., 2005] Burdy, L., Cheon, Y., Cok, D. R., Ernst, M. D., Kiniry, J. R.,
Leavens, G. T., Leino, K. R. M., and Poll, E. (2005). An overview of JML tools
and applications. STTT, 7(3):212–232.

[Bures, 2005] Bures, T. (2005). Automated synthesis of connectors for heterogeneous
deployment. Tech. report no. 2005/4, Dep. of SW Engineering, Charles University,
Prague.

[Bures et al., 2006] Bures, T., Hnetynka, P., and Plasil, F. (2006). Sofa 2.0: Balancing
advanced features in a hierarchical component model. In SERA, pages 40–48. IEEE
Computer Society.

[Bures and Plasil, 2004] Bures, T. and Plasil, F. (2004). Communication style driven
connector configurations. In Ramamoorthy, C., Lee, R., and Lee, K., editors,
Software Engineering Research and Applications, volume 3026 of Lecture Notes in
Computer Science, pages 102–116. Springer Berlin Heidelberg.

[Buschmann et al., 1996] Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P.,
and Stal, M. (1996). Pattern-oriented Software Architecture: A System of Patterns.
John Wiley & Sons, Inc., New York, NY, USA.

[Campbell and Habermann, 1974] Campbell, R. H. and Habermann, A. N. (1974).
The specification of process synchronization by path expressions. In Gelenbe, E.
and Kaiser, C., editors, Symposium on Operating Systems, volume 16 of Lecture
Notes in Computer Science, pages 89–102. Springer.

[Canal et al., 1999] Canal, C., Pimentel, E., and Troya, J. M. (1999). Specification
and refinement of dynamic software architectures. In [Donohoe, 1999], pages 107–
126.

[Cengarle and Knapp, 2001] Cengarle, M. V. and Knapp, A. (2001). A formal
semantics for ocl 1.4. In Proceedings of the 4th International Conference
on The Unified Modeling Language, Modeling Languages, Concepts, and Tools,
«UML» ’01, pages 118–133, London, UK, UK. Springer-Verlag.

[Chalin et al., 2006] Chalin, P., Kiniry, J. R., Leavens, G. T., and Poll, E. (2006). Be-
yond assertions: advanced specification and verification with jml and esc/java2. In
Proceedings of the 4th international conference on Formal Methods for Components
and Objects, FMCO’05, pages 342–363, Berlin, Heidelberg. Springer-Verlag.

[Cheon and Leavens, 2002] Cheon, Y. and Leavens, G. T. (2002). A simple and prac-
tical approach to unit testing: The JML and JUnit way. In [Magnusson, 2002],
pages 231–255.

[Chidamber and Kemerer, 1994] Chidamber, S. R. and Kemerer, C. F. (1994). A
metrics suite for object oriented design. IEEE Trans. Software Eng., 20(6):476–
493.

[Chimiak-Opoka et al., 2011] Chimiak-Opoka, J. D., Demuth, B., Awenius, A.,
Chiorean, D., Gabel, S., Hamann, L., and Willink, E. D. (2011). Ocl tools re-
port based on the ide4ocl feature model. ECEASST, 44.

233

[Chkouri et al., 2008] Chkouri, M. Y., Robert, A., Bozga, M., and Sifakis, J. (2008).
Translating aadl into bip - application to the verification of real-time systems. In
Chaudron, M. R. V., editor, MoDELS Workshops, volume 5421 of Lecture Notes in
Computer Science, pages 5–19. Springer.

[Choppy et al., 2011] Choppy, C., Klai, K., and Zidani, H. (2011). Formal verification
of UML state diagrams: a petri net based approach. ACM SIGSOFT Software
Engineering Notes, 36(1):1–8.

[Clavel et al., 1999] Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N.,
Meseguer, J., and Quesada, J. (1999). The Maude System. In Narendran, P. and
Rusinowitch, M., editors, Rewriting Techniques and Applications, volume 1631 of
Lecture Notes in Computer Science, page 240–243. Springer Berlin Heidelberg.

[Clements, 1996] Clements, P. C. (1996). A survey of architecture description lan-
guages. In Proceedings of the 8th International Workshop on Software Specification
and Design, IWSSD ’96, pages 16–, Washington, DC, USA. IEEE Computer Soci-
ety.

[Clements et al., 2003] Clements, P. C., Garlan, D., Little, R., Nord, R. L., and
Stafford, J. A. (2003). Documenting software architectures: Views and beyond.
In Clarke, L. A., Dillon, L., and Tichy, W. F., editors, ICSE, pages 740–741. IEEE
Computer Society.

[Cuéllar et al., 2008] Cuéllar, J., Maibaum, T. S. E., and Sere, K., editors (2008). FM
2008: Formal Methods, 15th International Symposium on Formal Methods, Turku,
Finland, May 26-30, 2008, Proceedings, volume 5014 of Lecture Notes in Computer
Science. Springer.

[Darvas and Müller, 2007] Darvas, A. and Müller, P. (2007). Formal encoding of JML
Level 0 specifications in jive. Technical Report 559, ETH Zurich. Annual Report
of the Chair of Software Engineering. 17 pages.

[Dashofy et al., 2002] Dashofy, E. M., van der Hoek, A., and Taylor, R. N. (2002).
An infrastructure for the rapid development of xml-based architecture description
languages. In [Tracz et al., 2002], pages 266–276.

[Dave, 2003] Dave, M. A. (2003). Compiler verification: a bibliography. ACM SIG-
SOFT Software Engineering Notes, 28(6):2.

[Delanote et al., 2008] Delanote, D., Baelen, S. V., Joosen, W., and Berbers, Y.
(2008). Using aadl to model a protocol stack. In ICECCS, pages 277–281. IEEE
Computer Society.

[Dijkstra, 1975] Dijkstra, E. W. (1975). Guarded commands, nondeterminacy and
formal derivation of programs. Commun. ACM, 18(8):453–457.

[Donohoe, 1999] Donohoe, P., editor (1999). Software Architecture, TC2 First Work-
ing IFIP Conference on Software Architecture (WICSA1), 22-24 February 1999,
San Antonio, Texas, USA, volume 140 of IFIP Conference Proceedings. Kluwer.

[Elizondo and Lau, 2010] Elizondo, P. V. and Lau, K.-K. (2010). A catalogue of
component connectors to support development with reuse. Journal of Systems and
Software, 83(7):1165–1178.

234

[Emmi et al., 2008] Emmi, M., Giannakopoulou, D., and Pasareanu, C. S. (2008).
Assume-guarantee verification for interface automata. In [Cuéllar et al., 2008],
pages 116–131.

[Enselme et al., 2004] Enselme, D., Florin, G., and Legond-Aubry, F. (2004). Design
by contract: Analysis of hidden dependencies in component based application.
Journal of Object Technology, 3(4):23–45.

[Eysholdt and Behrens, 2010] Eysholdt, M. and Behrens, H. (2010). Xtext: imple-
ment your language faster than the quick and dirty way. In Cook, W. R., Clarke, S.,
and Rinard, M. C., editors, SPLASH/OOPSLA Companion, pages 307–309. ACM.

[Feiler et al., 2006] Feiler, P. H., Gluch, D. P., and Hudak, J. J. (2006). The Archi-
tecture Analysis & Design Language (AADL): An Introduction. Technical report,
Software Engineering Institute.

[FIPA TC C, 2001] FIPA TC C (2001). FIPA English auction interaction protocol
specification. Technical Report XC00031F (Experimental), FIPA. www.fipa.

org/specs/fipa00031/.

[França et al., 2007] França, R. B., Bodeveix, J.-P., Filali, M., Rolland, J.-F.,
Chemouil, D., and Thomas, D. (2007). The aadl behaviour annex - experiments
and roadmap. In ICECCS, pages 377–382. IEEE Computer Society.

[Friedenthal et al., 2008] Friedenthal, S., Moore, A., and Steiner, R. (2008). A Prac-
tical Guide to SysML: Systems Modeling Language. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA.

[Fuxman, 2000] Fuxman, A. D. (2000). A survey of architecture description lan-
guages. Technical Report CSRG-407, Department of Computer Science,University
of Toronto, Toronto, Ontario, Canada M5S 3G4.

[Galik and Bures, 2005] Galik, O. and Bures, T. (2005). Generating connectors for
heterogeneous deployment. In Nitto, E. D. and Murphy, A. L., editors, SEM, pages
54–61. ACM.

[Gallardo and Panizo, 2013] Gallardo, M.-d.-M. and Panizo, L. (2013). Extending
model checkers for hybrid system verification: the case study of spin. Software
Testing, Verification and Reliability, pages n/a–n/a.

[Garlan et al., 1995] Garlan, D., Allen, R., and Ockerbloom, J. (1995). Architectural
mismatch or why it’s hard to build systems out of existing parts. In ICSE, pages
179–185.

[Garlan et al., 1997] Garlan, D., Monroe, R. T., and Wile, D. (1997). Acme: An ar-
chitecture description interchange language. In Proceedings of CASCON’97, pages
169–183, Toronto, Ontario.

[Garlan et al., 2000] Garlan, D., Monroe, R. T., and Wile, D. (2000). Acme: Archi-
tectural description of component-based systems. In Leavens, G. T. and Sitaraman,
M., editors, Foundations of Component-Based Systems, pages 47–68. Cambridge
University Press.

[Garlan and Shaw, 1994] Garlan, D. and Shaw, M. (1994). An introduction to soft-
ware architecture. Technical report, Pittsburgh, PA, USA.

235

www.fipa.org/specs/fipa00031/
www.fipa.org/specs/fipa00031/

[Garlan and Wang, 1999] Garlan, D. and Wang, Z. (1999). A case study in software
architecture interchange. In Proceedings of Coordination’99. Springer-Verlag.

[Geambasu et al., 2008] Geambasu, R., Birrell, A., and MacCormick, J. (2008). Ex-
periences with formal specification of fault-tolerant file systems. In DSN, pages
96–101. IEEE Computer Society.

[Giannakopoulou et al., 1999] Giannakopoulou, D., Kramer, J., and Cheung, S.-C.
(1999). Behaviour analysis of distributed systems using the tracta approach. Au-
tom. Softw. Eng., 6(1):7–35.

[Giese, 1999] Giese, H. (1999). Object coordination nets 2.0 – semantics specification.
Technical report, University Munster, Computer Science. 15/99-I.

[Giese, 2000] Giese, H. (2000). Contract-based component system design. In System
Sciences, 2000. Proceedings of the 33rd Annual Hawaii International Conference
on, pages 10 pp.–.

[Groce and Musuvathi, 2011] Groce, A. and Musuvathi, M., editors (2011). Model
Checking Software - 18th International SPIN Workshop, Snowbird, UT, USA, July
14-15, 2011. Proceedings, volume 6823 of Lecture Notes in Computer Science.
Springer.

[Groß et al., 2003] Groß, H.-G., Atkinson, C., and Barbier, F. (2003). Component
integration through built-in contract testing. In Cechich, A., Piattini, M., and
Vallecillo, A., editors, Component-Based Software Quality, volume 2693 of Lecture
Notes in Computer Science, pages 159–183. Springer.

[Haber et al., 2012] Haber, A., Ringert, J. O., and Rumpe, B. (2012). Montiarc -
architectural modeling of interactive distributed and cyber-physical systems. Tech-
nical Report AIB-2012-03, RWTH Aachen.

[Harel, 1987] Harel, D. (1987). Statecharts: A visual formalism for complex systems.
Sci. Comput. Program., 8(3):231–274.

[He et al., 2005] He, J., Li, X., and Liu, Z. (2005). Component-based software engi-
neering. In Hung, D. V. and Wirsing, M., editors, ICTAC, volume 3722 of Lecture
Notes in Computer Science, pages 70–95. Springer.

[Hoare, 1969] Hoare, C. A. R. (1969). An axiomatic basis for computer programming.
Commun. ACM, 12(10):576–580.

[Hoare, 1978] Hoare, C. A. R. (1978). Communicating sequential processes. Commun.
ACM, 21(8):666–677.

[Holzmann, 1998] Holzmann, G. J. (1998). An analysis of bitstate hashing. Formal
Methods in System Design, 13(3):289–307.

[Holzmann, 2004] Holzmann, G. J. (2004). The SPIN Model Checker - primer and
reference manual. Addison-Wesley.

[Holzner, 2004] Holzner, S. (2004). Eclipse - programming Java applications: coverage
of 3.0. O’Reilly.

[Holzner, 2006] Holzner, S. (2006). Design Patterns For Dummies. John Wiley &
Sons. ISBN-13: 978-0471798545.

236

[Houyou and Huth, 2011] Houyou, A. M. and Huth, H.-P. (2011). Internet of things
at work: Enabling plug-and-work in automation networks. In Communication
Systems & Control Networks, Embedded World Conference, Nuremberg, Germany.

[Huhns and Singh, 2005] Huhns, M. N. and Singh, M. P. (2005). Service-oriented
computing: Key concepts and principles. IEEE Internet Computing, 9(1):75–81.

[Issarny et al., 2011] Issarny, V., Bennaceur, A., and Bromberg, Y.-D. (2011).
Middleware-layer connector synthesis: Beyond state of the art in middleware inter-
operability. In Bernardo, M. and Issarny, V., editors, SFM, volume 6659 of Lecture
Notes in Computer Science, pages 217–255. Springer.

[Ivers et al., 2004] Ivers, J., Clements, P., Garlan, D., Nord, R., Schmerl, B., and
Silva, J. R. O. (2004). Documenting component and connector views with UML
2.0. Technical Report CMU/SEI-2004-TR-008, Software Engineering Institute
(Carnegie Mellon University).

[Jackson, 2002] Jackson, D. (2002). Alloy: a lightweight object modelling notation.
ACM Trans. Softw. Eng. Methodol., 11(2):256–290.

[Jacobs et al., 2005] Jacobs, B., Piessens, F., Leino, K. R. M., and Schulte, W. (2005).
Safe concurrency for aggregate objects with invariants. In Aichernig, B. K. and
Beckert, B., editors, SEFM, pages 137–147. IEEE Computer Society.

[Janzen and Saiedian, 2005] Janzen, D. and Saiedian, H. (2005). Test-driven devel-
opment: Concepts, taxonomy, and future direction. IEEE Computer, 38(9):43–50.

[Jones, 1983a] Jones, C. B. (1983a). Specification and design of (parallel) programs.
In IFIP Congress, pages 321–332.

[Jones, 1983b] Jones, C. B. (1983b). Tentative steps toward a development method
for interfering programs. ACM Trans. Program. Lang. Syst., 5(4):596–619.

[Jones, 1996] Jones, C. B. (1996). Accommodating interference in the formal design
of concurrent object-based programs. Formal Methods in System Design, 8(2):105–
122.

[Kiczales and Hilsdale, 2001] Kiczales, G. and Hilsdale, E. (2001). Aspect-oriented
programming. SIGSOFT Softw. Eng. Notes, 26(5):313–.

[Kiczales et al., 2001] Kiczales, G., Hilsdale, E., Hugunin, J., Kersten, M., Palm,
J., and Griswold, W. G. (2001). An overview of aspectj. In Knudsen, J. L.,
editor, ECOOP, volume 2072 of Lecture Notes in Computer Science, pages 327–
353. Springer.

[Kiniry and Zimmerman, 2008] Kiniry, J. R. and Zimmerman, D. M. (2008). Secret
ninja formal methods. In [Cuéllar et al., 2008], pages 214–228.

[Kirch et al., 2014] Kirch, D., Ringert, J. O., Rumpe, B., and Wortmann, A. (2014).
Montiarcautomaton - architecture and behavior modeling of cyber-physical sys-
tems. Technical report, RWTH Aachen.

[Kloukinas, 2009] Kloukinas, C. (2009). Better abstractions for reusable components
& architectures. In ICSE-NIER – ICSE Companion, pages 199–202, Vancouver,
Canada. IEEE Press.

237

[Krishna et al., 2005] Krishna, A. S., Natarajan, B., Gokhale, A. S., Schmidt, D. C.,
Wang, N., and Thaker, G. H. (2005). CCMPerf: A benchmarking tool for CORBA
Component Model implementations. Real-Time Systems, 29(2-3):281–308.

[Kyas et al., 2005] Kyas, M., Fecher, H., de Boer, F. S., Jacob, J., Hooman, J.,
van der Zwaag, M., Arons, T., and Kugler, H. (2005). Formalizing UML mod-
els and OCL constraints in PVS. Electr. Notes Theor. Comput. Sci., 115:39–47.

[Lamport, 1994] Lamport, L. (1994). The temporal logic of actions. ACM Trans.
Program. Lang. Syst., 16(3):872–923.

[Lau et al., 2005] Lau, K.-K., Elizondo, P. V., and Wang, Z. (2005). Exogenous con-
nectors for software components. In Heineman, G. T., Crnkovic, I., Schmidt, H. W.,
Stafford, J. A., Szyperski, C. A., and Wallnau, K. C., editors, CBSE, volume 3489
of Lecture Notes in Computer Science, pages 90–106. Springer.

[Lau et al., 2006a] Lau, K.-K., Ling, L., and Wang, Z. (2006a). Composing compo-
nents in design phase using exogenous connectors. In Proc. 32nd Euromicro Con-
ference on Software Engineering and Advanced Applications, pages 12–19. IEEE
Computer Society Press.

[Lau et al., 2006b] Lau, K.-K., Ornaghi, M., and Wang, Z. (2006b). A software com-
ponent model and its preliminary formalisation. In de Boer et al., F., editor,
Proc. 4th International Symposium on Formal Methods for Components and Ob-
jects, LNCS 4111, pages 1–21. Springer-Verlag.

[Lau and Wang, 2007] Lau, K.-K. and Wang, Z. (2007). Verified component-based
software in SPARK: Experimental results for a missile guidance system. In Proc.
2007 ACM SIGAda Annual International Conference, pages 51–57. ACM.

[Leinenbach and Petrova, 2008] Leinenbach, D. and Petrova, E. (2008). Pervasive
compiler verification – from verified programs to verified systems. Electron. Notes
Theor. Comput. Sci., 217:23–40.

[Leitner et al., 2007] Leitner, A., Ciupa, I., Oriol, M., Meyer, B., and Fiva, A. (2007).
Contract driven development = test driven development - writing test cases. In
Crnkovic, I. and Bertolino, A., editors, ESEC/SIGSOFT FSE, pages 425–434.
ACM.

[Lekeas et al., 2011] Lekeas, G., Kloukinas, C., and Stathis, K. (2011). Producing
enactable protocols in artificial agent societies. In Kinny, D., jen Hsu, J. Y., Gov-
ernatori, G., and Ghose, A. K., editors, PRIMA, volume 7047 of Lecture Notes in
Computer Science, pages 311–322. Springer.

[Leroy, 2009] Leroy, X. (2009). Formal verification of a realistic compiler. Commun.
ACM, 52(7):107–115.

[Lin et al., 2004] Lin, S., Wu, J., and Hu, Z. (2004). A contract-based component
model for embedded systems. In Quality Software, 2004. QSIC 2004. Proceedings.
Fourth International Conference on, pages 232–239.

[Lochbihler, 2010] Lochbihler, A. (2010). Verifying a compiler for java threads. In
Gordon, A. D., editor, Programming Languages and Systems, 19th European Sym-
posium on Programming, ESOP 2010, Held as Part of the Joint European Confer-
ences on Theory and Practice of Software, ETAPS 2010, Paphos, Cyprus, March

238

20-28, 2010. Proceedings, volume 6012 of Lecture Notes in Computer Science, pages
427–447. Springer.

[Loomis et al., 1987] Loomis, M. E. S., Shah, A. V., and Rumbaugh, J. E. (1987).
An object modelling technique for conceptual design. In Bézivin, J., Hullot, J.-M.,
Cointe, P., and Lieberman, H., editors, ECOOP, volume 276 of Lecture Notes in
Computer Science, pages 192–202. Springer.

[Luckham, 1996] Luckham, D. C. (1996). Rapide: A language and toolset for sim-
ulation of distributed systems by partial orderings of events. Technical report,
Stanford University, Stanford, CA, USA.

[Luckham and Vera, 1995] Luckham, D. C. and Vera, J. (1995). An event-based ar-
chitecture definition language. IEEE Trans. Software Eng., 21(9):717–734.

[Maes, 1987] Maes, P. (1987). Concepts and experiments in computational reflection.
In Meyrowitz, N. K., editor, OOPSLA, pages 147–155. ACM.

[Magee and Kramer, 1996] Magee, J. and Kramer, J. (1996). Dynamic structure in
software architectures. In SIGSOFT FSE, pages 3–14.

[Magee and Kramer, 2006] Magee, J. and Kramer, J. (2006). Concurrency - state
models and Java programs (2. ed.). Wiley.

[Magee et al., 1997] Magee, J., Kramer, J., and Giannakopoulou, D. (1997).
Analysing the behaviour of distributed software architectures: a case study. In
FTDCS, pages 240–247. IEEE Computer Society.

[Magee et al., 1999] Magee, J., Kramer, J., and Giannakopoulou, D. (1999). Be-
haviour analysis of software architectures. In [Donohoe, 1999], pages 35–50.

[Magnusson, 2002] Magnusson, B., editor (2002). ECOOP 2002 - Object-Oriented
Programming, 16th European Conference, Malaga, Spain, June 10-14, 2002, Pro-
ceedings, volume 2374 of Lecture Notes in Computer Science. Springer.

[Malavolta et al., 2012] Malavolta, I., Lago, P., Muccini, H., Pelliccione, P., and Tang,
A. (2012). What industry needs from architectural languages: A survey. IEEE
Transactions on Software Engineering, 99.

[Maoz et al., 2013] Maoz, S., Ringert, J. O., and Rumpe, B. (2013). Synthesis of
component and connector models from crosscutting structural views. In Meyer, B.,
Baresi, L., and Mezini, M., editors, ESEC/SIGSOFT FSE, pages 444–454. ACM.

[Maximilien and Williams, 2003] Maximilien, E. and Williams, L. (2003). Assessing
test-driven development at IBM. In 25th Intl. Conf. on Software Engineering, pages
564–569.

[Medvidovic, 1995] Medvidovic, N. (1995). Formal Definition of the Chiron-2 Soft-
ware Architectural Style. Technical report (University of California, Irvine. Dept.
of Information and Computer Science). Department of Information and Computer
Science, University of California, Irvine.

[Medvidovic et al., 1996] Medvidovic, N., Oreizy, P., Robbins, J. E., and Taylor,
R. N. (1996). Using object-oriented typing to support architectural design in the
c2 style. In SIGSOFT FSE, pages 24–32.

239

[Medvidovic and Taylor, 2000] Medvidovic, N. and Taylor, R. N. (2000). A classifi-
cation and comparison framework for software architecture description languages.
IEEE Trans. Software Eng., 26(1):70–93.

[Merle and Stefani, 2008] Merle, P. and Stefani, J.-B. (2008). A formal specification
of the Fractal component model in Alloy. Research Report RR-6721, INRIA.

[Meseguer, 1990] Meseguer, J. (1990). Conditional rewriting logic: Deduction, models
and concurrency. In Kaplan, S. and Okada, M., editors, CTRS, volume 516 of
Lecture Notes in Computer Science, pages 64–91. Springer.

[Meyer, 1988] Meyer, B. (1988). Eiffel: A language and environment for software
engineering. Journal of Systems and Software, 8(3):199–246.

[Meyer, 1992] Meyer, B. (1992). Applying “Design by Contract”. IEEE Computer,
25(10):40–51.

[Meyer et al., 1987] Meyer, B., Nerson, J.-M., and Matsuo, M. (1987). Eiffel: Object-
oriented design for software engineering. In Nichols, H. K. and Simpson, D., editors,
ESEC, volume 289 of Lecture Notes in Computer Science, pages 221–229. Springer.

[Milner, 1980] Milner, R. (1980). A Calculus of Communicating Systems, volume 92
of Lecture Notes in Computer Science. Springer.

[Milner et al., 1992] Milner, R., Parrow, J., and Walker, D. (1992). A calculus of
mobile processes, i. Inf. Comput., 100(1):1–40.

[Morandi et al., 2010] Morandi, B., Nanz, S., and Meyer, B. (2010). A formal refer-
ence for SCOOP. In Meyer, B. and Nordio, M., editors, LASER Summer School,
volume 7007 of Lecture Notes in Computer Science, pages 89–157. Springer.

[Mouratidis et al., 2005] Mouratidis, H., Kolp, M., Faulkner, S., and Giorgini, P.
(2005). A secure architectural description language for agent systems. In Dignum,
F., Dignum, V., Koenig, S., Kraus, S., Singh, M. P., and Wooldridge, M., editors,
4th International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2005), July 25-29, 2005, Utrecht, The Netherlands, pages 578–585. ACM.

[Mouratidis et al., 2010] Mouratidis, H., Kolp, M., Giorgini, P., and Faulkner, S.
(2010). An architectural description language for secure multi-agent systems. Web
Intelligence and Agent Systems, 8(1):99–122.

[Mousavi et al., 2004] Mousavi, M., Sirjani, M., and Arbab, F. (2004). Specification
and verification of component connectors. Technical Report CSR-04-15, Depart-
ment of Computer Science, Eindhoven University of Technology.

[Naumovich et al., 1997] Naumovich, G., Avrunin, G. S., Clarke, L. A., and Oster-
weil, L. J. (1997). Applying static analysis to software architectures. In Jazayeri,
M. and Schauer, H., editors, ESEC / SIGSOFT FSE, volume 1301 of Lecture Notes
in Computer Science, pages 77–93. Springer.

[Ölveczky et al., 2010] Ölveczky, P. C., Boronat, A., and Meseguer, J. (2010). Formal
semantics and analysis of behavioral aadl models in real-time maude. In Hatcliff,
J. and Zucca, E., editors, FMOODS/FORTE, volume 6117 of Lecture Notes in
Computer Science, pages 47–62. Springer.

240

[OMG, 1999] OMG (1999). The common object request broker: Architecture and
specification (corba 2.3.1 specification). Technical report, Object Management
Group.

[OMG, 2006] OMG (2006). CORBA component model 4.0 specification. Specification
Version 4.0, OMG.

[OMG, 2012a] OMG (2012a). Common object request broker architecture (CORBA)
specification, version 3.3 – Part 3: CORBA component model. Specification
formal/2012-11-16, OMG. //omg.org/spec/CORBA/3.3/.

[OMG, 2012b] OMG (2012b). Object Constraint Language (OCL), version 2.3.1.
http://www.omg.org/spec/OCL/.

[OSGi Alliance, 2012] OSGi Alliance (2012). OSGi core release 5. Specification. //
osgi.org/.

[Oussalah et al., 2004] Oussalah, M., Smeda, A., and Khammaci, T. (2004). An ex-
plicit definition of connectors for component-based software architecture. In ECBS,
pages 44–51. IEEE Computer Society.

[Pahl, 2001] Pahl, C. (2001). A pi-calculus based framework for the composition and
replacement of components. In In Workshop on Specification and Verification of
ComponentBased Systems (OOPSLA).

[Papazoglou et al., 2007] Papazoglou, M. P., Traverso, P., Dustdar, S., and Leymann,
F. (2007). Service-oriented computing: State of the art and research challenges.
IEEE Computer, 40(11):38–45.

[Pastor et al., 1995] Pastor, O., Ramos, I., and Cerdá, J. H. C. (1995). Oasis v2: A
class definition language. In Revell, N. and Tjoa, A. M., editors, DEXA, volume
978 of Lecture Notes in Computer Science, pages 79–90. Springer.

[Pei et al., 2014] Pei, Y., Furia, C. A., Nordio, M., Wei, Y., Meyer, B., and Zeller, A.
(2014). Automated fixing of programs with contracts. IEEE Trans. Software Eng.,
40(5):427–449.

[Pérez, 2006] Pérez, J. (2006). PRISMA: Aspect-Oriented Software Architectures.
PhD thesis, Universidad Politécnica de Valencia, Valencia.

[Pérez et al., 2003] Pérez, J., Ramos, I., Martínez, J. J., Letelier, P., and Navarro, E.
(2003). Prisma: Towards quality, aspect oriented and dynamic software architec-
tures. In QSIC, pages 59–66. IEEE Computer Society.

[Perry and Wolf, 1992] Perry, D. E. and Wolf, A. L. (1992). Foundations for the study
of software architecture. SIGSOFT Softw. Eng. Notes, 17(4):40–52.

[Plasil et al., 1998] Plasil, F., Bálek, D., and Janecek, R. (1998). Sofa/dcup: ar-
chitecture for component trading and dynamic updating. In CDS, pages 43–51.
IEEE.

[Plasil and Visnovsky, 2002] Plasil, F. and Visnovsky, S. (2002). Behavior protocols
for software components. IEEE Trans. Software Eng., 28(11):1056–1076.

[Pnueli, 1977] Pnueli, A. (1977). The temporal logic of programs. In FOCS, pages
46–57. IEEE Computer Society.

241

//omg.org/spec/CORBA/3.3/
http://www.omg.org/spec/OCL/
//osgi.org/
//osgi.org/

[Pnueli, 1985] Pnueli, A. (1985). Logics and models of concurrent systems. chapter
In transition from global to modular temporal reasoning about programs, pages
123–144. Springer-Verlag New York, Inc., New York, NY, USA.

[Pour, 1998] Pour, G. (1998). Workshop: Component-based software development:
Is it the next silver bullet? In TOOLS (26), page 491. IEEE Computer Society.

[Prieto-Díaz and Neighbors, 1986] Prieto-Díaz, R. and Neighbors, J. M. (1986). Mod-
ule interconnection languages. Journal of Systems and Software, 6(4):307–334.

[Pyarali and Schmidt, 1998] Pyarali, I. and Schmidt, D. C. (1998). An overview of
the corba portable object adapter. ACM StandardView, 6(1):30–43.

[Quintero et al., 2002] Quintero, C. E. C., de la Fuente, P., Barrio-Solórzano, M., and
Gutiérrez, M. E. B. (2002). Coordination in a reflective architecture description
language. In Arbab, F. and Talcott, C. L., editors, COORDINATION, volume 2315
of Lecture Notes in Computer Science, pages 141–148. Springer.

[Rademaker et al., 2005] Rademaker, A., de O. Braga, C., and Sztajnberg, A. (2005).
A rewriting semantics for a software architecture description language. Electr. Notes
Theor. Comput. Sci., 130:345–377.

[Rao and Georgeff, 1991] Rao, A. S. and Georgeff, M. P. (1991). Modeling rational
agents within a bdi-architecture. In Allen, J. F., Fikes, R., and Sandewall, E.,
editors, Proceedings of the 2nd International Conference on Principles of Knowledge
Representation and Reasoning (KR’91). Cambridge, MA, USA, April 22-25, 1991.,
pages 473–484. Morgan Kaufmann.

[Reussner et al., 2003] Reussner, R., Poernomo, I., and Schmidt, H. (2003). Reason-
ing about Software Architectures with Contractually Specified Components. In
Cechich, A., Piattini, M., and Vallecillo, A., editors, Component-Based Software
Quality, volume 2693 of Lecture Notes in Computer Science, page 287–325. Springer
Berlin Heidelberg.

[Richters, 2001] Richters, M. (2001). A Precise Approach to Validating UML Models
and OCL Constraints. PhD thesis, Universität Bremen, Fachbereich Mathematik
und Informatik.

[Ringert and Rumpe, 2011] Ringert, J. O. and Rumpe, B. (2011). A little synopsis
on streams, stream processing functions, and state-based stream processing. Int.
J. Software and Informatics, 5(1-2):29–53.

[Ringert et al., 2013] Ringert, J. O., Rumpe, B., and Wortmann, A. (2013). MontiAr-
cAutomaton : Modeling Architecture and Behavior of Robotic Systems. In Work-
shops and Tutorials Proceedings of the IEEE International Conference on Robotics
and Automation (ICRA), Karlsruhe, Germany.

[Rodríguez et al., 2005] Rodríguez, E., Dwyer, M. B., Flanagan, C., Hatcliff, J., Leav-
ens, G. T., and Robby (2005). Extending JML for modular specification and veri-
fication of multi-threaded programs. In Black, A. P., editor, ECOOP, volume 3586
of Lecture Notes in Computer Science, pages 551–576. Springer.

[Rosenblum, 1995] Rosenblum, D. S. (1995). A practical approach to programming
with assertions. IEEE Trans. Software Eng., 21(1):19–31.

242

[Rubin, 1990] Rubin, K. (1990). Reuse in software engineering: an object-oriented
perspective. In Compcon Spring ’90. Intellectual Leverage. Digest of Papers. Thirty-
Fifth IEEE Computer Society International Conference., pages 340–346.

[Rumbaugh et al., 1999] Rumbaugh, J. E., Jacobson, I., and Booch, G. (1999). The
unified modeling language reference manual. Addison-Wesley-Longman.

[Rumpe, 1996] Rumpe, B. (1996). Formale Methodik des Entwurfs verteilter objek-
torientierter Systeme, TUM Doktorarbeit. Herbert Utz Verlag Wissenschaft, ISBN
3-89675-149-2.

[Schreiner and Göschka, 2007] Schreiner, D. and Göschka, K. M. (2007). Explicit
connectors in component based software engineering for distributed embedded sys-
tems. In van Leeuwen, J., Italiano, G. F., van der Hoek, W., Meinel, C., Sack, H.,
and Plasil, F., editors, SOFSEM (1), volume 4362 of Lecture Notes in Computer
Science, pages 923–934. Springer.

[Shaw et al., 1995] Shaw, M., DeLine, R., Klein, D. V., Ross, T. L., Young, D. M.,
and Zelesnik, G. (1995). Abstractions for software architecture and tools to support
them. IEEE Trans. Software Eng., 21(4):314–335.

[Shaw and Garlan, 1996] Shaw, M. and Garlan, D. (1996). Software Architecture:
Perspectives on an Emerging Discipline.

[Smeda, 2010] Smeda, A. (2010). A formal definition of software architecture be-
havioral concepts. In Loucopoulos, P. and Cavarero, J.-L., editors, RCIS, pages
247–256. IEEE.

[Smeda et al., 2004] Smeda, A., Oussalah, M., and Khammaci, T. (2004). A multi-
paradigm approach to describe software systems. In Proceedings of the WSEAS
International Conferences on Software Engineering, Parallel and Distributed Sys-
tems, Salzburg, Austria.

[Soundarajan and Fridella, 1999] Soundarajan, N. and Fridella, S. (1999). Modeling
exceptional behavior. In France, R. B. and Rumpe, B., editors, UML, volume 1723
of Lecture Notes in Computer Science, pages 691–705. Springer.

[Spivey, 1992] Spivey, J. M. (1992). Z Notation - a reference manual (2. ed.). Prentice
Hall International Series in Computer Science. Prentice Hall.

[Stirling, 1992] Stirling, C. (1992). Handbook of logic in computer science (vol. 2).
chapter Modal and temporal logics, pages 477–563. Oxford University Press, Inc.,
New York, NY, USA.

[Stojanovic and Dahanayake, 2005] Stojanovic, Z. and Dahanayake, A. (2005).
Service-oriented Software System Engineering Challenges And Practices. IGI
Global, Hershey, PA, USA.

[Tavares and de Oliveira Valente, 2008] Tavares, A. L. C. and de Oliveira Valente,
M. T. (2008). A gentle introduction to OSGi. ACM SIGSOFT Software Engineering
Notes, 33(5).

[Taylor et al., 1996] Taylor, R. N., Medvidovic, N., Anderson, K. M., Jr., E. J. W.,
Robbins, J. E., Nies, K. A., Oreizy, P., and Dubrow, D. L. (1996). A component-
and message-based architectural style for gui software. IEEE Trans. Software Eng.,
22(6):390–406.

243

[Taylor et al., 2010] Taylor, R. N., Medvidovic, N., and Dashofy, E. M. (2010). Soft-
ware Architecture - Foundations, Theory, and Practice. Wiley.

[MontiArc, 2012] MontiArc (2012). Website. http://www.monticore.de/

languages/montiarc/.

[Xcd, 2013] Xcd (2013). Website. Maintained by Mert Ozkaya. Permanent URL:
http://www.staff.city.ac.uk/c.kloukinas/Xcd/.

[Tracz et al., 2002] Tracz, W., Young, M., and Magee, J., editors (2002). Proceedings
of the 22rd International Conference on Software Engineering, ICSE 2002, 19-25
May 2002, Orlando, Florida, USA. ACM.

[Tripakis, 2004] Tripakis, S. (2004). Undecidable problems of decentralized observa-
tion and control on regular languages. Inf. Process. Lett., 90(1):21–28.

[Tripakis and Courcoubetis, 1996] Tripakis, S. and Courcoubetis, C. (1996). Extend-
ing promela and spin for real time. In Proceedings of the Second International Work-
shop on Tools and Algorithms for Construction and Analysis of Systems, TACAs
’96, pages 329–348, London, UK, UK. Springer-Verlag.

[Tsai, 2005] Tsai, W. (2005). Service-oriented system engineering: a new paradigm.
In Service-Oriented System Engineering, 2005. SOSE 2005. IEEE International
Workshop, pages 3–6.

[Ubayashi et al., 2010] Ubayashi, N., Nomura, J., and Tamai, T. (2010). Archface:
A contract place where architectural design and code meet together. In Kramer,
J., Bishop, J., Devanbu, P. T., and Uchitel, S., editors, ICSE, pages 75–84. ACM.

[Uchitel et al., 2004] Uchitel, S., Kramer, J., and Magee, J. (2004). Incremental elab-
oration of scenario-based specifications and behavior models using implied scenar-
ios. ACM Trans. Softw. Eng. Methodol., 13(1):37–85.

[Vaandrager, 1993] Vaandrager, F. (1993). Expressiveness results for process alge-
bras. In de Bakker, J., de Roever, W.-P., and Rozenberg, G., editors, Semantics:
Foundations and Applications, volume 666 of Lecture Notes in Computer Science,
pages 609–638. Springer Berlin Heidelberg.

[van den Berg and Jacobs, 2001] van den Berg, J. and Jacobs, B. (2001). The LOOP
compiler for java and JML. In Margaria, T. and Yi, W., editors, Tools and Algo-
rithms for the Construction and Analysis of Systems, 7th International Conference,
TACAS 2001 Held as Part of the Joint European Conferences on Theory and Prac-
tice of Software, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceedings, volume
2031 of Lecture Notes in Computer Science, pages 299–312. Springer.

[van Ommering et al., 2000] van Ommering, R. C., van der Linden, F., Kramer, J.,
and Magee, J. (2000). The koala component model for consumer electronics soft-
ware. IEEE Computer, 33(3):78–85.

[Vestal, 1993] Vestal, S. (1993). A cursory overview and comparison of four architec-
ture description languages. Technical report, Honeywell Technology Center.

[Vestal, 2000] Vestal, S. (2000). Formal verification of the metah executive using lin-
ear hybrid automata. In IEEE Real Time Technology and Applications Symposium,
pages 134–144.

244

http://www.monticore.de/languages/montiarc/
http://www.monticore.de/languages/montiarc/
http://www.staff.city.ac.uk/c.kloukinas/Xcd/

[Vestal, 2005] Vestal, S. (2005). An overview of the architecture analysis & design
language (aadl) error model annex. In AADL Workshop.

[Vinoski, 1997] Vinoski, S. (1997). Corba: integrating diverse applications within dis-
tributed heterogeneous environments. Communications Magazine, IEEE, 35(2):46–
55.

[Wang et al., 2003] Wang, N., Schmidt, D. C., Gokhale, A. S., Gill, C. D., Natarajan,
B., Rodrigues, C., Loyall, J. P., and Schantz, R. E. (2003). Total quality of service
provisioning in middleware and applications. Microprocessors and Microsystems,
27(2):45–54.

[Whittaker and Thomason, 1994] Whittaker, J. A. and Thomason, M. G. (1994). A
markov chain model for statistical software testing. IEEE Trans. Softw. Eng.,
20(10):812–824.

[Wirth, 1975] Wirth, N. (1975). Algorithms + Data Structures = Programs. Prentice-
Hall.

[Woods and Hilliard, 2005] Woods, E. and Hilliard, R. (2005). Architecture descrip-
tion languages in practice session report. In Proceedings of the 5th Working IEEE/I-
FIP Conference on Software Architecture, WICSA ’05, pages 243–246, Washington,
DC, USA. IEEE Computer Society.

[Xu et al., 1997] Xu, Q., de Roever, W. P., and He, J. (1997). The rely-guarantee
method for verifying shared variable concurrent programs. Formal Asp. Comput.,
9(2):149–174.

[Yang et al., 2012] Yang, Q., Clarke, E. M., Komuravelli, A., and Li, M. (2012).
Assumption generation for asynchronous systems by abstraction refinement. In
Pasareanu, C. S. and Salaün, G., editors, FACS, volume 7684 of Lecture Notes in
Computer Science, pages 260–276. Springer.

[Yu and Li, 2005] Yu, Z. and Li, Z. (2005). Architecture description language based
on object-oriented petri nets for multi-agent systems. In Networking, Sensing and
Control, 2005. Proceedings. 2005 IEEE, pages 256–260.

[Zhu et al., 2012] Zhu, H., Xu, Q., Ma, C., Qin, S., and Qiu, Z. (2012). The re-
ly/guarantee approach to verifying concurrent BPEL programs. In Eleftherakis,
G., Hinchey, M., and Holcombe, M., editors, SEFM, volume 7504 of Lecture Notes
in Computer Science, pages 172–187. Springer.

245

	Introduction
	Introduction
	Motivation
	Research Question
	Thesis Goal
	Summary of the XCD Architecture Description Language
	Structure of the thesis
	Publications
	Contribution to the EU Project
	Summary

	Related Work
	Introduction
	Software Engineering Paradigms
	Analysis of Architecture Description Languages (ADLs)
	Informal Modelling Languages
	Design-by-Contract based Techniques
	Other Formal Design Approaches
	Summary

	Contractual, Reusable, Realisable Software Architectures
	Introduction
	The Structure of XCD
	Contractual Behaviour Specification
	High-level Semantics of XCD
	Summary

	Formal Representation of XCD
	Introduction
	XCD Syntax
	Rules for Valid XCD Specifications
	Formal Semantics of XCD– Mapping XCD to SPIN's ProMeLa
	Summary

	Tool Support for XCD
	Introduction
	Tool Architecture
	Tool Demonstration
	Checking Model Correctness via SPIN
	Summary

	Evaluation of XCD
	Introduction
	Gas Station Case Study
	Lunar Lander System Case Study
	Aegis Case Study
	English Auction Interaction Protocol
	Nuclear Power Plant
	Summary

	Discussion of XCD
	Introduction
	First-class Complex Connectors
	Glue-less Connectors for Realisable Architecture Specifications
	Design-by-Contract (DbC)
	Formal Semantics in SPIN's ProMeLa
	Summary of Contributions

	Conclusions
	Summary of the Thesis
	Further Work

	An Introduction to the ProMeLa Language
	Nuclear Power Plant System's Global Protocol in ProMeLa
	 SPIN's Verification Results for the Evaluated Case-studies
	Gas Station
	FIPA English Auction Protocol
	Nuclear Power Plant
	AEGIS Combat System

	Bibliography

 HistoryItem_V1
 PageTools

 Action: Rotate pages
 Range: all pages
 Rotate: 90° CCW
 Rotate only wide pages

 RotatePages
 2
 1
 Wide
 627
 308
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 R90

 Both
 AllDoc

 PDDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 1

 HistoryItem_V1
 PageSizes

 Action: Make all pages the same size
 Scale: Scale width and height equally
 Rotate: Clockwise if needed
 Size: 8.268 x 11.693 inches / 210.0 x 297.0 mm

 AllSame
 1

 D:20140417163257
 841.8898
 a4
 Blank
 595.2756

 Tall
 1
 0
 0
 627
 254
 qi3alphabase[QI 3.0/QHI 3.0 alpha]
 None
 Uniform

 AllDoc

 PDDoc

 QITE_QuiteImposingPlus3
 Quite Imposing Plus 3.0c
 Quite Imposing Plus 3
 1

 245
 244
 245

 1

 HistoryList_V1
 qi2base

