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Abstract

Recent self-supervised contrastive learning provides an

effective approach for unsupervised person re-identification

(ReID) by learning invariance from different views (trans-

formed versions) of an input. In this paper, we incorporate

a Generative Adversarial Network (GAN) and a contrastive

learning module into one joint training framework. While

the GAN provides online data augmentation for contrastive

learning, the contrastive module learns view-invariant fea-

tures for generation. In this context, we propose a mesh-

based view generator. Specifically, mesh projections serve

as references towards generating novel views of a per-

son. In addition, we propose a view-invariant loss to fa-

cilitate contrastive learning between original and gener-

ated views. Deviating from previous GAN-based unsuper-

vised ReID methods involving domain adaptation, we do

not rely on a labeled source dataset, which makes our

method more flexible. Extensive experimental results show

that our method significantly outperforms state-of-the-art

methods under both, fully unsupervised and unsupervised

domain adaptive settings on several large scale ReID dat-

sets. Source code and models are available under https:

//github.com/chenhao2345/GCL.

1. Introduction

A person re-identification (ReID) system is targeted at

identifying subjects across different camera views. In par-

ticular, given an image containing a person of interest (as

query) and a large set of images (gallery set), a ReID sys-

tem ranks gallery-images based on visual similarity with

the query. Towards this, ReID systems are streamlined to

bring to the fore discriminative representations, which al-

low for robust comparison of query and gallery images. In

this context, supervised ReID methods [4, 33] learn rep-

resentations guided by human-annotated labels, which is

time-consuming and cumbersome. Towards omitting such

human annotation, researchers increasingly place empha-

sis on unsupervised person ReID algorithms [35, 24, 27],

which learn directly from unlabeled images and thus allow

for scalability in real world deployments.

*Equal contribution.

Figure 1: Left: Traditional self-supervised contrastive learning

maximizes agreement between representations (f1 and f2) of aug-

mented views from Data Augmentation (DA). Right: Joint gener-

ative and contrastive learning maximizes agreement between orig-

inal and generated views.

Recently, self-supervised contrastive methods [16, 6]

have provided an effective retrieval-based approach for

unsupervised representation learning. Given an image,

such methods maximize agreement between two augmented

views of one instance (see Fig. 1). Views refer to trans-

formed versions of the same input. As shown in very re-

cent works [6, 7], data augmentation enables a network

to explore view-invariant features by providing augmented

views of a person, which are instrumental in building ro-

bust representations. Such and similar methods considered

traditional data augmentation techniques, e.g., ‘random flip-

ping’, ‘cropping’, and ‘color jittering’. Generative Adver-

sarial Networks (GANs) [15] constitute a novel approach

for data augmentation. As opposed to traditional data aug-

mentation, GANs are able to modify id-unrelated features

substantially, while preserving id-related features, which is

highly beneficial in contrastive ReID.

Previous GAN-based methods [1, 9, 54, 25, 41, 49]

considered unsupervised ReID as an unsupervised domain

adaptation (UDA) problem. Under the UDA setting, re-

searchers used both, a labeled source dataset, as well as an

unlabeled target dataset to gradually adjust a model from a

source domain into a target domain. GANs can be used

in cross-domain style transfer, where labeled source do-

main images are generated in the style of a target domain.

However, the UDA setting necessitates a large-scale labeled

source dataset. Scale and quality of the source dataset
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strongly affect the performance of UDA methods. Recent

research has considered fully unsupervised ReID [35, 24],

where under the fully unsupervised setting, a model directly

learns from unlabeled images without any identity labels.

Self-supervised contrastive methods [16, 6] belong to this

category. In this work, we use a GAN as a novel view gen-

erator for contrastive learning, which does not require a la-

beled source dataset.

Here, we aim at enhancing view diversity for contrastive

learning via generation under the fully unsupervised set-

ting. Towards this, we introduce a mesh-based novel view

generator. We explore the possibility of disentangling a

person image into identity features (color distribution and

body shape) and structure features (pose and view-point)

under the fully unsupervised ReID setting. We estimate

3D meshes from unlabeled training images, then rotate

these 3D meshes to simulate new structures. Compared to

skeleton-guided pose transfer [14, 25], which neglects body

shape, mesh recovery [21] jointly estimates pose and body

shape. Estimated meshes preserve body shape during the

training, which facilitates the generation and provides more

visual clues for fine-grained ReID. Novel views can be gen-

erated by combining identity features with new structures.

Once we obtain the novel views, we design a pseudo la-

bel based contrastive learning module. With the help of our

proposed view-invariant loss, we maximize representation

similarity between original and generated views of a same

person, whereas representation similarity of other persons

is minimized.

Our proposed method incorporates generative and con-

trastive modules into one framework, which are trained

jointly. Both modules share the same identity feature en-

coder. The generative module disentangles identity and

structure features, then generates diversified novel views.

The novel views are then used in the contrastive module

to improve the capacity of the shared identity feature en-

coder, which in turn improves the generation quality. Both

modules work in a mutual promotion way, which signifi-

cantly enhances the performance of the shared identity fea-

ture encoder in unsupervised ReID. Moreover, our method

is compatible with both UDA and fully unsupervised set-

tings. With a labeled source dataset, we obtain better per-

formance by alleviating the pseudo label noise.

Our contributions can be summarized as follows.

1. We propose a joint generative and contrastive learn-

ing framework for unsupervised person ReID. Gener-

ative and contrastive modules mutually promote each

other’s performance.

2. In the generative module, we introduce a 3D mesh

based novel view generator, which is more effective

in body shape preservation than skeleton-guided gen-

erators.

3. In the contrastive module, a view-invariant loss is pro-

posed to reduce intra-class variation between original

and generated images, which is beneficial in building

view-invariant representations under a fully unsuper-

vised ReID setting.

4. We overcome the limitation of previous GAN-based

unsupervised ReID methods that strongly rely on a la-

beled source dataset. Our method significantly sur-

passes the performance of state-of-the-art methods un-

der both, fully unsupervised, as well as UDA settings.

2. Related Work

Unsupervised representation learning. Recent con-

trastive instance discrimination methods [44, 16, 6] have

witnessed a significant progress in unsupervised represen-

tation learning. The basic idea of instance discrimination

has to do with the assumption that each image is a single

class. Contrastive predictive coding (CPC) [30] included

an InfoNCE loss to measure the ability of a model to clas-

sify positive representation amongst a set of unrelated neg-

ative samples, which has been commonly used in following

works on contrastive learning. Recent contrastive methods

treated unsupervised representation learning as a retrieval

task. Representations can be learnt by matching augmented

views of a same instance from a memory bank [44, 16] or a

large mini-batch [6]. MoCoV2 [7] constitutes the improved

version of the MoCo [16] method, incorporating larger data

augmentation. We note that data augmentation is pertinent

in allowing a model to learn robust representations in con-

trastive learning. However, only traditional data augmenta-

tion was used in aforementioned methods.

Data augmentation. MoCoV2 [7] used ‘random crop’,

‘random color jittering’, ‘random horizontal flip’, ‘ran-

dom grayscale’ and ‘gaussian blur’. However, ‘random

color jittering’ and ‘grayscale’ were not suitable for fine-

grained person ReID, because such methods for data aug-

mentation tend to change the color distribution of origi-

nal images. In addition, ‘Random Erasing’ [48] has been

a commonly used technique in person ReID, which ran-

domly erases a small patch from an original image. Cross-

domain Mixup [29] interpolated source and target domain

images, which alleviated the domain gap in UDA ReID. Re-

cently, Generative Adversarial Networks (GANs) [15] have

shown great success in image [23, 22, 2] and video syn-

thesis [34, 37, 3, 39, 38]. GAN-based methods can serve

as a method for evolved data augmentation by condition-

ally modifying id-unrelated features (style and structure)

for supervised ReID. CamStyle [52] used the CycleGAN-

architecture [53] in order to transfer images from one cam-

era into the style of another camera. FD-GAN [14] was tar-

geted to generate images in a pre-defined pose, so that im-

ages could be compared in the same pose. IS-GAN [10] was
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streamlined to disentangle id-related and id-unrelated fea-

tures by switching both local and global level identity fea-

tures. DG-Net [47] recolored grayscale images with a color

distribution of other images, targeting to disentangle iden-

tity features. Deviating from such supervised GAN-based

methods, our method generates novel views by rotating 3D

meshes in an unsupervised manner.

Unsupervised person ReID. Recent unsupervised person

ReID methods were predominantly based on UDA. Among

UDA-based methods, several works [36, 26] used seman-

tic attributes to facilitate domain adaptation. Other works

[43, 12, 5, 45, 13] assigned pseudo labels to unlabeled im-

ages and proceeded to learn representations with pseudo la-

bels. Transferring source dataset images into the style of

a target dataset represents another line of research. SP-

GAN [9] and PTGAN [41] used CycleGAN [53] as do-

main style transfer-backbone. HHL [49] aims at transfer-

ring cross-dataset camera styles. ECN [50, 51] exploited

invariance from camera style transferred images for UDA

ReID. CR-GAN [8] employed parsing-based masks to re-

move noisy backgrounds. PDA [25] included skeleton es-

timation to generate person images with different poses

and cross-domain styles. DG-Net++ [54] jointly disentan-

gled id-related/id-unrelated features and transferred domain

styles. While the latter is related to our our method, we aim

at training jointly a GAN-based online data augmentation,

as well as a contrastive discrimination, which renders the

labeled source dataset unnecessary, rather than transferring

style.

Fully unsupervised methods do not require any identity

labels. BUC [27] represented each image as a single class

and gradually merged classes. In addition, TSSL [42] con-

sidered each tracklet as a single class to facilitate cluster

merging. SoftSim [28] utilized similarity-based soft labels

to alleviate label noise. MMCL [35] assigned multiple bi-

nary labels and trained a model in a multi-label classifica-

tion way. JVTC and JVTC+ [24] added temporal informa-

tion to refine visual similarity based pseudo labels. We note

that all aforementioned fully unsupervised methods learn

from pseudo labels. We show in this work that disentan-

gling view-invariant identity features is possible in fully un-

supervised ReID, which can be an add-on to boost the per-

formance of previous pseudo label based methods.

3. Proposed Method

We refer to our proposed method as joint Generative and

Contrastive Learning as GCL. The general architecture of

GCL comprises of two modules, namely a View Genera-

tor, as well as a View Contrast Module, see Fig. 2. Firstly,

the View Generator uses cycle-consistency on both, image

and feature reconstructions in order to disentangle identity

and structure features. It combines identity features and

mesh-guided structure features to generate one person in

new view-points. Then, original and generated views are

exploited as positive pairs in the View Contrast Module,

which enables our network to learn view-invariant identity

features. We proceed to elaborate on both modules in the

following.

3.1. View Generator (Generative Module)

As shown in Fig. 2, the proposed View Generator in-

corporates 4 networks: an identity encoder Eid, a struc-

ture encoder Estr, a decoder G and an image discrimi-

nator D. Given an unlabeled person ReID dataset X =
{x1, x2, ..., xN}, we generate corresponding 3D meshes

with a popular 3D mesh generator Human Mesh Recovery

(HMR) [21], which simultaneously estimates body shape

and pose from a single RGB image. Here, we denote

the 2D projection of a 3D mesh as original structure sori.
Then, as depicted in Fig. 3, we rotate each 3D mesh by

45°, 90°, 135°, 180°, 225°, 270° and 315°, respectively and

proceed to randomly pick one 2D projection of these ro-

tated meshes as a new structure snew. We use the 3D

mesh rotation to mimic view-point variance from differ-

ent cameras. Next, unlabeled images are encoded to iden-

tity features by the identity encoder Eid : x → fid,

while both original and new structures are encoded to struc-

ture features by the structure encoder Estr : sori →
fstr(ori), snew → fstr(new). Combining both, identity and

structure features, the decoder generates synthesized im-

ages G : (fid, fstr(ori)) → x′
ori, (fid, fstr(new)) → x′

new,

where a prime is used to represent generated images.

Given the lack of real images corresponding to the

new structures, we consider a cycle consistency [53] to

reconstruct the original image by swapping the structure

features in the View Generator. We encode and decode

once again to get synthesized images in original structures

G(Eid(x
′
new), sori) → x′′

ori. We calculate an image recon-

struction loss as follows.

Limg = E[‖x− x′
ori‖1] + E[‖x− x′′

ori‖1] (1)

In addition, we compute a feature reconstruction loss

Lfeat =E[‖fid − Eid(x
′
new)‖1]+

E[‖fid − Eid(x
′′
ori)‖1].

(2)

The discriminator D attempts to distinguish between real

and generated images with the adversarial loss

Ladv =E[logD(x) + log(1−D(x′
ori))]+

E[logD(x) + log(1−D(x′
new))]+

E[logD(x) + log(1−D(x′′
ori))].

(3)

Consequently, the overall GAN loss combines the above

named losses with weighting coefficients λimg and λfeat

Lgan = λimgLimg + λfeatLfeat + Ladv. (4)
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Figure 2: (a) General architecture of GCL: Generative and contrastive modules are coupled by the shared identity encoder Eid. (b)

Generative module: The decoder G combines the identity features encoded by Eid and structure features Estr to generate a novel view

x′

new with a cycle consistency. (c) Contrastive module: View-invariance is enhanced by maximizing the agreement between original

Eid(x), synthesized Eid(x
′

new) and memory fpos representations.

Figure 3: Example images as generated by the View Generator via

3D mesh rotation based on left input image.

3.2. View Contrast (Contrastive Module)

The previous reconstruction and adversarial losses work

in an unconditional manner. They only explore identity fea-

tures within the original view-point, which renders appear-

ance representations view-variant. In rotating an original

mesh to a different view-point, e.g., from front to side view-

point, the generation is prone to fail due to lack of informa-

tion pertained to the side view. This issue can be alleviated

by enhancing the view-invariance of representations.

Given an anchor image x, the first step is to find pos-

itive images that belong to the same identity and negative

images that belong to different identities. Here, we store all

instance representations in a memory bank [44], which sta-

bilizes pseudo labels and enlarges the number of negatives

during the training with mini-batches. The memory bank

M is updated with a momentum coefficient α.

M[i]t = α · M[i]t−1 + (1− α) · f t (5)

where M[i]t and M[i]t−1 respectively refer to the identity

feature vector in the t and t− 1 epochs.

We use a clustering algorithm DBSCAN [11] on all

memory bank feature vectors to generate pseudo identity

labels Y = {y1, y2, ..., yJ}, which are renewed at the be-

ginning of every epoch. Given the obtained pseudo la-

bels, we have Npos positive and Nneg negative instances

for each training instance. Npos and Nneg vary for differ-

ent instances. For simplicity in a mini-batch training, we

fix common positive and negative numbers for every train-

ing instance. Given an image x, we randomly sample K
instances that have different pseudo identities and one in-

stance representation fpos that has the same pseudo identity

with x from the memory bank. Note that fpos is from a ran-

dom positive image that usually has a pose and camera style

different from x and x′
new. x and x′

new are encoded by Eid

into identity feature vectors f and f ′
new. Next, f , f ′

new and

fpos are used in turn to form three positive pairs. The f ′
new

and K different identity instances in the memory bank are

used as K negative pairs. Towards learning robust view-

invariant representations, we extend the InfoNCE loss [30]

into a view-invariant loss between original and generated

views. We use sim(u, v) = u
‖u‖

2

· v
‖v‖

2

to denote the cosine

similarity. We define the view-invariant loss as a softmax

log loss of K + 1 pairs as following.

Lvi = E[log (1 +

∑K
i=1 exp (sim(f ′

new, ki)/τ)

exp (sim(f, fpos)/τ)
)] (6)

L′
vi = E[log (1 +

∑K
i=1 exp (sim(f ′

new, ki)/τ)

exp (sim(f ′
new, f)/τ)

)] (7)
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L′′
vi = E[log (1 +

∑K
i=1 exp (sim(f ′

new, ki)/τ)

exp (sim(f ′
new, fpos)/τ)

)], (8)

where τ indicates a temperature coefficient that controls the

scale of calculated similarities. Lvi maximizes the invari-

ance between original and memory positive views. L′
vi

maximizes the invariance between synthesized and origi-

nal views. L′′
vi maximizes the invariance between synthe-

sized and memory positive views. Meanwhile, the synthe-

sized view is pushed away from K negative views in the

latent space. Replacing sim(f ′
new, ki) in Eq. 6, Eq. 7 and

Eq. 8 with sim(f, ki) is another possibility, which pushes

away the original view from negative instances. After test-

ing, sim(f ′
new, ki) works better, because pushing away the

synthesized view from negative instances aid the generation

of more accurate synthesized views that look different from

the K negative instances.

3.3. Joint Training

Our proposed GCL framework is trained in a joint train-

ing way. Both GAN and contrastive instance discrimination

can be trained in a self-supervised manner. While the GAN

learns a data distribution via adversarial learning on each in-

stance, contrastive instance discrimination learns represen-

tations by retrieving each instance from candidates. In our

designed joint training, the two modules work as two col-

laborators with the same objective: enhancing the quality

of representations built by the shared identity encoder Eid.

We formulate our GCL as an approach to augment contrast

for unsupervised ReID. Firstly, the generative module gen-

erates online data augmentation, which enhances the pos-

itive view diversity for contrastive module. Secondly, the

contrastive module, in turn, learns view-invariant represen-

tations by matching original and generated views, which re-

fine the generation quality. The joint training boosts both

modules simultaneously. Our joint training conducts for-

ward propagation initially on the generative module and

subsequently on the contrastive module. Back-propagation

is then conducted with an overall loss that combines Eq. 4,

Eq. 6, Eq. 7 and Eq. 8.

Lall = Lgan + Lvi + L′
vi + L′′

vi (9)

To accelerate the training process and alleviate the noise

from imperfect generation quality at beginning epochs, we

need to warm up the four modules used in the View Gen-

erator Eid, Estr, G and D. We firstly use a state-of-the-art

unsupervised ReID method to warm up Eid, which is then

considered as a baseline in our ablation studies. Generally

speaking, any unsupervised ReID method can be used to

warm up Eid. Before conducting the View Contrast, we

freeze Eid and warm up Estr, G, and D only with GAN

loss in Eq. 4 for 40 epochs. In the following, we bring in

the memory bank and the pseudo labels to jointly train the

whole framework with Lall for another 20 epochs. During

the joint training, pseudo labels are updated at the beginning

of every epoch.

4. Experiments

4.1. Datasets and Evaluation Protocols

Three mainstream person ReID datasets are consid-

ered in our experiments, including Market-1501 [46],

DukeMTMC-reID [31] and MSMT17 [41]. Market-1501

is composed of 12,936 images of 751 identities for training

and 19,732 images of 750 identities for test captured from 6

cameras. DukeMTMC-reID contains 16,522 images of 702

persons for training, 2,228 query images and 17,661 gallery

images of 702 persons for test from 8 cameras. MSMT17 is

a larger dataset, which contains 32,621 training images of

1,041 identities and 93,820 testing images of 3,060 identi-

ties collected from 15 cameras.

Following state-of-the-art unsupervised ReID methods

[35, 24], we evaluate our proposed method GCL under

fully unsupervised setting on the three datasets and under

four UDA benchmark protocols, including Market→Duke,

Duke→Market, Market→MSMT and Duke→MSMT. We

report both quantitative and qualitative results for unsuper-

vised person ReID and view generation.

4.2. Implementation Details

We firstly present network design details of Eid, Estr, G
and D. In the following descriptions, we write the size of

feature maps in channel×height×width. Our model design

is mainly inspired by [47, 54]. (1) Eid is a ImageNet [32]

pre-trained ResNet50 [17] with slight modifications. The

original fully connected layer is replaced by a fully con-

nected embedding layer, which outputs identity representa-

tions f in 512×1×1 for the View Contrast. In parallel, we

add a part average pooling that outputs identity features fid
in 2048×4×1 for the View Generator. (2) Estr is composed

of four convolutional and four residual layers, which out-

put structure features fstr in 128×64×32. (3) G contains

four residual and four convolutional layers. Every residual

layer contains two adaptive instance normalization layers

[19] that transform fid into scale and bias parameters. (4)

D is a multi-scale PatchGAN [20] discriminator at 64×32,

128×64 and 256×128.

Then, we present the training and testing configuration

details. Our framework is implemented in Pytorch and

trained with one Nvidia Titan RTX GPU. (1) For the Eid

warm-up, we consider JVTC [24], because it is a state-

of-the-art ReID method that is compatible with both fully

unsupervised and UDA settings. We also test other base-

lines, e.g., MMCL [35] and ACT [45] to demonstrate the

generalizability of our method. (2) For training, inputs are

resized to 256×128. We empirically set a large weight

λimg = λfeat = 5 for reconstruction in Eq. 4. With a batch

size of 16, we use SGD to train Eid and Adam optimizer to
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Method Reference
Market1501 DukeMTMC-reID

Source mAP Rank1 Rank5 Rank10 Source mAP Rank1 Rank5 Rank10

BUC [27] AAAI’19 None 29.6 61.9 73.5 78.2 None 22.1 40.4 52.5 58.2

SoftSim [28] CVPR’20 None 37.8 71.7 83.8 87.4 None 28.6 52.5 63.5 68.9

TSSL [42] AAAI’20 None 43.3 71.2 - - None 38.5 62.2 - -

MMCL [35] CVPR’20 None 45.5 80.3 89.4 92.3 None 40.2 65.2 75.9 80.0

JVTC [24] ECCV’20 None 41.8 72.9 84.2 88.7 None 42.2 67.6 78.0 81.6

JVTC+ [24] ECCV’20 None 47.5 79.5 89.2 91.9 None 50.7 74.6 82.9 85.3

MMCL* This paper None 45.1 79.5 89.0 91.9 None 40.9 64.8 75.2 79.8

JVTC* This paper None 47.2 75.4 86.7 90.5 None 43.9 66.8 77.6 81.0

JVTC+* This paper None 50.9 79.1 89.8 92.9 None 52.8 74.9 83.3 85.8

ours(MMCL*) This paper None 54.9 83.7 91.6 94.0 None 49.3 69.7 79.7 82.8

ours(JVTC*) This paper None 63.4 83.7 91.6 94.3 None 53.3 72.4 82.0 84.9

ours(JVTC+*) This paper None 66.8 87.3 93.5 95.5 None 62.8 82.9 87.1 88.5

ECN [50] CVPR’19 Duke 43.0 75.1 87.6 91.6 Market 40.4 63.3 75.8 80.4

PDA [25] ICCV’19 Duke 47.6 75.2 86.3 90.2 Market 45.1 63.2 77.0 82.5

CR-GAN [8] ICCV’19 Duke 54.0 77.7 89.7 92.7 Market 48.6 68.9 80.2 84.7

SSG [12] ICCV’19 Duke 58.3 80.0 90.0 92.4 Market 53.4 73.0 80.6 83.2

MMCL [35] CVPR’20 Duke 60.4 84.4 92.8 95.0 Market 51.4 72.4 82.9 85.0

ACT [45] AAAI’20 Duke 60.6 80.5 - - Market 54.5 72.4 - -

DG-Net++ [54] ECCV’20 Duke 61.7 82.1 90.2 92.7 Market 63.8 78.9 87.8 90.4

JVTC [24] ECCV’20 Duke 61.1 83.8 93.0 95.2 Market 56.2 75.0 85.1 88.2

ECN+ [51] PAMI’20 Duke 63.8 84.1 92.8 95.4 Market 54.4 74.0 83.7 87.4

JVTC+ [24] ECCV’20 Duke 67.2 86.8 95.2 97.1 Market 66.5 80.4 89.9 92.2

MMT [13] ICLR’20 Duke 71.2 87.7 94.9 96.9 Market 65.1 78.0 88.8 92.5

CAIL [29] ECCV’20 Duke 71.5 88.1 94.4 96.2 Market 65.2 79.5 88.3 91.4

ACT* This paper Duke 59.1 78.8 88.9 91.7 Market 51.5 70.9 80.0 83.4

JVTC* This paper Duke 65.0 85.7 93.6 95.6 Market 56.5 73.9 84.5 87.7

JVTC+* This paper Duke 67.6 87.0 95.2 97.0 Market 66.7 81.0 89.9 91.5

ours(ACT*) This paper Duke 66.7 83.9 91.4 93.4 Market 55.4 71.9 81.6 84.6

ours(JVTC*) This paper Duke 73.4 89.1 95.0 96.6 Market 60.4 77.2 86.2 88.4

ours(JVTC+*) This paper Duke 75.4 90.5 96.2 97.1 Market 67.6 81.9 88.9 90.6

Table 1: Comparison of unsupervised ReID methods (%) with a ResNet50 backbone on Market and Duke datasets. We test our proposed

method on several baselines, whose names are in brackets. * refers to our implementation based on authors’ code.

train Estr, G and D. Learning rate is set to 1×10−4 during

the warm-up. In the joint-training, learning rate in Adam is

set to 1 × 10−4 and 3.5 × 10−4 in SGD and are multiplied

by 0.1 after 10 epochs. (3) In the View Contrast module,

we set the momentum coefficient α = 0.2 in Eq. 5 and the

temperature τ = 0.04 in Eq. 6. The number of negatives K
is 8192. DBSCAN density radius is set to 2×10−3. (4) For

testing, only Eid is conserved and outputs representations f
of dimension 512.

Important parameters are set by a grid search on the fully

unsupervised Market-1501 benchmark. The temperature τ
is searched from {0.03, 0.04, 0.05, 0.06, 0.07} and finally

is set to 0.04. A smaller τ increases the scale of similarity

scores in the Eq. 6, Eq. 7 and Eq. 8, which makes view-

invariant losses more sensitive to inter-instance difference.

However, when τ is set to 0.03, these losses become too

sensitive and make the training unstable. The number of

negatives K is searched from {2048, 4096, 8192}. A larger

K pushes away more negatives in the view-invariant losses.

Since the Market-1501 dataset has only 12936 training im-

ages, we set K = 8192.

4.3. Unsupervised ReID Evaluation

Comparison with state-of-the-art methods. Tab. 1

shows the quantitative results on the Market-1501 and

DukeMTMC-reID datasets. Tab. 2 shows the quantitative

results on the MSMT17 dataset. Our method is mainly de-

signed for fully unsupervised ReID. Under this setting, we

test the performance of GCL with three different baselines,

including MMCL, JVTC and JVTC+. Our implementation

of the three baselines provides results that are slightly dif-

ferent from those mentioned in the corresponding papers.

Thus, we firstly report results of our implementations and

then add our GCL on these baselines. Our method improves

the performance of the baselines by large margins. These

improvements show that GANs are not limited to cross-

domain style transfer for unsupervised ReID.

Under the UDA setting, we also evaluate the perfor-

mance of GCL with three different baselines, including

ACT, JVTC and JVTC+. The labeled source dataset is only

used to warm up our identity encoder Eid, but not used

in our joint generative and contrastive training. Compared

to fully unsupervised methods, the UDA warmed Eid is

stronger and extracts improved identity features. Thus, the

performance of UDA methods is generally higher than fully

unsupervised methods. With a strong baseline JVTC+, our

GCL achieves state-of-the-art performance.
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Method Reference
MSMT17

Source mAP R1 R5 R10

MMCL [35] CVPR’20 None 11.2 35.4 44.8 49.8

JVTC [24] ECCV’20 None 15.1 39.0 50.9 56.8

JVTC+ [24] ECCV’20 None 17.3 43.1 53.8 59.4

JVTC* This paper None 13.4 36.0 48.8 54.9

JVTC+* This paper None 16.3 40.4 55.6 61.8

ours(JVTC*) This paper None 18.0 41.6 53.2 58.4

ours(JVTC+*) This paper None 21.3 45.7 58.6 64.5

ECN [50] CVPR’19 Market 8.5 25.3 36.3 42.1

SSG [12] ICCV’19 Market 13.2 31.6 49.6 -

MMCL [35] CVPR’20 Market 15.1 40.8 51.8 56.7

ECN+ [51] PAMI’20 Market 15.2 40.4 53.1 58.7

JVTC [24] ECCV’20 Market 19.0 42.1 53.4 58.9

DG-Net++ [54] ECCV’20 Market 22.1 48.4 60.9 66.1

CAIL [29] ECCV’20 Market 20.4 43.7 56.1 61.9

MMT [13] ICLR’20 Market 22.9 49.2 63.1 68.8

JVTC+ [24] ECCV’20 Market 25.1 48.6 65.3 68.2

JVTC* This paper Market 17.1 39.6 53.3 59.3

JVTC+* This paper Market 20.5 44.0 59.5 71.1

ours(JVTC*) This paper Market 21.5 45.0 57.1 66.5

ours(JVTC+*) This paper Market 27.0 51.1 63.9 69.9

ECN [50] CVPR’19 Duke 10.2 30.2 41.5 46.8

SSG [12] ICCV’19 Duke 13.3 32.2 51.2 -

MMCL [35] CVPR’20 Duke 16.2 43.6 54.3 58.9

ECN+ [51] PAMI’20 Duke 16.0 42.5 55.9 61.5

JVTC [24] ECCV’20 Duke 20.3 45.4 58.4 64.3

DG-Net++ [54] ECCV’20 Duke 22.1 48.8 60.9 65.9

MMT [13] ICLR’20 Duke 23.3 50.1 63.9 69.8

CAIL [29] ECCV’20 Duke 24.3 51.7 64.0 68.9

JVTC+ [24] ECCV’20 Duke 27.5 52.9 70.5 75.9

JVTC* This paper Duke 19.9 45.4 59.1 64.9

JVTC+* This paper Duke 23.6 49.4 65.2 71.1

ours(JVTC*) This paper Duke 24.9 50.8 63.4 68.9

ours(JVTC+*) This paper Duke 29.7 54.4 68.2 74.2

Table 2: Comparison of unsupervised Re-ID methods (%) with a

ResNet50 backbone on MSMT17. * refers to our implementation

based on authors’ code.

Ablation Study. To better understand the contribution of

generative and contrastive modules, we conduct ablation

experiments on the two fully unsupervised benchmarks:

Market-1501 and DukeMTMC-reID. Quantitative results

with a JVTC baseline are reported in Tab. 3. By gradually

adding loss functions on the baseline, our ablation experi-

ments correspond to three scenarios. (1) Only Generation:

with only Lgan, our generation module disentangles iden-

tity and structure features. Since there is no inter-view con-

straint, Eid tends to extract view-specific identity features,

which decreases the ReID performance. (2) Only Contrast:

we use LwoGAN
vi = E[log (1 +

∑
K
i=1

exp (sim(f,ki)/τ)

exp (sim(f,fpos)/τ)
)] to

train our contrastive module without generation. We also

add a set of traditional data augmentation, including random

flipping, cropping, jittering, erasing, to train our contrastive

module like a traditional memory bank based contrastive

method. (3) Joint Generation and Contrast: Lvi, L
′
vi and

L′′
vi enhance the view-invariance of identity representations

between original, synthesized and memory-stored positive

views, while negative views are pushed away. We provide

how view-invariant representations learned from generated

views affect pseudo labels in Appendix B.

Loss
Market-1501 DukeMTMC-reID

mAP Rank1 mAP Rank1

Baseline 47.2 75.4 43.9 66.8

+Lgan 41.6 69.0 25.8 45.9

+LwoGAN
vi 47.8 75.2 44.1 67.8

+LwoGAN
vi + TDA 53.7 78.7 48.5 70.0

+Lgan + Lvi 54.1 79.4 47.4 68.4

+Lgan + Lvi + L′
vi 59.2 82.2 50.5 71.0

+Lgan + Lvi + L′
vi + L′′

vi 63.4 83.7 53.3 72.4

Table 3: Ablation study on loss functions used in two modules.

(1). Lgan corresponds to generation w/o contrast. (2). L
woGAN
vi

corresponds to contrast w/o generation. TDA denotes traditional

data augmentation. (3). Lgan + Lvi (L′

vi and L
′′

vi) correspond to

joint generative and contrastive learning.

Figure 4: Qualitative ablation study on the view-invariant losses.

For simplicity, Lvi denotes three view-invariant losses Lvi+L
′

vi+
L

′′

vi, which helps Eid to extract view-invariant features (red shirt).

Method FID(realism) SSIM(diversity)

Real 7.22 0.350

FD-GAN [14] 216.88 0.271

IS-GAN [10] 281.63 0.165

DG-Net [47] 18.24 0.360

Ours(U) 59.86 0.367

Ours(UDA) 53.07 0.369

Table 4: Comparison of FID (lower is better) and SSIM (higher is

better) on Market-1501 dataset. U denotes the fully unsupervised

setting. UDA denotes Duke→Market setting.

We also conduct a qualitative ablation study, where syn-

thesized novel views without and with view-invariant losses

are illustrated in Fig. 4. Results confirm that Eid extracts

view-specific identity features (black bag), in the case that

view-invariant losses are not used. Given view-invariant

losses, Eid is able to extract view-invariant identity features

(red shirt). Another example is provided in Appendix C.

4.4. Generation Quality Evaluation

Comparison with state-of-the-art methods. We com-

pare generated images between our proposed GCL under

the JVTC [24] warmed fully unsupervised setting and state-

of-the-art GAN-based ReID methods in Fig. 5. FD-GAN

[14], IS-GAN [10] and DG-Net [47] are supervised Re-ID

methods. Since the source code of these three methods is

available, we compare generated images of same identities.

We observe that there exists blur in images generated by
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Figure 5: Comparison of the generated images on Market-1501 dataset. ⋆ refers to methods without sharing source code, whose examples

are cropped from their papers. Examples of FD-GAN, IS-GAN, DG-Net and GCL are generated from six real images shown in the figure.

Figure 6: Generated novel views on the three datasets.

FD-GAN and IS-GAN. DG-Net generates sharper images,

but different body shapes and some incoherent objects (bags

and clothes) are observed. PDA [25] and DG-Net++ [54]

are UDA methods, whose source code is not yet released.

We can only compare several generated images with un-

known identities as illustrated in their papers. PDA gener-

ates blurred cross-domain images, whose quality is similar

to FD-GAN and IS-GAN. DG-Net++ extends DG-Net into

cross-domain generation, which has same problems of body

shape and incoherent objects. Our GCL preserves better

body shape information and does not generate incoherent

objects. Moreover, our GCL is a fully unsupervised method.

We use Fréchet Inception Distance (FID) [18] to mea-

sure visual quality, as well as Structural SIMilarity (SSIM)

[40] to capture structure diversity of generated images. In

Tab. 4, we compare our method with FD-GAN [14], IS-

GAN [10] and DG-Net [47], whose source code is avail-

able. FID measures the distribution distance between gen-

erated and real images, where a lower FID represents the

case, where generated images are similar to real ones. SSIM

measures the intra-class structural similarity, where a larger

SSIM represents a larger diversity. We note that DG-Net

is outperforms our method w.r.t. FID, because the distribu-

tion is better maintained with ground truth identities in the

supervised method DG-Net. However, our method is supe-

rior to DG-Net w.r.t. SSIM, as DG-Net swaps intra-dataset

structures, whereas our rotated meshes build structures that

do not exist in the original dataset.

Figure 7: Linear interpolation on identity features. Identity fea-

tures are swapped between left and right persons.

More discussion. To validate, whether identity and struc-

ture features can be really disentangled under a fully unsu-

pervised ReID setting, two experiments are conducted by

changing firstly only structure features and then only iden-

tity features. Results in Fig. 6 show that changing structure

features only change structures and do not affect appear-

ances. We also fix structure features and linearly interpolate

two random identity feature vectors. Results in Fig. 7 show

that identity features only change appearances and do not

affect structures in generated images. More examples are

provided in Appendix D.

5. Conclusions

In this paper, we propose a joint generative and con-

trastive learning framework for unsupervised person ReID.

Deviating from previous contrastive methods with tradi-

tional data augmentation techniques, we generate diversi-

fied views with a 3D mesh guided GAN. These generated

novel views are then combined with original images in

memory based contrastive learning, in order to learn view-

invariant representations, which in turn improve generation

quality. Our generative and contrastive modules mutually

promote each other’s performance in unsupervised ReID.

Moreover, our framework does not rely on a source dataset,

which is mandatory in style transfer based methods. Exten-

sive experiments on three datasets validate the effectiveness

of our framework in both unsupervised person ReID and

multi-view person image generation.
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