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Abstract

Deep clustering gradually becomes an important branch

in unsupervised learning methods. However, current ap-

proaches hardly take into consideration the semantic sam-

ple relationships that existed in both local and global fea-

tures. In addition, since the deep features are updated on-

the-fly, relying on these sample relationships may construct

more semantically confident sample pairs, leading to infe-

rior performance. To tackle this issue, we propose a method

called Nearest Neighbor Matching (NNM) to match samples

with their nearest neighbors from both local (batch) and

global (overall) levels. Specifically, for the local level, we

match the nearest neighbors based on batch embedded fea-

tures, as for the global one, we match neighbors from over-

all embedded features. To keep the clustering assignment

consistent in both neighbors and classes, we frame consis-

tent loss and class contrastive loss for both local and global

levels. Experimental results on three benchmark datasets

demonstrate the superiority of our new model against state-

of-the-art methods. Particularly on the STL-10 dataset,

our method can achieve supervised performance. As for

the CIFAR-100 dataset, our NNM leads 3.7% against the

latest comparison method. Our code will be available at

https://github.com/ZhiyuanDang/NNM .

1. Introduction

Unsupervised learning approach becomes emerging re-

cently since the expensive label acquisition. As an impor-

tant branch of unsupervised learning, clustering methods

have attracted more attention, which goal is that grouping

the samples into clusters, such that similar samples into the

same cluster while dissimilar ones into different clusters.

Traditional clustering methods, such as K-Means [28],

Spectral Clustering [43], Nonnegative Matrix Factorization

[2], have been widely applied in various tasks. However,

∗Corresponding author.

Figure 1. The illustration of our idea. We propose to match more

semantically nearest neighbors from between local (batch) and

global (overall) level. Benefit from the dynamic updated deep fea-

tures with iteration and epoch increases, we can construct more

and more semantically confident sample pairs from samples and

its neighbors.

these methods only focus on low-level information, leading

to their suboptimal performance. With the aid of the im-

pressive deep learning methods [26], deep clustering meth-

ods are proposed to non-linearly transform the original sam-

ples into a latent embedded space for successfully pro-

viding more effective features and promising performance.

Although conducting cluster analysis with learnable deep

learning representations shows the potential to benefit clus-

tering on such unlabelled data, how to improve the semantic

confidence of these clusters remains an open question.

There are some methods proposed to solve it. Accord-

ing to the data training strategy, current deep clustering ap-

proaches could be roughly divided into two categories: The

first one (such as DEC [38], JULE [39], DAC [5], Deep-

Cluster [3], DDC [4], DCCM [36]) usually iteratively eval-

uate the clustering assignment from the up-to-date model

and supervise the network training processes by the esti-

mated information; The second one (such as ADC [14], IIC

[21], PICA [20], DCDC[10]) simultaneously learn both the
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feature representation and clustering assignment at the same

time without explicit phases of clustering. Different from

these previous studies, SCAN [34] is proposed to do se-

mantic clustering with mining nearest neighbors. However,

these approaches hardly take into consideration the seman-

tic sample relationships existed in both local and global fea-

tures. In addition, since the deep features are updated on-

the-fly, relying on these sample relationships may construct

more semantically confident sample pairs, leading to infe-

rior performance.

As shown in Fig. 1, with the intuition that fully adopting

the rich sample relationships existed in both local and global

features, we plan to search the nearest neighbors from both

these features. Note that we can easily construct semantic

sample pairs from samples and its nearest neighbors. There-

fore, in this paper, we propose a method named Nearest

Neighbors Matching (NNM) for deep clustering. Specif-

ically, for the local level, we match the nearest neighbors

based on batch embedded features, as for the global, we

match the neighbors from overall embedded features. To

keep the clustering assignment consistent in both neighbors

and classes, we adopt consistent loss and class contrastive

loss for both local and global levels. Benefit from this novel

NNM loss, our method can obtain more semantic clustering

assignments. Significantly, our NNM is a plug-in module

that can be applied in any works to obtain more semantic

feature representations.

Our major contributions can be summarized as follows:

• We propose a novel deep clustering framework called

NNM that is based on two-level nearest neighbors

matching. Different from previous methods, NNM

matches the nearest neighbors from local and global

levels, and thus further improve clustering perfor-

mance. In addition, our NNM is a plug-in module that

can be adopted in any network to learn a more seman-

tic feature representation.

• We provide the confusion matrices of three widely

used benchmark datasets, after optimizing NNM loss.

As shown in Fig. 4, desired confusion matrices should

be block-diagonal. The most confident samples are

shown together with the name of the matched ground-

truth classes in Fig. 5. Besides that, we also con-

duct more ablation studies about numbers of cluster-

ing heads and nearest neighbors to figure out the useful

techniques for current deep clustering.

• Extensive experimental results on three benchmark

datasets demonstrate the superiority of our NNM

against other state-of-the-art methods. Particularly on

the STL-10 dataset, our method can achieve super-

vised performance. As for the CIFAR-100 dataset,

our NNM leads 3.7% against the latest comparison

method.

2. Related Work

In this section, we firstly review the latest deep cluster-

ing approaches and then give an introduction to current con-

trastive representation learning methods.

2.1. Deep Clustering

For alternate training based works, DEC [38] is a typ-

ical method that initializes clustering centroids by apply-

ing K-Means [27] on pre-trained image features and then

fine-tunes the model to learn from the confident cluster-

ing assignments to sharpen the resulted prediction distri-

bution. JULE [39] jointly optimizes the CNN in a recur-

rent manner, where merging operations of agglomerative

clustering are conducted in the forward pass and represen-

tation learning is performed in the backward pass. DAC

[5], DDC [4] and DCCM [36] alternately update the clus-

tering assignment and inter-sample similarities during train-

ing. However, they are susceptible to the inconsistent esti-

mations in the neighborhoods and thus suffer from severe

error-propagation problem at training.

For current simultaneous training works, they more likes

combing deep representation learning [1, 9, 18, 29, 41, 40]

with conventional cluster analysis [11, 27, 15, 45, 44] or

other pretext objectives. For the latest works, they are

mostly based on mutual information maximization of the

clustering assignment. For example, IIC [21] and IMSAT

[19] are proposed to learn a clustering assignment by max-

imizing the mutual information between an image and its

augmentations. Since the vague connection between the

training supervision and clustering objective, PICA [20]

deals with this limitation by introducing a partition uncer-

tainty index to quantify the global confidence of the cluster-

ing assignment so as to select the most semantically plausi-

ble separation. DCDC [10] proposes to do contrastive learn-

ing over both sample and class views for more generalizable

representation features. SCAN [34] is firstly proposed to

further improve clustering semantics by a two-step proce-

dure that firstly learns semantic features and then adopts the

obtained features as a prior in a deep clustering network.

2.2. Contrastive Representation Learning

Instead of matching an input data to a fixed target, in

contrastive loss [13] formulations the target can be various

on-the-fly during training and can be defined in terms of

the data representation computed by a network. Based on

this novel loss, contrastive learning becomes a hot topic on

recent unsupervised learning works [37, 18, 30, 17, 16, 6].

According to the numbers of sample pairs used to train,

current contrastive learning methods can be divided into

three categories. The first one is end-to-end mechanism

(such as [13, 30, 18, 17, 6]) which is common and back-

propagation. It uses samples of the current mini-batch to
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construct sample pairs. But the sample pair number is cou-

pled with the mini-batch size, limited by the GPU memory

size which also is challenged by large mini-batch optimiza-

tion [12]. The second one is memory-bank based mech-

anism [37]. A memory bank consists of all the sample

features of the total dataset. Since the samples in mini-

batch are randomly sampled from the memory bank with-

out back-propagation, therefore, this method supports large

batch size. However, the sample features in the memory

bank are updated asynchronously with current sample fea-

tures of the DNN, and thus are sometimes less consistent.

The third one is the latest momentum encoder based mech-

anism [16]. [16] proposed to encode samples on-the-fly by a

momentum-updated encoder, and maintain a queue of sam-

ple features.

Latest representation learning networks, such as MoCo

[16] and SimCLR [6], are proposed with an instance dis-

crimination manner. To this end, they pursue to learn a fea-

ture representation Φpre that is invariant to an augmentation

image, and thus coincidentally adopt contrastive loss. The

widely adopted contrastive loss, InfoNCE [30], has been

proved as a lower bound estimation of mutual information,

therefore, maximizing it will achieve the goal of representa-

tion learning works, i.e., mutual information maximization.

That also provides the theoretical guarantee of the superior

performance of current methods.

3. Methodology

We present our approach in the following sections. First,

we pre-train an unsupervised representation learning model

with the latest contrastive learning loss. After training the

model, we search the nearest neighbors according to the

similarity between features. Then, we develop the Near-

est Neighbor Matching (NNM) method to obtain a more se-

mantic clustering assignment.

3.1. Unsupervised Representation Learning Model

Since the previous end-to-end deep clustering methods

are sensitive to the network initialization, we consider to

pre-train an unsupervised learning model and cluster over

such semantic features. Next, we provide the detailed ob-

jective formulation of the two contrastive learning works

(i.e., MoCo [16] and SimCLR [6]). Note that at this step,

we denote the last classification head of the backbone net-

work as contrastive head.

Assume that we have a sample s and its augmented ver-

sion s′ and their features u and u′ respectively. For SimCLR

work, we have the following forms:

Lsimclr = − log
exp(sim(ui, u

′
i)/τ)

∑

2B

j=1
1j 6=i exp(sim(ui, u′

j)/τ)
, (1)

where sim() is similarity function like Cosine Similarity, B
is the batch size, τ is the temperature parameter to tune and

1k 6=i is a indication function when k 6= i, its value is 1, oth-

erwise 0. Obviously in the Eq. 1, this loss have one positive

sample and (2B − 1) negative samples. As proved in [30],

more negative samples can obtain tighter lower bound of

mutual information which means the performance of Sim-

CLR is related to batch size.

Contrast to SimCLR, MoCo maintains a dynamic update

queue q to store the features of previous iterations:

Lmoco = − log
exp(sim(ui, u

′
i)/τ)

∑M

j=1
exp(sim(ui, kj)/τ)

, (2)

where M is the queue size. Obviously, this loss has one

positive sample and M negative samples. Since the queue q
does not require gradient, the size M could be large, which

is useful for large dataset feature learning.

Regarding the experimental datasets are smaller, Sim-

CLR is enough to learn better semantic feature representa-

tion. For larger datasets like ImageNet, it better to utilize

MoCo loss, particularly with a limited performance ma-

chine. After training the pre-train model, we first search

top-K nearest neighbors according to the features before

the contrastive head of the model.

3.2. Nearest Neighbor Matching

The mined nearest neighbors are important semantic su-

pervised information that could be viewed as positive sam-

ples of the original samples. Then, we feed these posi-

tive pairs (i.e., original and one of nearest neighbors sam-

ples) into the clustering network Φcls. We load the pre-

trained weights of representation model Φpre without the

contrastive head. At this step, we denote the last classifica-

tion head of the backbone network as clustering head, the

batch size as B and the class number as C.

Surely, we can simply apply InfoNCE loss to make sam-

ples and their neighbors closer, and other neighbors farther.

However, since there exist samples of same class in mini-

batch, directly adopting InfoNCE loss may cause perfor-

mance degeneration. Therefore, we decide only to maxi-

mize the similarity between samples and their neighbors as

following consistent loss:

Lconsi = − log < p,Npre(p) >, (3)

where p ∈ R
B×C and Npre(p) ∈ R

B×C are clustering as-

signment of the sample u and its neighbors Npre(u). Note

that Npre indicates the neighbors from pre-trained unsuper-

vised representation models. The < ·, · > is dot product

operator and used to measure the similarity. Since the sam-

ple assignment should be totally different in each iteration,

with this insight, we develop the class contrastive loss:

Lclass = − log
exp(sim(qi,Npre(q)i)/τ)

∑C

j=1
exp(sim(qi,Npre(q)j)/τ)

, (4)
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Figure 2. The illustration of the local NNM loss. Local consis-

tent loss Llocalconsi
aims to keep both original, neighbor and lo-

cal neighbor clustering assignments consistent. As for local class

contrastive loss Llocalcla , it wants to keep the sample view of these

clustering assignments consistent.

where q ∈ R
C×B and Npre(q) ∈ R

C×B (qi and

Npre(q)i ∈ R
B) are the transpose of p and Npre(p) re-

spectively. To reduce the strength of constraint, τ in here

can be set as 1. The dot product < ·, · > in Eq. 3 provides

more strong point-to-point-wise constraint on clustering as-

signment. As for sim(·, ·), we would like to make same

prediction distribution in each class closer and other distri-

butions far away, i.e., the class version of Eqs. 1 and 2.

Besides that, we adopt a widely used entropy term [20,

34] to prevent the trivial solution that assign a majority of

samples into a minority of clusters:

Lentropy = −M(p) logM(p). (5)

where M(p) ∈ R
1×C is the mean of p over batch dimen-

sion. A naive approach that mining nearest neighbors is

based on the clustering assignment (i.e., p). Since there are

several clustering heads in the models, their clustering as-

signment may be different, which may cause some error-

propagation. A better way is to search nearest neighbors

from embedded features (before the clustering head). In ad-

dition, with the network Φcls optimizing, the obtained fea-

tures are updating on the fly. It is too regretful to ignore

these useful features for mining more valuable neighbors.

We pursue to mine these semantic neighbors from both lo-

cal (batch) and global (overall) level in the following sub-

sections. In this way, it is free to adopt multiple clustering

heads strategy in our local and global NNM losses for ro-

bust prediction (See Section 4.5.2 for more details).

3.2.1 Local Nearest Neighbor Matching

Assume that f ∈ R
B×D is the embedded features (before

clustering head) of p, where D is the embedded feature di-

Figure 3. The illustration of the global NNM loss. Global consis-

tent loss Lglobalconsi
aims to keep both local and global neighbor

clustering assignments consistent. As for global class contrastive

loss Lglobalcla , it want to keep the sample view of these clustering

assignments consistent.

mension. We present the illustration of the local loss in

Fig. 2.

For local-level, we select the nearest neighbors from

f and denote as Nlocal(f) per batch. According to the

batch index of Nlocal(f), we could obtain the correspond-

ing neighbors of p as Nlocal(p). Then we could adopt same

loss Eq. 3 to make their predictions consistent:

Llocal = − log < p,Nlocal(p) > . (6)

Given the useful Npre(p), we can concatenate them to-

gether along batch dimension, then rewrite the above loss

as:

Llocalconsi
= − log <

[

p
p

]

,

[

Nlocal(p)
Npre(p)

]

>, (7)

where

[

p
p

]

∈ R
2B×C . Similarly, the class contrastive

loss Eq. 4 can be rewritten as:

Llocalcla = − log

exp(sim(

[

q
q

]

,

[

Nlocal(q)
Npre(q)

]

i

)/τ)

C
∑

j=1

exp(sim(

[

q
q

]

,

[

Nlocal(q)
Npre(q)

]

j

)/τ)

,

(8)

where

[

q
q

]

∈ R
C×2B .

3.2.2 Global Nearest Neighbor Matching

After a epoch, we obtain the latest overall dataset predic-

tions h ∈ R
N×C and features g ∈ R

N×D where N is

the training data size. We present the illustration of the

global loss in Fig. 3. For global-level, we choose the nearest

neighbors from g and denote its prediction as Nglobal(h) per

epoch. Provided the batch index by p, we can obtain the pre-

dictions with batch size, i.e., Nglobal(h)b ∈ R
B×C . Then
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Algorithm 1 Training procedure of NNM.

Input: Train data X , train epochs T , iterations per epoch

I , target class number C, hyper-parameter λ.

1: Pre-training the model with contrastive loss such as

SimCLR and MoCo.

2: Obtaining the top-K neighbors of each sample accord-

ing to the embedded features Npre.

3: Loading the pre-trained network weights without con-

trastive head.

4: for t = 1, . . . , T do

5: for i = 1, . . . , I do

6: Sampling a random mini-batch about images.

7: Feeding the mini-batch images and one of their

pre-trained neighbors into the model.

8: Obtaining the embedded features f of each batch

9: Computing the neighbors prediction Nlocal(p) and

Npre(p).
10: if Nglobal(h) is available then

11: Computing the overall loss (Eq.11).

12: else

13: Computing local sample consistent loss (Eq.7),

class contrastive loss (Eq.8) and entropy loss

(Eq.5).

14: end if

15: end for

16: Obtaining the features g of each epoch.

17: Computing the neighbors prediction Nglobal(h) and

sent it to next epoch.

18: end for

Output: A deep clustering model Φcls.

the consistent loss Eq. 3 and class loss Eq. 4 are rewritten

as:

Lglobalconsi
= − log <





p
Nlocal(p)
Npre(p)



 ,





Nglobal(h)b
Nglobal(h)b
Nglobal(h)b



 >,

(9)

and

Lglobalcla =

−log

exp(sim(





q
Nlocal(q)
Npre(q)



,





Nglobal(h)b
Nglobal(h)b
Nglobal(h)b





i

)/τ)

C
∑

j=1

exp(sim(





q
Nlocal(q)
Npre(q)



 ,





Nglobal(h)b
Nglobal(h)b
Nglobal(h)b





j

)/τ)

.

(10)

respectively. By this way, we combine the valuable nearest

neighbors from local and global level. Therefore, our goal

Datasets Classes Train Split Test Split Image Size

CIFAR-10 10 50,000 10,000 32 × 32 × 3

CIFAR-100 20 50,000 10,000 32 × 32 × 3

STL-10 10 5,000 8,000 96 × 96 × 3
Table 1. Statistics of three benchmark datasets.

is to minimize the following total loss function:

Ltotal = Lglobalconsi
+ Lglobalcla

+ Llocalconsi
+ Llocalcla + λLentropy. (11)

where λ is the hyper-parameter. For simplicity, the total loss

can also be rewritten as:

Ltotal = Lglobal + Llocal + λLentropy. (12)

where Lglobal = Lglobalconsi
+ Lglobalcla and Llocal =

Llocalconsi
+ Llocalcla . The training procedure of NNM is

summarized in Algorithm 1.

4. Experiments

4.1. Datasets

In the experiments, we assess our NNM on three widely

used object recognition datasets:

• CIFAR-10 and CIFAR-100 [25]: A natural image

dataset with 50,000/10,000 samples from 10(/100)

classes for training and testing respectively.

• STL-10 [7]: An ImageNet [33] sourced dataset con-

taining 500/800 training/test images from each of 10

classes and additional 100,000 samples from several

unknown categories.

We summarize the statistics of these datasets in Table. 1.

For fair comparison, we adopt the same clustering setting

as [34]: training on the train dataset and testing on the test

dataset for CIFAR-10/100 and STL-10, and set the 20 super-

classes as the ground truth of CIFAR-100.

4.2. Evaluation Metrics

There are three common clustering performance metrics

in our experiments: Accuracy (ACC), Normalised Mutual

Information (NMI) and Adjusted Rand Index (ARI). The

predicted label is assigned by the dominating class label.

All these metrics scale from 0 to 1 and higher values indi-

cate better performance.

4.3. Experimental Setup

Our NNM is implemented by PyTorch 1.4.0 [31] and op-

timized by Adam [23] with 10−4 learning rate and 10−4

weight decay. We select a standard ResNet18 as the deep

learning network backbone. For each sample, we mine the
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Datasets CIFAR-10 CIFAR-100 STL-10

Metrics NMI ACC ARI NMI ACC ARI NMI ACC ARI

K-Means [28] 0.087 0.229 0.049 0.084 0.130 0.028 0.125 0.192 0.061

SC [43] 0.103 0.247 0.085 0.090 0.136 0.022 0.098 0.159 0.048

AC [11] 0.105 0.228 0.065 0.098 0.138 0.034 0.239 0.332 0.140

NMF [2] 0.081 0.190 0.034 0.079 0.118 0.026 0.096 0.180 0.046

AE [1] 0.239 0.314 0.169 0.100 0.165 0.048 0.250 0.303 0.161

DAE [35] 0.251 0.297 0.163 0.111 0.151 0.046 0.224 0.302 0.152

DCGAN [32] 0.265 0.315 0.176 0.120 0.151 0.045 0.210 0.298 0.139

DeCNN [42] 0.240 0.282 0.174 0.092 0.133 0.038 0.227 0.299 0.162

VAE [24] 0.245 0.291 0.167 0.108 0.152 0.040 0.200 0.282 0.146

JULE [39] 0.192 0.272 0.138 0.103 0.137 0.033 0.182 0.277 0.164

DEC [38] 0.257 0.301 0.161 0.136 0.185 0.050 0.276 0.359 0.186

DAC [5] 0.396 0.522 0.306 0.185 0.238 0.088 0.366 0.470 0.257

ADC [14] - 0.325 - - 0.160 - - 0.530 -

DDC [4] 0.424 0.524 0.329 - - - 0.371 0.489 0.267

DCCM [36] 0.496 0.623 0.408 0.285 0.327 0.173 0.376 0.482 0.262

IIC [21] (Best) - 0.617 - - 0.257 - - 0.610 -

PICA [20] (Best) 0.591 0.696 0.512 0.310 0.337 0.171 0.611 0.713 0.531

DCDC [10] 0.585 0.699 0.506 0.310 0.349 0.179 0.621 0.734 0.547

Supervised 0.862 0.938 0.870 0.680 0.800 0.632 0.659 0.806 0.631

Pretext [6] + K-means 0.598 0.659 0.509 0.402 0.395 0.239 0.604 0.658 0.506

SCAN∗ [34] (Best) 0.715 0.816 0.665 0.449 0.440 0.283 0.673 0.792 0.618

NNM∗ 0.748 0.843 0.709 0.484 0.477 0.316 0.694 0.808 0.650
Table 2. The clustering performance on three challenging object image benchmarks after clustering (∗) step. The best results of unsuper-

vised method are indicated as Bold.

20 nearest neighbors based on current contrastive represen-

tation works (i.e., Step 2 in Algorithm 1). To speed up

the training process, for local and global K nearest neigh-

bor search, we set K is 1. For these smaller experimen-

tal datasets, we choose the SimCLR as the main loss func-

tion of the pre-trained model. The entropy term weight λ
is set to 5. The images are strongly augmented by compos-

ing four randomly selected transformations from RandAug-

ment [8] during the NNM clustering step. We search the

nearest neighbors using the Faiss library [22]. All models

perform the clustering step 100 epochs with 200 batch size

and 3 clustering heads. For reproducibility, we initialize the

network with fixed random seed as [36] and load the pre-

trained models weights without clustering head.

4.4. Compared with the stat­of­the­art methods

We report the clustering results of SOTA methods in-

cluding traditional methods (such as K-Means [28], SC

[43], AC [11], NMF [2]), deep learning based approach

(such as AE [1], DAE [35], DCGAN [32], DeCNN [42],

VAE [24], JULE [39], DEC [38], DAC [5], ADC [14], DDC

[4], DCCM [36], IIC [21], PICA [20], DCDC[10]) and lat-

est pre-trained features based methods (such as SCAN [34])

at Table. 2. For comparison of methods performance, we

directly cite the best results reported in related papers. We

also provide the results of K-Means on the pretext features

and fully-supervised manner results.

Benefit from the local and global nearest neighbors

matching, our method outperforms other works on the three

metrics. Particularly in CIFAR-100 dataset, NNM achieves

3.7% performance improvement. As for STL-10 dataset,

the method can close to supervised performance. Due to

the adopt of superclass of CIFAR-100, the best results of

the proposed method and supervised results have large gap.

4.5. Ablation Study

In this section, we conduct several ablation studies to

demonstrate the effect of different choices in NNM.

4.5.1 Effect of the proposed loss

Firstly, we assess the effect of the proposed loss respectively

and provide the results in Table. 3. From the upper sec-

tion of the Table, we state that the local loss Llocal is more

important to the overall loss than the global one. And the

global loss Lglobal is more likely to refine the final results.

For the results without local loss, we have some comments:

actually, the global loss Lglobal works well or not depends

on the learned feature of previous epochs, particularly in

the first epoch, only entropy loss is available. Without lo-
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(a) CIFAR-10 (b) CIFAR-100 (c) STL-10

Figure 4. Confusion matrices of three dataset.

Losses NMI ACC ARI

NNM 0.748 0.843 0.709

w/o local loss Llocal 0.125 0.232 0.069

w/o global loss Lglobal 0.736 0.835 0.692

w/o consistent loss Lconsis 0.718 0.826 0.673

w/o class contrastive loss Lclass 0.742 0.836 0.695

w/o entropy loss Lentropy 0.326 0.204 0.152

Table 3. Effect of the proposed loss on CIFAR-10 dataset.

cal loss, the learned features will have less discrimination

per iteration and epoch. Therefore, only global loss can not

obtain performance improvement.

As for lower section of the Table, we can found that en-

tropy loss Lentropy successfully prevents the network into

the trivial solution that assigning most samples into a sin-

gle cluster. Compared with class contrastive loss Lclass,

consistent loss Lconsistent play a vital role in the overall

performance improvement.

4.5.2 Effect of number of clustering heads

Following [21], to obtain more robust predictions, we adopt

the multiple clustering heads strategy in our method. We

present the various results at Table. 4. With the number of

heads increases, the results may have a certain degree im-

provement. Since we share the same global features on dif-

ferent clustering heads, the increasing heads may introduces

more various predictions which makes results unstable (see

results of CIFAR-100). Therefore, we set the number of

heads as 3.

4.5.3 Effect of number of global nearest neighbor

In this subsection, we also investigate the effect of number

of global nearest neighbors and provide its results at Ta-

ble. 5. Since the local features are updated faster than global

Datasets Heads NMI ACC ARI

CIFAR-10

1 0.748 0.842 0.707

3 0.748 0.843 0.709

5 0.751 0.845 0.712

CIFAR-100

1 0.486 0.471 0.317

3 0.484 0.477 0.316

5 0.473 0.467 0.313

Table 4. Effect of number of clustering heads on CIFAR-10 and

CIFAR-100 datasets.

Global Nearest Neighbor NMI ACC ARI

1 0.694 0.808 0.650

5 0.653 0.763 0.595

10 0.643 0.718 0.575

Table 5. Effect of number of global nearest neighbor on STL-10

dataset.

ones, it is better to set the local neighbor as 1. Therefore, we

only evaluate the performance with increasing global near-

est neighbors. According to the presented results, the more

global neighbors, the worse clustering performance. At

the experiment of multiple neighbors, we randomly select

a neighbor as the nearest one. Since the on-the-fly global

features, more neighbors means that at one epoch the algo-

rithm is more likely to select a noise neighbor, which will

degenerate the performance.

4.6. Qualitative Study

In this section, we conduct several qualitative studies to

visually analyze the class confusion matrices and more con-

fident samples.

4.6.1 Confusion Matrices

We visualize the confusion matrices of these three datasets

at Fig. 4. These three confusion matrices have a clear block
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(a) CIFAR-10

(b) STL-10

Figure 5. Top-3 most confident samples images on CIFAR-10 and STL-10.

diagonal structure which means our method successfully

classify samples into semantic clusters. Most mis-clustering

can be found that are hard to disentangle, even in visual

cases, such as ‘dog’ and ‘cat’ in Fig. 4(a) and Fig. 4(c),

‘household electrical devices’ and ‘household furniture’ in

Fig. 4(b). As the reason, on the one hand, some images

are too small (32 × 32 in CIFAR-10/100) and blur to dis-

tinguish, and on the other hand, the network still can not

disentangle some detailed fine-grained differences between

some classes. We can obtain more intuitive feelings in next

subsection.

4.6.2 Confident Images

We also visualize the different clusters after finishing train-

ing the model. Specifically, we provide the top-3 most con-

fident samples in each cluster of CIFAR-10 and STL-10.

Because of the poor performance of CIFAR-100, we does

not report its confident samples. The results are shown to-

gether with the name of the matched ground-truth classes

in Fig. 5. Importantly, we observe that the found samples

align well with the classes of the dataset, except for the Dog

class.

For the confident samples of Dog dataset (Fig. 5(b)), if

we look with global view, the image more likes dog in a

certain degree. That also indicates the network still can not

disentangle some detailed fine-grained differences between

several classes. Even so, the discriminative features of each

object class are clearly presented in the images. Therefore,

a direction of further improving clustering performance is

to make the network figure out more fine-grained features

on such datasets.

5. Conclusion

We have proposed a novel deep clustering framework

based on mining more semantically nearest neighbors with

local and global levels, named nearest neighbor matching

(NNM). Different from previous methods, the NNM loss

further improves clustering performance from local (batch)

and global (overall) features. Benefiting from this novel

loss, our network on three benchmark datasets outperforms

state-of-the-art methods. Besides that, we also conduct

more ablation studies about numbers of clustering heads

and nearest neighbors to figure out the useful techniques

for deep clustering.
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