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Abstract

This paper is about action segmentation under weak su-

pervision in training, where the ground truth provides only

a set of actions present, but neither their temporal ordering

nor when they occur in a training video. We use a Hid-

den Markov Model (HMM) grounded on a multilayer per-

ceptron (MLP) to label video frames, and thus generate a

pseudo-ground truth for the subsequent pseudo-supervised

training. In testing, a Monte Carlo sampling of action sets

seen in training is used to generate candidate temporal se-

quences of actions, and select the maximum posterior se-

quence. Our key contribution is a new anchor-constrained

Viterbi algorithm (ACV) for generating the pseudo-ground

truth, where anchors are salient action parts estimated for

each action from a given ground-truth set. Our evalua-

tion on the tasks of action segmentation and alignment on

the benchmark Breakfast, MPII Cooking2, Hollywood Ex-

tended datasets demonstrates our superior performance rel-

ative to that of prior work.

1. Introduction

This paper is about action segmentation by labeling

video frames with action classes under weak, set-level su-

pervision in training. In the set-supervised training, the

ground truth is a set of actions present in a training video,

but their temporal ordering, the number of action instances,

and their start and end frames are unknown. This is an im-

portant problem arising in many recent applications, such

as, those dealing with big video datasets with automatically

generated set-level annotations (e.g., via word-based video

retrievals from Youtube), for which human annotations are

not available (e.g. because scaling human annotations over

numerous video retrieval results is difficult). Our main chal-

lenge is that the provided ground truth – being a set with

arbitrarily ordered distinct labels of action classes – does

not provide sufficient constraints for a reliable learning of

action segmentation.

Prior work typically adopts the following framework.

In training, an action model is used to label every video

frame, and thus generate a pseudo-ground truth for the sub-

sequent pseudo-supervised training of the model. In testing,

a Monte Carlo sampling is first used to generate candidate

temporal sequences of actions, and then the learned model

is applied to identify the best scoring candidate sequence as

the solution of action segmentation. Differences among ex-

isting approaches mostly lie in how the pseudo-ground truth

is generated. For example, in [27], binary classifiers are in-

dependently trained for each action to label frames using

multi-instance learning. Such a training, however, cannot

learn temporal spans of and transitions between actions, so

these parameters are heuristically set in [27] for an HMM

inference on test videos. The approach in [20] casts the set-

supervised training as the NP-hard “all-color shortest path”

problem [1], where frame labeling of a training video is

constrained such that every action label from the ground-

truth set appears at least once. For generating the pseudo-

ground truth, they infer an HMM using a greedy two-step

algorithm called set-constrained Viterbi (SCV). The SCV

first produces an initial action segmentation by running the

vanilla Viterbi, and then flips low-scoring frame labels to

actions that have been missed in the initial segmentation but

are present in the ground-truth set. Thus, the SCV produces

an approximate solution to the NP-hard problem by projec-

tion to the legal domain. There are many shortcomings of

[20] related to the heuristic, greedy flipping of frame labels.

In this paper, we improve the most critical step of the

above framework – generation of the pseudo-ground truth.

As in [20], we also pose the set-supervised training as the

“all-color shortest path” problem [1]. Our key difference is

that we formulate a more effective differentiable approx-

imation to this NP-hard problem that allows for an end-

to-end training, reduces training complexity, and ultimately

leads to significant performance gains over [20].

As illustrated in Fig. 1, all legal action segmentations of

a training video can be represented by distinct paths in a

directed video segmentation graph. A legal (or valid) path

includes every action from the ground-truth set at least once.

Our goal is to efficiently identify the highest-scoring valid

path. For this scoring, we use an HMM grounded via a

two-layer MLP onto video frames, as shown in Fig. 2. In-
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Figure 1. We cast the problem of generating pseudo-ground truth

as finding an optimal “all-color shortest path” [1] in which every

action from the ground-truth set occurs at least once. A video has

numerous “all-color shortest paths”. Our key contribution is an

efficient approximation to this NP-hard problem.

stead of using the solution-by-projection of [20], we spec-

ify an Anchor-Constrained Viterbi (ACV) algorithm that ef-

ficiently approximates the MAP “all-color shortest path”.

Efficiency comes from significantly reducing the number of

valid action segmentations by considering only those that

include salient action parts, called anchor segments or an-

chors. Importantly, the ACV enables an end-to-end training,

as we use the generated pseudo-ground truth for computing

the cross-entropy loss and regularization in the subsequent

fully-supervised training of our HMM and MLP.

Given a training video, our approach begins by estimat-

ing saliency scores of all actions from the ground-truth set

at every frame using the MLP. Then, for each action, we

select the most salient frame in the video to represent a cen-

ter of that action’s anchor segment. Finally, we approx-

imate a globally optimal action segmentation by running

the standard Viterbi algorithm over the densely connected

video graph whose nodes are frames and colored edges rep-

resent action segments (see Fig. 1). Efficiency is achieved

by considering only those paths in the video graph that pass

through the anchor edges (i.e., segments).

The resulting pseudo-ground truth is used in the second

stage of our training, where we jointly learn parameters of

the HMM and MLP using the cross entropy loss on the pre-

viously generated frame-wise pseudo-ground truth. We reg-

ularize this learning with a diversity loss aimed at maximiz-

ing a distance between saliency scores of distinct actions

detected along the video. This is motivated by the follow-

ing reasoning. For distinct actions, we expect that temporal

patterns of their respective saliency scores across the frames

t

Video

MLP

ACV of HMM

Pseudo Ground 

Truth

Action Saliency 

in Time

Cross Entropy Loss Diversity Loss

Total Loss

Figure 2. We use an HMM to find the MAP “all-color shortest

path” frame labeling of a training video, which is then taken as

the pseudo-ground truth. For the MAP inference in training, we

specify the new Anchor-Constrained Viterbi (ACV) algorithm, and

diversity regularization which minimizes correlations of detected

actions along the video. The pseudo-ground truth is used for com-

puting the cross-entropy loss and regularization in the subsequent

fully-supervised training of our HMM and MLP, enabling end-to-

end training.

are different. Thus, our diversity loss ensures that the salien-

cies of every action are sufficiently discriminative in time so

as to facilitate action segmentation.

In evaluation, we address action segmentation and action

alignment on the Breakfast, MPII Cooking2, Hollywood

Extended datasets. Our experiments demonstrate that we

outperform the state of the art on both tasks.

In the following, Sec. 2 reviews related literature, Sec. 3

defines our problem and models, Sec. 4 specifies our ACV

and regularization, Sec. 5 describes our inference on test

videos, and Sec. 6 presents our results.

2. Related Work

This section puts our work in the context of recent ap-

proaches to weakly supervised action segmentation. Fully

supervised action segmentation requires frame-wise anno-

tations (e.g., [6, 13, 16, 17, 18, 24, 29, 33, 37, 38, 42, 46]),

and hence is beyond our scope. Unsupervised action seg-

mentation is also beyond our scope (e.g. [15, 31]), since our

inference on test videos requires annotations of action sets

present in training videos.

Transcript-supervised Learning. The temporal order-

ing of actions present in training videos is assumed known

in [2, 3, 4, 5, 8, 10, 11, 14, 19, 26, 28]. For example, Huang

et al. [8] extended the connectionist temporal classification

by taking into account a temporal coherence of features in
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consecutive frames. Bojanowski et al. [2] relaxed discrim-

inative clustering based on a conditional gradient (Frank-

Wolfe) algorithm for action alignment. Other approaches

[19, 26, 28] formulated action segmentation with a statisti-

cal language model. Our training setting is less constrained,

and hence more challenging. This motivates our simpler

model choice in comparison with more complex deep archi-

tectures of prior work (e.g., recurrent network in [19, 28]).

Set-supervised Learning. The set of actions present in

training videos is assumed known in [9, 21, 22, 23, 25, 32,

34, 35, 36, 40, 41, 45, 43, 44, 7]. For example, Shou et

al. [32] specified the outer-inner-contrastive loss for learn-

ing an action boundary detector, Nguyen et al. [23] defined

a background-aware loss to distinguish actions from the

background, and Paul et al. [25] proposed an action affin-

ity loss for multi-instance learning. As shown in [20, 27],

all of these approaches are specifically designed to address

videos with sparse and rather few action occurrences. In

contrast, we consider videos with dense actions and signifi-

cantly more action occurrences. Similar to our approach, in

[7], temporal segments in the video are adaptively identified

and labeled, but they do not use an HMM and do not sample

valid sequences of actions for inference in testing.

In [20], an HMM and a Viterbi-like algorithm are also

used for estimating the frame-wise pseudo-ground truth, as

in our approach. Their Set-Constrained Viterbi (SCV) algo-

rithm uses a greedy post-processing step for ensuring that

all actions from the set-level ground truth are included in the

frame-wise pseudo-ground truth. This post-processing is

heuristic, and thus suboptimal. In contrast, we formulate the

ACV algorithm that efficiently approximates the “all-color

shortest path” and does not require post-processing. The

ACV first estimates salient anchor frames and constructs an

anchor-constrained graph, and then runs the vanilla Viterbi

algorithm for optimization on the anchor-constrained graph.

Unlike SCV, our ACV integrates both the estimation of

salient anchors and anchor-constrained Viterbi in a unified

end-to-end training.

3. Our Problem Statement and Models

3.1. Problem Formulation.

A training video with length T is represented by a se-

quence of frame features, x = [x1, ..., xt, ..., xT ], extracted

in an unsupervised manner as in [20, 27]. Each train-

ing video is annotated with a ground-truth set of actions

C = {c1, · · · , cM} ⊆ C, where C is the set of all ac-

tions, C = {1, 2, ..., |C|}. Our goal is to find an optimal

action segmentation of every training video, (ĉ, l̂), where

ĉ = [ĉ1, ..., ĉn, ..., ĉN̂ ] is the predicted temporal sequence of

actions, ĉn ∈ C, and l̂ = [l̂1, · · · , l̂N̂ ] are their correspond-

ing temporal lengths. (ĉ, l̂) serves as our pseudo-ground

truth for the subsequent pseudo-supervised training.

3.2. HMM

We use an HMM to estimate the MAP (ĉ, l̂) as

(ĉ, l̂) = argmax
N,c,l

p(c, l|x) = argmax
N,c,l

p(c)p(l|c)p(x|c, l)

= argmax
N,c,l

[

p(c1)

N−1
∏

n=1

p(cn+1|cn)
]

·
[

N
∏

n=1

p(ln|cn)
]

·
[

∏T

t=1 p(xt|cn(t))
]

,

(1)

where p(c1) is assumed equal for all action classes.

We study two versions of the HMM model defined in (1).

One is the initial HMM, H = H0, computed directly from

the ground-truth action set, and the other is a refined HMM,

Hi, iteratively updated after i training iterations starting

from the initial H0. In the following, our notation for H0

and Hi uses 0 and i in the superscript to indicate the training

iterations, respectively.

The Initial HMM. The initial transition probability in

(1) is defined as

p0(cn+1|cn) =
#(cn+1, cn)

#(cn)
, (2)

where #(·) is the number of actions or pairs of actions in

the ground truth.

The initial action length in (1) is modeled as the Poisson

distribution:

p0(l|c) =
(λ0

c)
l

l!
e−λ0

c , (3)

where λ0
c is the expected temporal length of action c ∈ C.

For every c, we estimate λ0
c such that the total length

of all actions from C is close to the video’s length T .

More formally, we estimate λ0
c by minimizing the follow-

ing quadratic objective:

minimize
∑

v

(

Tv −
∑

c∈Cv

λ0
c

)2

,

s.t. for every c : λ0
c > lmin, (4)

where v is the index of videos, lmin is the minimum action

length (lmin = 50 frames in our experiments).

The initial likelihood at frame t in (1) is estimated as:

p0(xt|c) ∝
p(c|xt)

p0(c)
, p0(c) =

∑

v Tv · 1(c ∈ Cv)
∑

v Tv

.

(5)

where p(c|xt) is a softmax score of the MLP, and 1(·) is the

indicator function. p0(c) in (5) is a percentage of the video

footage having c in the ground truth.

9808



The Refined HMM is initialized to H0 as in (2)–(5), and

then for each training video updated in ith training iteration

based on the MAP assignment (ĉi, l̂i) for that video as

pi(cn+1|cn) = pi−1(cn+1|cn)

+
1

V

(

#(ĉin, ĉ
i
n+1)

#(ĉin)
− pi−1(cn+1|cn)

)

, (6)

λi
c = λi−1

c +
1

V

(

∑N̂

n=1 l̂
i
n · 1(c = ĉin)

∑N̂

n=1 1(c = ĉin)
− λi−1

c

)

, (7)

pi(c) = pi−1(c) +
1

V

(

∑N̂

n=1 l̂
i
n · 1(c = ĉin)

T
− pi−1(c)

)

.

(8)

where V is the total number of training videos. We use
1
V

as our learning rate, since after we compute (6)–(8) for

all V training videos, the updates become properly normal-

ized. In (6), #(ĉin) is the number of all segments labeled

with ĉin ∈ C, and #(ĉin, ĉ
i
n+1) is the total number of pairs

of two consecutive video segments labeled with ĉin ∈ C and

ĉin+1 ∈ C, respectively. The update is done for each train-

ing video. This means that our choice of the update rate

as 1
V

for the updates in (6)–(8) amounts to averaging over

the pseudo-ground truth for all previously trained videos. In

our experiments, the small update rate 1
V

gives the “stable”

and reliable updates in training.

3.3. The MLP Network

As in [27], our two-layer MLP scores frames for all ac-

tion classes. The MLP’s hidden layer h ∈ R
nh , nh = 256,

is input to the binary classifier fc(x), for every c ∈ C, as

h(x) = ReLU(W 1
x+ b

1), (9)

fc(x) = σ(W⊤
c h(x) + bc), c ∈ C, (10)

where Wc ∈ R
nh , bc ∈ R

1, and σ is the sigmoid function.

p(c|x) in (5) is estimated as a softmax score of the MLP’s

binary classifier fc(x) at frame x. To ensure reliable p(c|x),
we pretrain the MLP as in [27]. Specifically, we pretrain

each fc(x), c ∈ C, using multi-instance learning.

4. Our Set-Supervised Training

Our training consists of two stages. First, we generate

the MAP pseudo-ground truth (ĉ, l̂) for every training video

with our ACV algorithm. Second, the pseudo-ground truth

is used to estimate the cross-entropy loss and regularization

for updating the HMM and MLP. Below, we first formulate

our ACV, and then the loss and regularization.

4.1. Anchor­Constrained Viterbi

Given a training video and its ground truth C, our goal

is to predict the MAP (ĉ, l̂), such that every action c ∈ C

occurs at least once in ĉ. As shown in [1], this “all-color

shortest path” problem is NP-hard. Our ACV algorithm is

an efficient approximation that consists of two related steps,

as illustrated in Fig. 3, where the first step constructs an

anchor-constrained graph aimed at representing all valid ac-

tion segmentations, and the second step finds the MAP valid

segmentation in the graph.

The first step computes saliency scores S ∈ R
M×T of

all actions c in the ground truth C, M = |C|, at every frame

t = 1, . . . , T using a sliding window of length (2τ + 1) as

S[c, t] =

τ
∑

u=−τ

[log fc(xt+u)− min
c′∈C

log fc′(xt+u)], (11)

where fc(xt) is given by (10), and τ = 15 frames in our ex-

periments. By subtracting minc′ log f(c
′) in (11), we spec-

ify frame saliency as a difference between the highest and

lowest softmax scores, instead of considering only the high-

est softmax scores. We have empirically observed that the

latter leads to a high false-positive rate, as some frames have

significantly higher softmax scores than others.

For every c ∈ C, we select its most salient frame tc and

take it to represent a center of c’s anchor segment. This

gives M = |C| anchor segments in the video. The an-

chors are later used to constrain the search for an optimal

“all-color shortest path” by considering only candidate ac-

tion segmentations that include the anchors. A time interval

centered at every tc, [tc−
α
2 λc, tc+

α
2 λc] is estimated as c’s

anchor segment, where λc is the expected length of action

c given by (4), and α ∈ (0, 1] is a constant. We empirically

found that α = 0.6 is optimal. Since α ∈ (0, 1], the anchor

segments are set to have smaller lengths than the expected

lengths of the corresponding actions in order to allow some

flexibility of action boundary learning. For every two an-

chor segments that happen to overlap, we keep the more

salient anchor, and for the other action we iteratively se-

lect a new anchor as that action’s second best or less salient

frame until there is no overlap.

The anchor segments are used to construct a densely con-

nected video segmentation graph, as illustrated in Fig. 3. In

the graph, directed edges represent candidate actions along

the video such that each edge is constrained to include one

and only one of the anchor segments. Nodes in the graph

represent frames that are candidate boundaries (or cuts) be-

tween actions, such that no cut can occur within the anchor

segments. A directed path in the graph represents a can-

didate action segmentation. Therefore, by construction, ev-

ery path in the anchor-constrained graph includes all actions

from the ground truth C at least once, and thus represents

a valid candidate for approximating our “all-color shortest

path” problem.

The second step can be viewed as efficiently finding an

optimal path in the anchor-constrained graph (see Fig. 3).

For this, we use the Viterbi algorithm that predicts the MAP
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Figure 3. Our ACV consists of two steps. First, we compute saliency scores of videos frames for all actions c from the ground truth C,

and for each c ∈ C select the most salient frame, called anchor. Each anchor of action c is taken as a center of the corresponding anchor

segment whose length is proportional to the expected length λc of c. The anchor segments are used to construct an anchor-constrained

graph which efficiently represents all valid action segmentations by directed paths in the graph. Second, we run the Viterbi algorithm to

efficiently identify the MAP path in the anchor-constrained graph.

(ĉ, l̂) in this graph. From (1)–(8) and (10), the Viterbi is

formalized as

(ĉ, l̂) = argmax
N,c,l

c∈CN

N−1
∑

n=1

log p(cn+1|cn) +

N
∑

n=1

log p(ln|cn)

+

T
∑

t=1

log p(xt|cn(t)). (12)

under the constraint that all segments ln in (12) must be

selected from the edges of the anchor-constrained graph.

The Viterbi begins by computing: (i) Frame likelihoods

p(xt|c) for t = 1, . . . , T , using the MLP softmax scores as

in (5) and (10), and (ii) Transition probabilities p(c|c′) for

all c, c′ ∈ C as in (2). Then, the Viterbi uses a recursion

to efficiently compute (ĉi, l̂i) in (12). Let v(c, t) denote

the maximum score for all action sequences ct ending with

action c ∈ C at video frame t, where a total sum of the mean

action lengths along each sequence until t is less than 1.5T ,

(
∑

c′∈ct
λc′) < 1.5T . From (12), v(c, t) can be recursively

estimated as

v(c, t) = max
t′<t
c′ 6=c

c′∈C

[

v(c′, t′) + log p(t−t′|c) + log p(c|c′)

+

t
∑

k=t′+1

log p(xk|c)
]

, (13)

where p(t−t′|c) is the action length likelihood given by (3),

p(c|c′) is the transition probability from c′ to c as in (2),

p(xk|c) is the likelihood at frames k = (t′+1), . . . , t given

by (5). During the recursion, we enforce that time intervals

(t− t′) must respect edges in the anchor-constrained graph

(i.e., must include anchor segments). Finally, the optimal

path can be back-tracked from maxc∈C v(c, T ), resulting

in an optimal action segmentation (ĉ, l̂).
In our implementation, we improve efficiency by dis-

carding early unrealistic candidate solutions with too many

action changes along the path – i.e., every subpath ct whose

accumulated mean length exceeds 1.5 times the current

temporal length,
∑

c∈ci
λc > 1.5t.

The predicted action segmentation is used as a pseudo-

ground truth to estimate the cross-entropy loss for pseudo

fully-supervised training of the HMM and MLP, as ex-

plained in the following section.

4.2. The Cross­Entropy Loss

The ACV inference result, (ĉ, l̂), incurs the following

binary cross-entropy loss over all action classes as

LCE = −
1

T

[

T
∑

t=1

∑

c∈C

1(ĉt = c) log p(c|xt)

+1(ĉt 6= c) log(1− p(c|xt))
]

, ĉt ∈ ĉ (14)

where p(c|xt) is the MLP’s softmax score for class c at

frame t, given by (10).

4.3. Diversity Loss

We regularize our learning by using the action saliency

scores estimated for all actions c at every frame, S[c, 1:T ] =
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[S[c, 1], ...,S[c, t], ...S[c, T ]], where S[c, t] is given by

(11). Distinct actions are expected to exhibit different

saliency patterns along the video in S[c, 1:T ]. Therefore,

we specify a diversity loss, LDIV , for regularizing our

learning so as to maximize a distance between every pair

of S[c, 1:T ] and S[c′, 1:T ], c 6= c′.
For a training video with the ground truth C, we define

LDIV over all pairs of distinct actions (c, c′) ∈ C ×C, c 6=
c′, as an average normalized correlation between S[c, 1:T ]
and S[c′, 1:T ] as

LDIV =
1

M(M − 1)

∑

(c,c′)∈C×C

c 6=c′

S[c, 1:T ]⊤S[c′, 1:T ]

‖S[c, 1:T ]‖2‖S[c′, 1:T ]‖2
.

(15)

The normalization in (15) is necessary, since the number of

actions varies across training videos.

Our total loss is a sum of LCE and LDIV :

L = LCE + βLDIV , (16)

where we experimentally found that β = 0.4 is optimal.

4.4. Complexity of Our Training

Complexity of ACV is O(T 2|C|2), where T is the length

of a training video, and |C| is the number of all action

classes. This mainly comes from the Viterbi in ACV, whose

complexity is O(T 2|C|2). Complexity of the first step of

ACV is O(T |C|) < O(T 2|C|2). Complexity of the diver-

sity loss is O(T |C|2). Therefore, the total complexity of

our training is O(T 2|C|2). The same training complexity is

reported in [20].

5. Inference on a Test Video

In inference on a test video, we use a Monte Carlo sam-

pling, as in [20, 27]. Given a test video of length T , we first

randomly select one action set C from the ground truths

seen in training. Then, we sequentially sample from C a

temporal sequence of actions c until
∑

c∈c
λc > T . We

repeat this sequential sampling when c is discarded for not

including all actions from C. In this way, we end up gen-

erating K=1000 valid sequences C = {c}. For every valid

c ∈ C, we use the standard dynamic programming to in-

fer optimal action segmentation in the test video by maxi-

mizing the HMM’s posterior, (c, l̂) = argmaxl p(c, l|x).
Among the K sequences in C, we select the action seg-

mentation with the maximum posterior as our final solution,

(c∗, l∗) = argmaxc∈C p(c, l̂|x).
Complexity of our inference is O(T 2|C|K), where T is

the length of a test video, |C| is the number of action classes,

K is the number of generated action sequences. The same

complexity is reported in [20].

6. Experiments

Datasets. As in [20, 27], for evaluation, we address

the tasks of action segmentation and action alignment on

three datasets, including Breakfast [12], Hollywood Ex-

tended (Ext) [2], and MPII Cooking 2 [30]. Breakfast con-

sists of 1,712 videos of breakfast cooking comprising 48

actions. There are on average 6.9 action instances in each

video. As in [12], a mean of frame accuracy (Mof) over

the same 4-fold cross validation is reported. Hollywood Ext

consists of 937 video clips showing a total of 16 actions.

There are on average 2.5 action instances in each video. As

in [14], we perform the same 10-fold cross validation and

report the mean intersection over detection (IoD) averaged

over the 10 folds, defined as IoD = |GT ∪ D|/|D|, where

GT and D denote the ground truth and detected action seg-

ments with the largest overlap. MPII Cooking 2 consists of

273 videos showing cooking activities. There are 67 action

classes. Following [29], the same training and testing split

is used. We report the midpoint hit metric, i.e. a ratio of the

midpoint of a correctly detected segment in the ground-truth

segment, as in [29].

Features. For a fair comparison, our approach is evalu-

ated on the same unsupervised video features as in [20, 27].

For all three datasets, we extract frame-wise Fisher vectors

of improved dense trajectories [39] extracted over a sliding

window of 20 frames. Our features are 64-dimensional pro-

jections by PCA of the Fisher vectors.

Training. Our training starts from pretraining binary

classifiers in (10) with a multi-instance learning, as in [27].

Then we train our model for a total number of 100,000 iter-

ations, where we randomly select one video in each training

iteration. The learning rate is initialized to 0.01 and reduced

to 0.001 at the 10,000th iteration. The refined HMM’s pa-

rameters are updated after each iteration as in (6)–(8).

Ablations. We consider the following variants of our

approach for evaluating the effect of each component:

• ACV = Our full approach with the diversity loss, up-

dated transition probabilities, updated mean lengths,

updated class priors given by (6)–(8).

• ACVinitial = ACV with the initial transition probabil-

ities, initial mean lengths, initial class priors given by

(2), (4), (5).

• ACVnoreg = ACV without any regularization.

• ACV+Npair= ACV without the diversity regulariza-

tion, but with the N-pair loss regularization.

6.1. Action Segmentation

This section presents our action segmentation on the

three datasets. As shown in Tab. 1, our ACV outperforms

the state of the art by 3.2% on Breakfast, 1.0% on Cook-

ing 2, and 3.2% on Hollywood Ext respectively. In Tab. 1,

we also compare ACV with prior work that has access
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Breakfast Cooking2 Holl.Ext

Model (Mof ) (midpoint) (IoD)

(Set-supervised)

Action Set [27] 23.3 10.6 9.3

SCT [7]our features 26.6 14.3 17.7

SCV [20] 30.2 14.5 17.7

Our ACV 33.4 15.5 20.9

(Transcript-supervised)

OCDC [2] 8.9 - -

HTK [14] 25.9 20.0 8.6

CTC [8] 21.8 - -

ECTC [8] 27.7 - -

HMM+RNN [26] 33.3 - 11.9

TCFPN [5] 38.4 - 18.3

NN-Viterbi [28] 43.0 - -

D3TW [3] 45.7 - -

CDFL [19] 50.2 - 25.8

Table 1. (Top) Our ACV outperforms the state-of-the-art set-level

supervised approaches in terms of Mof, Midpoint, IoD. (Bottom)

We compare ACV with weakly supervised approaches which have

access to the true temporal ordering of actions in training. Our

ACV achieves comparable results and outperforms some weakly

supervised approaches. The dash means “not reported”. When

SCT [7] uses different 2048-dimensional frame features for Break-

fast, their Mof of 30.4 is still inferior to ours.

to stronger supervision in training, where ground truth is

a transcript that additionally specifies the temporal order-

ing of actions. ACV outperforms some recent transcript-

supervised approaches.

Fig. 4 qualitatively illustrates our action segmentation on

a test video P15 cam01 P15 sandwich from Breakfast. As

can be seen, in general, ACV can detect true actions present

in videos, but may miss the true locations of their start and

end frames.

GT

ACV

Figure 4. Qualitative result of action segmentation on a sample

test video P15 cam01 P15 sandwich from Breakfast. Top row:

ACV result. Bottom row: ground truth with the color-coded action

sequence {cut bun, smear butter, put toppingOnTop}. We mark

the background frames in white. In general, ACV can detect true

actions present in videos, but may miss their true locations.

Ablation — Initial vs Refined. Tab. 2 shows the re-

sults our ACV with different HMM parameters. Our ACV

with updated HMM parameters outperforms the variant

with initial HMM parameters – ACVinitial. The table also

shows the upper-bound performance of ACV (ACV+ground

Breakfast Cooking 2 Holl.Ext

Model parameters (Mof ) (midpoint) (IoD)

ACV+ground truth 36.3 16.8 22.1

ACVinitial 31.9 15.0 19.1

ACV 33.4 15.5 20.9

Table 2. Evaluation of ACV when using the HMM with the

ground-truth parameters, initially estimated parameters, and up-

dated refined parameters.

truth) when the mean action length λc, transition proba-

bility p(c|c′), and class priors p(c) are estimated directly

from ground-truth labels of video frames. As can be seen in

Tab. 2, our iterative updating of model parameters, given by

(6), in ACV is reasonable, since ACV+ground truth outper-

forms ACV by only 2.9% on Breakfast.

Ablation — Regularization. Tab. 3 compares our ACV

with the other variants: ACVnoreg and ACV+Npair, where

the latter uses the same loss as in [20]. As the N-pair loss

needs two videos, as in [20], we sample two videos that

share common actions in each iteration. In contrast, our

ACV follows a more general training strategy where only

one randomly selected video is needed. The table shows

that ACV gives the best performance.

Breakfast Cooking 2 Holl.Ext

Model (Mof ) (midpoint hit) (IoD)

ACVnoreg 32.1 15.1 19.9

ACV+Npair 32.4 15.1 20.2

ACV 33.4 15.5 20.9

Table 3. Evaluation of ACV w/out and w/ regularization.

Ablation — Anchor length. Tab. 4 shows the effect

of input parameter α which controls the length of anchor

segments. As can be seen, ACV with α = 0.6 performs the

best. This supports our design choice to allow flexibility in

estimation of action lengths in the Viterbi (as opposed when

α = 1). Fig. 5 visualizes our sensitivity to the choice of α
on the test video P07 webcam01 P07 juice from Breakfast.

As can be seen, ACV with α = 0.6 gives the best result.

Breakfast Cooking 2 Holl.Ext

Model (Mof ) (midpoint) (IoD)

α = 0.4 32.5 15.2 20.1

α = 0.6 33.4 15.5 20.9

α = 0.8 31.7 15.0 19.5

α = 1.0 30.5 14.7 18.7

Table 4. Sensitivity of ACV to anchor-segment length.

Tab. 5 shows accuracy of the first step of our ACV in

terms of intersection over detection (IoD). That is we es-

timate IoD between the estimated anchor segments and
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GT

𝛼 = 0.6
𝛼 = 0.8
𝛼 = 0.4

𝛼 = 1.0

Figure 5. The effect of choosing different lengths of anchor seg-

ments controlled by α on the test video P07 webcam01 P07 juice

from Breakfast. The predicted and ground-truth (GT) action

sequences are color-coded {take plate, take knife, cut orange,

squeeze orange, take glass, pour juice}. The background frames

are marked white. ACV with α = 0.6 gives the best performance.

Iteration 0k 20k 40k 60k 80k 100k

α = 0.4 19.1 27.5 30.0 35.5 37.0 37.8

α = 0.6 19.4 28.7 32.2 36.6 39.0 39.2

α = 0.8 18.7 27.3 29.9 35.0 36.8 37.1

α = 1.0 18.1 25.1 29.4 33.7 35.2 35.9

Table 5. IoD evaluation of salient anchors during training on

Breakfast dataset.

ground truth action intervals. The table shows that α = 0.6
gives the highest IoD, and that accuracy improves as the

number of training iterations grows.

6.2. Action Alignment Given Action Sets

In the task of action alignment, we have access to the

unordered set of actions C truly present in a test video.

Thus, our Monte Carlo sampling can be constrained to uni-

formly sample only actions in the given ground-truth set

C. In comparison to the state of the art, Tab. 6 shows

that ACV improves action alignment in terms of Mof, Mid-

point, and IoD by 4.3% on Breakfast, 1.1% on Cook-

ing 2, 5.3% on Hollywood Ext, respectively. ACV also

achieves comparable results to recent approaches that use

the stronger transcript-level supervision in both training and

action alignment. Fig. 6 shows a qualitative result of ac-

tion alignment on the test video 0181 from Hollywood Ext.

dataset. In general, ACV can successfully align the ac-

tions with video frames, but might incorrectly detect action

boundaries.

7. Conclusion

In this paper, we have addressed set-supervised action

segmentation and alignment. Our key contribution is a new

Anchor-Constrained Viterbi (ACV) algorithm aimed at

generating a frame-wise pseudo-ground truth, which is sub-

sequently used for fully-supervised training of our HMM

Breakfast Cooking 2 Holl.Ext.

Model (Mof ) (midpoint) (IoD)

(Set-supervised)

Action Set [27] 28.4 10.6 24.2

SCV [20] 40.8 15.1 35.5

Our ACVnoreg 43.3 15.8 38.2

Our ACV 45.1 16.2 40.8

(Transcript-supervised)

ECTC [8] ∼35 - ∼41

HTK [14] 43.9 - 42.4

OCDC [2] - - 43.9

HMM+RNN [26] - - 46.3

TCFPN [5] 53.5 - 39.6

NN-Viterbi [28] - - 48.7

D3TW [3] 57.0 - 50.9

CDFL [19] 63.0 - 52.9

Table 6. Evaluation of action alignment that has access to ground-

truth action sets of test videos. Our ACV outperforms the state of

the art on the three datasets. Also, ACV gives comparable results

some transcript-supervised prior work uses stronger supervision

in training. The dash means that the result is not reported in the

respective paper.

GT

ACV

Figure 6. Qualitative result of action alignment on a sample test

video 0181 from Hollywood Ext. dataset. Top row: ACV result.

Bottom row: ground truth with the color-coded action sequence

{OpenCarDoor, DriveCar, DriveCar}. We mark the background

frames in white. In general, ACV successfully aligns the actions

with video frames, but may incorrectly detect action boundaries.

and MLP models. ACV is an efficient approximation to the

NP-hard all-color shortest path problem. Efficiency comes

from our estimation of anchor segments that constrain the

domain of valid candidate solutions in which we efficiently

find the MAP action segmentation. Our approach outper-

forms state of the art on three benchmark datasets for both

action segmentation and alignment, without increasing

complexity in training and testing. Various ablation studies

demonstrate effectiveness of individual components of our

model.
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