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Abstract

View synthesis is usually done by an autoencoder, in

which the encoder maps a source view image into a latent

content code, and the decoder transforms it into a target

view image according to the condition. However, the source

contents are often not well kept in this setting, which leads

to unnecessary changes during the view translation. Al-

though adding skipped connections, like Unet, alleviates the

problem, but it often causes the failure on the view confor-

mity. This paper proposes a new architecture by perform-

ing the source-to-target deformation in an iterative way.

Instead of simply incorporating the features from multiple

layers of the encoder, we design soft and hard deformation

modules, which warp the encoder features to the target view

at different resolutions, and give results to the decoder to

complement the details. Particularly, the current warping

flow is not only used to align the feature of the same res-

olution, but also as an approximation to coarsely deform

the high resolution feature. Then the residual flow is esti-

mated and applied in the high resolution, so that the de-

formation is built up in the coarse-to-fine fashion. To bet-

ter constrain the model, we synthesize a rough target view

image based on the intermediate flows and their warped

features. The extensive ablation studies and the final re-

sults on two different data sets show the effectiveness of the

proposed model. https://github.com/MingyuY/

Iterative-view-synthesis

1. Introduction

Novel view synthesis, also known as view translation,

facilitates the computer to render the same object under ar-

bitrary poses, given an input object image in a source pose.

This is a challenging task, since it requires the model to

understand not only the image content, but also the relation

∗Corresponding author, supported by the the Science and Technology

Commission of Shanghai Municipality (No.19511120800).
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Figure 1: (a) The ID-Unet realizes the translation from the

source view to the target, either existing in the MultiPIE

dataset (−30◦,−15◦,0◦), or under a new view (inside the

yellow box) by the linear interpolation between two adja-

cent view conditions. (b) Extra results on CelebA from the

existing model training on MultiPIE.

between the object poses and its appearances showing in the

image. The model needs to figure out the intrinsic shape of

the object and keep it stable during the translation. Mean-

while, it should be able to synthesize the appearance of the

object, conforming to the target view condition.

Recently, learning-based method has been employed

broadly for this task. Particularly, view synthesis is com-

monly regarded as a multi-domain image-to-image transla-

tion task, which is often modeled by the autoencoder (AE)

[6, 42] or variational autoencoder (VAE) [4, 43]. Both con-

sist of a pair of encoder and decoder, in which only the last

layer of the encoder connects to the decoder, as shown in

Figure 2 (a). However, their limitation has already been re-

alized [20, 41]. Basically, using the latent code from the

last layer is not enough to represent the content. Since the

decoder can only get one latent code, the source content

cannot be kept well in the translated image. A simple but

effective solution is the Unet [30] structure. It utilizes sev-

eral skipped connections by making the shortcuts from the

encoder to the decoder, therefore the output can take more

features from the source, as shown in Figure 2 (b). Such as

V-Unet [9] is a VAE model with skipped connections and
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used for person synthesis. Unet indeed improves the image

quality. But directly using the low-level encoder features

makes it difficult to satisfy the domain requirement, hence

the image sometimes fails to be translated into the target

domain.

Intuitively, in view translation, the encoder feature needs

to be deformed before giving it to the decoder. A straight-

forward way is to apply the the same optical flow on the

different resolutions of the feature map. The flow can be

either determined by the priory knowledge [31] or learned

by the model [43], and the structure is shown Figure 2 (c).

However, we find that using the same flow on different reso-

lutions limits the model’s ability for synthesis. On one hand,

the flow is often not accurate enough. It is estimated based

on the feature of a certain resolution, therefore may be inap-

propriate for other sizes. On the other hand, the model can

already change the view even without any intentional defor-

mations, which implies that we should give it the flexibility

to determine the deformation on different resolutions.

To properly exploit the encoder features in the view syn-

thesis, this paper proposes an iterative way to deform them

in the coarse-to-fine fashion, so that they can be aligned

with the corresponding part in the decoder. The deformed

features skip several intermediate layers, and are directly

given to the layers in the decoder to complement the con-

tent details. Inspired by the idea of progressively estimating

the optical flow for the raw pixels [3, 22], our model speci-

fies the offset vectors for the encoder features from the low

to the high resolution, and these displacements are accumu-

lated across the multiple resolutions. Specifically, we first

use offsets from the low resolution as an approximation to

coarsely deform the feature, then the residual offsets are es-

timated by comparing the roughly deformed result to the

decoder feature of the same size. The residuals refine the

coarse flow and they are applied to give the additional de-

formation. The refined flow is further employed by the next

block in a larger size. In brief, the encoder feature is first

warped according to the coarse flow, and then the remaining

offsets is estimated and applied, so that the result is better

consistent with the target view.

To compute the initial flow and its following-up residu-

als, we design the Soft and Hard Conditional Deformation

Modules (SCDM and HCDM) based on the features from

the encoder and decoder. The view label is the extra con-

ditional input to control the amount of displacement. The

idea of the soft flow is to compute the similarity scores (also

known as the attention matrix) between the encoder and de-

coder features like [37,39]. Given the two of them, the spa-

tial and channel similarities are measured, and then applied

onto the encoder features to align them into the target view.

However, the soft flow is not efficient enough to compute

on multiple resolutions. Furthermore, if the target view is

far from the source, the similarity may no longer reflect the
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Figure 2: An illustration of several comparing frameworks.

(a) and (b) are cVAE and Unet, respectively. (c) is the

combination of them, and T realizes the translation from

source view a to target view b based on optical flow. (d)

improved from cVAE+Unet, the optical flow is estimated it-

eratively. The initial flow T1 is calculated according to the

low-resolution features. As the resolution increases layer by

layer, the residual ∆Tn is calculated to progressively refine

the previous result.

spatial deformation. Our solution is to estimate the opti-

cal flow to ”hard” warp the feature before the spatial and

channel attention in SCDM. Moreover, we also design the

HCDM which gives the high resolution residuals onto the

previous small optical flow, and it ”hard” warps the current

feature and further aligns it to the target view.

The contributions lie in following aspects: (1) We pro-

pose an iterative view translation framework which deforms

the encoder feature from different layers and gives them to

the decoder to improve the synthesis quality. (2) We de-

sign the SCDM and HCDM and use them to align the en-

coder feature into the target view. (3) Extensive experiments

on two different datasets show the effectiveness of the pro-

posed framework and our designed modules.

2. Related Works

GAN and its structure design. GAN [5, 10, 17, 24, 25]

has shown its ability in synthesizing high dimensional struc-

tured data. The rationale behind GANs is to learn the map-

ping from a latent distribution z ∼ N(0, I) to mimic the

real data through adversarial training. Because of the insta-

bility of the adversarial training, it often needs to give extra

constraints on discriminator D [12,13]. Moreover, by incor-

porating an encoder E, GAN can be applied in a variety of

I2I translation, either supervised by the groundtruth [16,38]

or not [6,47]. In AE, the source image is first converted into

a latent code by E, and then G takes the code and transforms

it back into the image. Since there are multiple visual do-

mains, the source and target domain labels are given to the
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Figure 3: (a) The detailed architecture of the proposed ID-Unet. Xa is mapped to the variable Z through encoder, and it is

supplied to the encoder together with the target view label Cb. SCDM and HCDM warp the encoder features to the target

view, and give their output to the decoder in a way of de-normalization (DFNM) [43] to complement the details. And the low

resolution optical flow is as an approximation to change the high resolution feature by Φs and Φ, so that the flow is formed

in the coarse-to-fine fashion. (b) Iteratively update of the view conditional Cdiff to Wdiff3, Wdiff2 and Wdiff1.

AE as the guide. Variational autoencoder (VAE) [19] has

the similar structure with AE, in which the latent code is

assumed to follow the posterior distribution, and the poste-

rior is to be close to a prior during training. Hence, VAE is

not a deterministic model like AE. It can support sampling

from the posterior or prior, with their corresponding synthe-

sis looking like real images. VAE is extended to its condi-

tional version cVAE [4, 33] as shown in Figure 2 (a), and

cVAE is suitable for either synthesizing the diverse styles

of images [48], or disentangling the latent code [14, 45].

In AE or VAE, E and G are only connected through

the last latent code, which is not enough to guarantee the

synthesis quality. AdaIN [15], SPADE [27], CIN [8] and

CBIN [23] are other ways to inject the feature into the mul-

tiple decoder layers through a side branch, which adjusts

the statistics of features in the main branch. The Unet [30]

and its variants link E and G by setting up shortcuts be-

tween them. But it often leads to failures in I2I translation.

Xiao et al. [41] use G’s output as the residual added onto

the source image to improve the quality. Li et al. [20] de-

signs PONO layer in Unet, normalizing and adapting source

domain features from E to G. However, these structures are

not designed for view synthesis.

View synthesis. Traditional approaches [2, 18, 29] for this

task are mainly based on projection geometry, which tries to

recover the 3D relation between the object and its projected

image plane. They directly estimate either the depth and

camera pose [2], or 3D model parameters [18, 29], so that

the object can be projected into the target view. Learning-

based methods [7, 46] become increasingly popular nowa-

days. In [7], a CNN model learns to process the latent code

for object shape and camera pose, and map it into an image.

In [46], the CNN predicts the optical flow to warp the source

view into the target. Recently, due to the great success of

GAN [26, 31, 34, 36, 42], the AE structure plus the adver-

sarial training begins to play the key role in view synthesis.

Meanwhile, VAE and its probabilistic latent vector [35, 43]

can be applied in this task as well, which even better keeps

the contents from the source. However, none of these works

consider the coarse-to-fine iterative deformation on features

to perform view synthesis.

3. Method

We intend to synthesize object in arbitrary views. Given

an image Xa containing an object in the source view Ca,

and an expected target view Cb as the inputs, the model out-

puts X̂b, a synthesis of the same object in the target view.

The difficulty of this task lies in accurately changing the ob-

ject from the original to the target view, while keeping other

attributes (e.g. identity) unchanged during the translation.

3.1. The Framework of Iterative View Translation

A brief framework is given in Figure 2 (d). The idea is to

apply multiple deformations on the shallow layer features

in the encoder and give them to the decoder, which is con-

ducive to maintain the source content irrelevant to the view.

Note that in Figure 2 (c), module T also estimates the optical

flow and is applied on different resolutions, but it is in the

independent way. Here the key improvement is the coarse-

to-fine manner to estimate the initial deformation T1 and

refine it through ∆Ti iteratively, where i = 2, 3 in our set-

ting. Moreover, we find that using the deformed low-level

features in the decoder causes the missing of content details

in the translated image. While cVAE has a better ability
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Figure 4: Illustration of Soft and Hard Conditional Deformation Module. We show the SCDM and HCDM on the left and

right respectively. Both have 3 inputs, Fgi, Fei and Wdiff from G, E and view condition, and 1 output Fout given to main

branch of G. SCDM consists of 3 stages, which are KG warp, spatial soft warp and channel soft warp. HCDM directly

estimates the optical flow and warps the encoder feature Fei.

to keep complete objects by introducing the prior distribu-

tion as a regularization. The proposed Figure 2 (d) inherits

the cVAE+Unet structure in Figure 2 (c). In particular, the

source view Xa is input to the encoder to provide the con-

tent, and is mapped to a posterior distribution, from which

the latent Z can be sampled. The decoder takes Z and the

target view condition Cb to synthesize the translation.

The proposed ID-Unet, with its specific architecture

shown in Figure 3, accomplishes the iterative view trans-

lation on the features Fe in different layers of the encoder,

so that they are aligned with their corresponding part Fg in

the decoder. Notice that Fe have spatial dimensions and are

under the original view Ca. If the same features under the

target view Cb could also be obtained, it would be easy to

estimate the optical flow to deform Fe. Intuitively, the de-

coder feature Fg can be roughly assumed in the target view

Cb, since the first decoder feature Fg3 is computed accord-

ing to the latentZ and conditionCb, which has already been

aligned into Cb. This can be extended to other decoder fea-

tures such as Fg2 and Fg1. They are closer to Cb than their

counterparts Fe2 and Fe1, so we employ the pair Fe3 and

Fg3 to estimate the initial T1, and the following pairs to

predict ∆Ti.

3.2. Soft and Hard Deformation

We design two types of modules, applying the soft

and hard deformations on low and high resolution feature,

respectively. Both of them depend on Wdiff , a 1× 1 vector

given by MLP, which reflects the view difference. We will

elaborate it in the next section.

Soft Conditional Deformation Module (SCDM)

SCDM estimates the initial deformation T1 based on a

pair of features Fe3 and Fg3 at the lowest resolution, as

shown in the left of Figure 4. Instead of directly comparing

Fe3 and Fg3, a two-channel flow is first predicted through

kernel given conv (KGconv) and applied onto Fe3 by the

warping operation Φ. Here, the purpose is to align Fe3 in

the target view direction to form F̃e3, so that the soft flow

can be calculated from two similar features F̃e3 and Fg3,

preventing from inappropriate matching two views far from

each other. Note that KGconv uses Wdiff as conv kernels

to generate x and y offsets in the optical flow to assist view

translations [43].

Then, to measure the similarity between source F̃ei and

target Fgi, we compute the Soft flow ∈ R
HW×HW by the

inner product between êv and ĝu: Soft flow(u, v) = ĝTu êv ,

where êv and ĝu ∈ R
C represent the channel-wise cen-

tralized feature of F̃ei and Fgi at position v and u, êv =
ev − µ(ev) and ĝu = gu − µ(gu). Soft flow(u) ∈ R

HW

represents the similarity between Fg3 at position u and F̃e3

at all position, so the weighted F̃ei is the output feature el-

ement Fsp(u). The weight, Soft flow(u), is normalized by

the Softmax function and multiplied on each position of F̃ei.

Fsp(u) = softmax(
1

τ
· Soft flow(u)) · F̃ei. (1)

Different from the classical flow warp (hard warp), Fsp in

(1) is the weighted sum of the feature at multiple positions

in F̃ei. However, smooth weights may change image con-

tents like colors or styles. In order to maintain them, we bal-

ance the soft and hard warp by incorporating a temperature

τ < 1 in (1), which increases the impact of the high-weight

position (which is more relevant) on the output.

Finally, based on Fsp and Fg3, we obtain the similarity

matrix Covc along the channel in the same way of spatial

dimension, and ”Soft warp” is also performed on Fsp to

maintain more valid information in the channel dimension.
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Hard Conditional Deformation Module (HCDM)

Basically, HCDM utilizes the results of SCDM, and re-

fines the deformation for larger size Fe2 and Fe3. Once the

soft flow is obtained, the globe deformation Φs can be ap-

proximated. For the high-resolution features, as shown in

Figure 3 (a), Φs also takes effect in HCDM. It first makes

the coarse deformation on Fe2 and Fe1. Due to the size

mismatch between Soft Flow and feature Fe2 or Fe1, one

element in Soft Flow matrix is scaled and applied to the

corresponding square area in the feature of larger size, sim-

plifying as Fe2′ = Φs(Fe2). Then the residual optical

flow at high resolution is further estimated by the deformed

results Fe2′ , the target view features Fg2 and Wdiff2 to-

gether. They are concatenated to learn the residual flow.

The residual (Res hard flow) can be superimposed, giving

Fe1′ = Φ(Φs(Fe1)), in which Φ denotes the hard warping

operation by the optical flow. Therefore, with the increase

on resolution, the optical flow for translation is gradually

refined by HCDM.

3.3. Iteratively Update View Difference Condition

With the gradual refinement of optical flow, the features

Fe2′ and Fe1′ have been converted to the target view to a

certain extent. Then the actual view of the current features

(Fe2′ or Fe1′ ) is no longer the same as the source, and the

condition Wdiff should also be adapted, since it no longer

translates from the source to the target, but from the current

view to the target. In our model, Wdiff is updated itera-

tively together with the feature. Specifically, we use the cur-

rent flow to measure the amount of the translation, and learn

how to update Wdiff by the model itself. In Figure 3 (b),

the view label difference Cdiff is passed through an MLP,

to get Wdiff . Wdiff3 used for the first warp is directly

obtained from Wdiff through one fc layer. During the fur-

ther operation, the mean of optical flow (µ(dx), µ(dy)) is

concatenated with Wdiff to determine the next conditional

vector (Wdiff2 or Wdiff1) for the further deformation.

3.4. Training Details and Loss Functions

Adversarial and Reconstruction Loss

We use adversarial loss Ladv
E,G and Ladv

D [21] to ensure

the translated image approximates the true distribution like

in (2). As shown in Figure 3 (a), the final X̂b is mixed

by two parts. One is the X̂
warp
b , obtained by the soft and

hard deformation on the source Xa, and the other X̂
g
b is the

output of the generator. The model learns a single channel

mask to weight and combine the two results. The mask is

computed based on the output and the optical flow in the

last HCDM.

Ladv
D =EX [max(0, 1−D(X,Cb))]

+E
X̂b

[max(0, 1 + D(X̂b, Cb))],

Ladv
E,G =E

X̂b
[max(0, 1−D(X̂b, Cb))]

(2)

DFNM DFNM DFNM

C C

Fg3 Fg2 Fg1

Conv

Upsampling

Giving to

C Concat

Loss

Figure 5: Besides the normal translated image X̂b, image

X̂R is generated from Fg3, Fg2 and Fg1 for the rough loss.

Like ACGAN [25], we use classification losses Lcls
C and

Lcls
E,G in (3). The classifier C shares a part of its weights

with discriminator D.

Lcls
C = −EXb

∑

c

I(c = Cb) log C(c|Xb),

Lcls
E,G = −E

X̂b

∑

c

I(c = Cb) log C(c|X̂b)
(3)

In addition, by combining the reconstruction loss in im-

age domain L
pixel
E,G = ||X − X̂j ||1 and feature domain

Lcontent
E,G =

∑
i ||φ

i(X) − φi(X̂j)||1, the image quality is

guaranteed more faithfully. Here φ indicates i-th layer of a

pre-trained VGG [32] network, and j = b, a, aa. X̂a and

X̂b are the fake images at target view A and B. X̂aa the

cyclic translation result, which is translated back from the

synthesised image in view B.

Disentangling Loss

The source imageXa is mapped to a codeZ ∼ E(Z|Xa)
where E(Z|Xa) is a posterior depending on the source Xa.

Z is fed directly into G, so it should keep the content of

the object, and be irrelevant to views [42, 43]. To prevent

Z from taking view relevant factors, we add two auxiliary

classifier losses for E. One computes the classification loss

LclsC
E which tries to predict Ĉa = E(c|X) to approximate

view label Ca, as is defined in the first term in (4). Another

adversarial constraint Lcls
E in (4) makes the view classifica-

tion based on Z by the hidden layer classifier DAC, which

is the last two terms in (4).

LclsC
E =− EX∼Xa

∑

c

I(c = Ca) log E(c|X),

LclsZ
E =− EZ∼E(Z|Xa)

∑

c

1

C
logDAC(c|Z),

LclsZ
DAC =− EZ∼E(Z|Xa)

∑

c

I(c = Ca) logDAC(c|Z)

(4)

Here LclsZ
DAC is the penalty to train DAC, ensuring the ac-

curacy of the view classification. LclsZ
E is the adversarial

loss applied on E to make DAC confused to predict the uni-

form value on each view. Furthermore, via the constraint of

7224



Method MultiPIE 3D chair

L1 ↓ SSIM↑ LPIPS↓ FID↓ id-acc↑ L1 ↓ SSIM↑ LPIPS↓ FID↓

MV [34] 15.21 0.489 0.217 29.85 0.742 13.86 0.779 0.224 104.49
Unet [30] 14.03 0.619 0.164 49.86 0.396 21.75 0.697 0.255 86.74
cVAE [4] 12.82 0.635 0.119 28.99 0.651 8.93 0.828 0.102 27.79
CRGAN [35] 14.12 0.627 0.141 26.77 0.868 13.33 0.788 0.196 28.23
VIGAN [42] 12.96 0.638 0.117 29.05 0.686 12.13 0.781 0.133 33.18
PONO [20] 13.63 0.621 0.126 23.77 0.862 12.74 0.780 0.148 37.85
CDVAE [43] 13.49 0.623 0.125 23.95 0.917 13.38 0.773 0.148 40.81

cVAE+Unet 12.37 0.658 0.113 28.98 0.689 11.32 0.790 0.123 32.04
A:cVAE+Unet+Iterative 12.14 0.676 0.100 27.50 0.893 10.64 0.801 0.120 27.76

B:A+ImageMix 12.01 0.679 0.101 26.55 0.928 9.30 0.819 0.104 36.18
C:B+IterativeC 11.11 0.684 0.095 24.55 0.913 9.055 0.826 0.102 29.06
D:C+rough loss 10.72 0.694 0.093 25.12 0.911 7.57 0.847 0.089 28.87

Table 1: Comparison on the MultiPIE and the 3D chair datasets.

KL loss LKL = DKL[E(Z|Xa)||N(0, I)], the latent code Z

from the encoder is close to the standard normal distribution

and has no category-related information.

Rough Loss

We design the rough loss on the deformed features in

SCDM and HCDM, to make the features conform to the

target view. As is described in section 3.1 and Figure 3,

the decoder features Fg3, Fg2 and Fg1 are assumed under

target view Cb. To better ensure that they are in target view,

Fg3, Fg2 and Fg1 are combined and fed to a layer ψ to

generate an image X̂R = ψ(Fg3, Fg2, Fg1) as shown in

Figure 5. The image X̂R is constrained by pixel-wise L1

loss and classification loss of the classifier C, like in (5).

L
rough
E,G = ||Xb − X̂R||1 +

∑

c

I(c = Cb) log C(X̂R) (5)

Overall Objective. The total optimization loss is a

weighted sum of the above. Generators E,G, discrimina-

tor D, classifier C, and the latent classifier DAC are trained

by minimizing (6).

LE,G =Ladv
E,G + Lcls

E,G + α1L
content
E,G + α2L

pixel
E,G

+α3LKL + LclsC
E + LclsZ

E + α4L
rough
E,G ,

LD =Ladv
D , LC = Lcls

C , LDAC = LclsZ
DAC

(6)

The loss weights α1, α2, α3, α4 = 5, 5, 0.1, 10.

4. Experiments

4.1. Datasets and Quantitative Metrics.

Datasets. We validate the proposed ID-Unet on face

dataset MultiPIE [11] and 3D chair [1] object dataset. Mul-

tiPIE contains about 130,000 images, with 13 viewing an-

gles, spanning 180◦. Nine of central viewing angles are

used for training and testing. The 3D chair contains 86,304

images, covering a total of 62 angles. For all the datasets,

80% are used for training and the rest 20% for testing.

Quantitative Metrics. To give the evaluation on differ-

ent methods, we use following metrics during the test. We

calculate L1 error and LPIPS [44] to measure the differ-

ence at pixel level and feature level between the generated

and ground truth image. SSIM [40] is calculated to com-

pare the similarity of image structure. FID represents the

distance between the generated image distribution and the

real image distribution, so as to measure the authenticity of

the generated image. At the same time, on the MultiPIE

dataset [11], we use the face identity recognition network

pretrained on VGGface [28] dataset to calculate the iden-

tity accuracy of generated image. Table 1 lists all the met-

rics for the ablation and comparison models. More specific

training details are given in the supplementary materials.

4.2. Ablation Study

In this section, we compare the results in several different

ablation settings to verify the effectiveness of every compo-

nent in the proposed method.

A: cVAE+Unet+Iterative. Setting A is based on the two

common models Unet and cVAE, combining them and then

sending the encoder features to the corresponding decoder

layer after iterative view translation. In Figure 6 and 8,

the 2nd, 3rd and 4th rows are generated images from Unet,

cVAE and model A, respectively. We observe that the ob-

ject from Unet appears incomplete (disappeared chair part

or eyes). For cVAE, the face identity and the chair color

have changed to a large extent. While the setting A can

ensure the integrity of the image and the invariance of the

information irrelevant to the view. Meanwhile, as shown in

Table 1, compared with Unet and cVAE, all results under

setting A are significantly improved, especially the id-acc
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Figure 6: Ablation study on MultiPIE dataset. The source

and the ground truth targets are provided in the first row.

Please zoom in for details.

increases from 0.396 (Unet), 0.651 (cVAE) to 0.893.

B: A+ImageMix. Based on A, setting B combines the

output of the generator X̂
g
b with the deformation of the orig-

inal image X̂
warp
b , which is conducive to maintain more

valid content of the original image and generating more re-

alistic images, as shown in the 5th row in Figure 6, with the

id-acc reaching 0.928.

C: B+IterativeC. The experimental setting C further ex-

tends on B. In Figure 6 and 8, the view translation is more

accurate and better handled in detail. Because the view dif-

ference condition Wdiffi, where i = 1, 2, 3, is updated

iteratively according to the degree of deformation of cur-

rent features, the view condition is better adjusted and con-

trolled. The result in Table 1 also verifies the conclusion.

D: C+rough loss. In setting D, the effectiveness of

rough loss is validated. From the last row in Figure 8, it

can be seen that the chairs are not only close to the targets

on pixel, but also have stable shape at different views. It is

obvious that this model can better understand the intrinsic

shape of the chairs. This is also supported by Table 1.

4.3. Visualizations

Optical flow. In Figure 7, the source image is translated

into 3 target views. The 3rd row is the result from soft flow,

Source

Target1 Target2 Target3

Res hard

Flow

H×W

Soft flow

H/4×W/4

Res hard

Flow

H/2×W/2

KG flow

H/4×W/4

Figure 7: Visualization of optical flow on different layers.

We list 4 deformation flows from the bottom to the top. The

direction of the flow points from the target to source.

Figure 8: Ablation study on 3D chair dataset. The source

and ground truth targets are given in the 1st and 2nd rows.

which is converted into a 2-channel hard flow for visualiza-

tion by taking out the most relevant coordinate. We find that

the absolute value of the soft flow is larger than the rest of

the hard flow in the 1st, 2nd and 4th rows, which can be used

to achieve overall deformation. The 4th row of KG flow in
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Figure 9: Comparison on MultiPIE. For each image, the top row is the ground truth while the 2nd to 6th rows are generated by

MV [34], CRGAN [35], VIGAN [42], PONO [20] and CDVAE [43] respectively. The last row is generated by our ID-Unet.

Figure 10: Comparison on 3D chair. The 1st and 2nd rows

are the source and target images while the 3rd to 7th rows

are generated by MV [34], CRGAN [35], VIGAN [42],

PONO [20] and CDVAE [43] respectively. The last row

is generated by ID-Unet.

SCDM has the clear direction. The magnitudes of residual

hard flow in the 1st and 2nd row are smaller, showing that

the feature progressively approaches the target view.

Continuous view synthesis by interpolation. To trans-

late an image in an unseen view, we linearly interpolate the

two conditions to get an arbitrary angle image that does not

exist in the dataset. Figure 1 shows that our model is smooth

enough to achieve view morphing.

Visual comparisons with previous works. As shown in

Figure 9 and 10, ID-Unet can accurately achieve the view

synthesis while effectively maintain the source contents,

e.g., the face ID and the chair style. The quantitative results

in Table 1 can also confirm the effectiveness. The results

from MV [34] are excessively bright, and it has problems

such as ghosting for difficult samples. VIGAN [42] and

CRGAN [35] have good results on simple samples, but they

can not maintain the original structure for complex chairs,

and synthesize the facial details like eyes in the 2nd facial

image. PONO [20] and CDVAE [43] have good ability to

keep the source content, but their models do not understand

the structure of complex objects. For example, the 3rd face

in Figure 9 cannot achieve reasonable translation.

5. Conclusion

This paper presents the ID-Unet to perform the view syn-

thesis. It iteratively makes the deformation on the encoder

features from different layers, and connects them into the

decoder to complement the content details. To achieve the

view translation, we design the SCDM and HCDM to align

the feature from the source view to the target. Both the mod-

ules take the encoder and decoder features as well as the

view condition vector as the inputs, compare the features

to give either the soft or hard flow, and warp the encoder

feature according to it. Since the flows are computed from

features of different sizes, we accumulate them across reso-

lutions and use the current flow to coarsely align the encoder

feature first, and then estimate the residuals flow to refine it.

Experiments show the effectiveness of the proposed model

on two different datasets.
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