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Figure 1: We present a method to remove an object and its shadows from an image, to enable applications like home refurnishing. Our

method takes as input an image, approximate scene lighting and geometry, and an object mask, and generates a new version of the image

that depicts the scene as if the object had not been present. This not only includes inpainting the occluded pixels, but removing any shadows

cast by the object.

Abstract

Removing objects from images is a challenging technical

problem that is important for many applications, including

mixed reality. For believable results, the shadows that the

object casts should also be removed. Current inpainting-

based methods only remove the object itself, leaving shad-

ows behind, or at best require specifying shadow regions to

inpaint. We introduce a deep learning pipeline for remov-

ing a shadow along with its caster. We leverage rough scene

models in order to remove a wide variety of shadows (hard

or soft, dark or subtle, large or thin) from surfaces with a

wide variety of textures. We train our pipeline on syntheti-

cally rendered data, and show qualitative and quantitative

results on both synthetic and real scenes.

1. Introduction

Mixed reality aims to seamlessly combine the virtual and

the real. As one example, imagine an interior design app

that lets you try out new furniture. Most previous work in

augmented reality focuses on inserting virtual objects – for

instance, putting a virtual sofa into your living room. The

scope of these applications can be greatly expanded by also

enabling manipulation of real-world objects – imagine re-

moving the futon that you intend to replace with the sofa,

and moving a coffee table over to make more room for it.

Previous work on object removal has focused solely on

the inpainting problem – that is, replacing the pixels previ-

ously occupied by the removed object. However, for realis-

tic results, we need to remove the sofa and the shadows it

casts on the wall and the floor, as well as the reflection on

the hardwood floor. For the purposes of this paper, we focus

only on the shadow removal problem.

Existing inpainting-based approaches for object removal

either ignore the shadows of the object, or mark them to

be inpainted as well. However, very large shadows may

leave little image content to copy pixels from. Furthermore,

this approach requires segmenting out the object’s shadow

in addition to the object itself – a difficult task, as varying

lighting conditions can cause multiple shadows, very soft

shadows, or overlapping shadows, and a surface texture may

have dark regions that could be mistaken for shadows.

Inspired by Debevec’s [9] work in virtual insertion of ob-

jects in scenes, we use a scene proxy to help determine the

visual effects of a scene manipulation. Debevec performs

the scene edit on the proxy model, and renders the proxy

pre- and post-edit. The pixelwise difference between the
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two renderings, which for object insertion contains shad-

ows and reflections of the virtual objects, is then applied to

the input image to produce the final output. This method is

known as differential rendering. However, it is not practical

to solve the shadow removal problem by applying the pix-

elwise difference directly, since the shadows in the proxy

model are only a rough estimate of the real shadows. To

account for this, we propose a neural network based system

for more general differential rendering for object removal.

An obvious question is, how do we obtain an editable

scene proxy? One could use a depth camera, monocular

depth estimation [13, 14], or a global model obtained as a

side effect of localization [8] for the geometry. For light-

ing, the possibilities include a mirror sphere, panorama, or

learning based methods [22, 29, 30]. In this paper we use

depth maps captured by an affordable depth sensor and a

360◦ panorama, but the method is not fundamentally lim-

ited to proxies obtained by these devices, nor do the proxy

models need to be very accurate. Our proxy mesh is gen-

erated from a single depth map, thus modeling only front

facing surfaces, and our lighting is captured as an uncali-

brated HDR environment map with only very rough align-

ment. We show that even this constrained and incomplete

proxy provides enough information to generate plausible re-

moval results across a wide range of conditions.

In this paper we present a method for removing an ob-

ject and its shadows from an input image, given a rough

model of the scene and the mask of the object. Our system

is more accurate and produces fewer visual artifacts than

a general image-to-image translation system or an inpaint-

ing method, even when the inpainting method is given the

shadow regions it should replace.

2. Related Work

2.1. Scene Editing

Editing scenes in a visually realistic manner has long

been an area of interest in the graphics community. Most

of this work has focused on virtual object insertion. Clas-

sical methods construct an approximate model of the scene

to help perform these edits, ranging from Debevec’s early

work [9], which assumes lighting and geometry were di-

rectly captured, to more recent work by Karsch et al. [19],

which infers geometry, albedo, and lighting from a single

image. Beyond simply inserting objects, Kholgade et al.

[20] are able to move an object around, although they as-

sume that a high-quality 3D model of the object is available.

Research on object removal has traditionally focused on

the inpainting problem, ranging from classical techniques

such as PatchMatch [1] to recent learning-based techniques

such as DeepFill [36] and HiFill [35]. These methods do

not consider lighting interactions between the removed ob-

ject and the rest of the scene; thus when removing the ob-

ject by inpainting, the user-specified mask must be extended

to include the object’s shadow. Recent work by Wang et

al. [34] employs deep networks to associate shadows with

their casters; however, their instance segmentation approach

produces hard boundaries and does not work for soft shad-

ows. Zhang et al. [37] remove objects from indoor scenes

by constructing a full scene model and rendering it without

the objects, eliminating the need for inpainting and shadow

identification; however, their approach requires an involved

capture process and is limited by the expressivity of their

parametric scene model.

The issue of the limited range of scene models is inher-

ent to all of the methods that rely on such models for scene

editing. Most works (e.g. Kholgade [20]) use Debevec’s

differential rendering method to account for differences be-

tween the model and the real scene. Recent approaches for

neural rerendering use image-to-image translation to map

from the domain of the approximate model to a realistic

result [23, 24]. Philip et al. [26] introduced a method for

relighting outdoor photographs that also leverages proxy

scene models. Their system is designed to handle global

changes in illumination, like changing the position of the

sun; furthermore they rely heavily on shadow masks that

cannot handle complex environment lighting. Instead, we

focus on local changes informed by the differences in the

appearance of the proxy scene, based on an intrinsic de-

composition that can handle multiple soft shadows.

2.2. Shadow Removal

Removing shadows from images is another problem that

has a long history. Note that the goal of these works is to

remove all shadows from an image, while our goal is to iso-

late and remove the shadow(s) of a single object. To help

approach this more challenging task, we assume the pres-

ence of a rough scene proxy.

Classical intrinsic image decomposition methods are de-

signed with various priors, typically specializing in low-

frequency lighting and thus handling soft shadows well

[3, 2, 5, 15]. Another set of methods specialize in hard

shadows and classify gradients as shading or texture [4, 31];

however, these methods break down when shadow receivers

have complex texture. Finlayson et al. [11] place assump-

tions on light source chromaticity, allowing for removal of

both soft and hard shadows at the expense of generality.

Recent methods use deep networks to perform shadow

detection and removal, starting with work by Qu et al. [27].

Advances such as adversarial losses [33, 10], a two-stage

detection-then-removal scheme [16], or lighting inference

[21] have resulted in great improvements on shadow re-

moval on the common ISTD [33] and SRD [27] datasets.

However, these datasets only contain hard shadows pro-

duced from outdoor lighting. Our system is trained to han-

dle much more diversity in lighting conditions.
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3. Training Data

To better understand our architecture and losses, we first

discuss our training data. Our system is trained on a syn-

thetic dataset, which allows us to greatly expand the di-

versity of lighting and receiver textures compared to prior

datasets. Furthermore, it also allows us to generate ground

truth intermediates such as intrinsic decompositions, which

are crucial to our system.

To generate training data, we set up 60000 input scenes

with randomly generated geometry, textures, lighting, and

camera parameters. These scenes are rendered using PBRT

[25] to produce images of resolution 512×512. The dataset

exhibits a wide variety of shadow casters (e.g large objects,

thin structures, and objects with unusual silhouettes) and

lighting conditions (hard or soft shadows, very dark or very

subtle shadows, multiple shadows). Some examples are

shown in Figures 3-4 and in the supplementary material.

3.1. Scene Generation

Geometry: Our generated scenes consist of a ground

plane supporting six to seven objects randomly selected

from the ~50000 3D models in the ShapeNet [6] dataset,

which include a variety of object classes ranging from fur-

niture and tableware to cars and airplanes. These objects

are arranged in a ring around a central object, and are scaled

such that the bounding boxes are nonintersecting. Each ob-

ject is translated such that it lies entirely on top of the plane,

and has a random rotation around its up axis. The ground

plane is large enough to support all the shadow casters, plus

an additional margin for shadows to potentially fall upon.

Materials: The supporting plane is given a matte ma-

terial, and is assigned a random texture (e.g. carpet, wood,

stone, tile). Existing texture datasets are too small (e.g. Bro-

datz [32]) or have textures which are nonuniform (e.g. De-

scribable Textures Dataset [7]). We use a manually curated

texture dataset of ~8000 images from Google Image Search

results. ShapeNet objects come with prespecified materials.

Lighting: We illuminate each scene by one of the ~400

HDRI maps at HDRI Haven1, randomly rotated around the

up axis. To supplement the lighting, we add a point light

with random intensity (setting the maximum to the peak in-

tensity of the HDRI map) randomly placed between a min-

imum and maximum distance from the center of the plane,

in the upper hemisphere.

Camera: We define a range of camera positions lying

on an upper hemisphere of fixed radius in terms of spheri-

cal coordinates facing the center of the scene. We allow the

azimuthal angle to vary freely, but set a minimum and max-

imum elevation angle (as people rarely observe scenes from

directly overhead or from very low angles). After selecting

an initial camera pose we then perturb the camera’s position

1https://hdrihaven.com/

while keeping the same orientation.

3.2. Image Generation

Using PBRT, we render three RGB images of each scene:

T̂ , the ground plane alone with diffuse texture; L̂, the com-

plete scene with the plane material replaced by a diffuse

white material; and L̂′, the scene with the central object re-

moved with the same alteration to the plane material. These

images comprise the ground truth intrinsic decomposition’s

texture and lighting, and the lighting post-object-removal.

Note that these images do not form a true intrinsic decom-

position of the entire scene, only of the receiving plane. We

also render the ground plane alone with no texture to cap-

ture its unshadowed appearance Lr.

Next, we render depth maps D,D′ of the unedited and

target scenes, as well as a depth map Dr of solely the

ground plane receiving shadows, all using the same camera

pose as the RGB images. From these we compute a pixel

mask of the object to be removed Mo = I(D′ < D) which

is 1 where the object is and 0 everywhere else. We also com-

pute a receiver mask Mr = I(Dr 6= ∞, Dr = D) which is

1 for pixels lying on the ground plane in the unedited scene

and 0 everywhere else.

To allow for further augmentation, we do not raytrace the

input and output images I, Î ′; instead we compute them at

train time from the decomposition: I = (MrT̂+(1−Mr))L̂
and Î ′ = (M ′

rT̂ + (1 −M ′
r))L̂

′. This allows us to modify

the hue, saturation, and brightness of texture and lighting at

train time. Note that we forgo indirect bounce lighting in

our synthetic data to enable this augmentation, as indirect

illumination depends on the surface reflectance, i.e. texture.

To mimic real capture, we add noise to the depth map

of the unedited scene and construct a triangle mesh from

the depth map as our approximate geometry, replacing the

ground plane vertices with a best-fit plane (which continues

behind the removed object). To form the target proxy ge-

ometry, we delete the depth pixels occupied by the removed

object. This scene is lit with a perturbed version of the input

lighting: we jitter the point light’s position, color, and inten-

sity, apply a random nonlinear scale to the HDRI map, and

randomly rotate the HDRI map by a small amount. All ma-

terials are set to a diffuse white; note that we do not model

the surface reflectance (texture) of the plane as it would im-

ply already knowing the intrinsic decomposition. Render-

ing these elements produces P, P ′, respectively the images

of the unedited and target scene proxy.

3.3. Normalization

Our intrinsic decomposition has a scale ambiguity,

which we resolve by normalizing the ground truth lighting

L̂, L̂′ at train time, expecting that the network will produce

normalized lighting images. Specifically, we apply a per-

channel scale to both L̂, L̂′ such that the maximum pixel
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Figure 2: Overview of our approach. We take an input image, a mask of the object to remove, and renderings of a rough scene model

with and without the object. We first decompose the input image into texture and lighting. We then remove the object’s shadows from the

lighting image. We inpaint the object mask region separately in both texture and lighting before recompositing to get our final result.

value on the receiver across both images is (1, 1, 1). Simi-

larly, we compute a normalization factor for images of the

scene proxy P, P ′ (which are just approximations of L̂, L̂′).

This occurs at both test and train time.

For both train and test we scale the images in the input

domain (i.e. I and Î ′) to have a channelwise mean pixel

value of 0.5 on the ground plane.

4. Method

Our pipeline consists of a series of convolutional neu-

ral networks (we use a single U-Net [28] for each compo-

nent), with an inpainting stage to produce our final results.

A visual overview can be seen in Figure 2. Our system

takes as inputs the original image, a rendering of the ap-

proximate scene model before object removal (referred to

as the shadow proxy), a rendering of the scene model after

object removal (target proxy), and binary masks denoting

the object to remove and the receiving surface from which

to remove shadows. An overview of our pipeline follows:

• The intrinsic decomposition subsystem separates the

input image into texture and lighting, guided by the

shadow proxy. Following existing works [16] on

shadow removal, we use a two-stage scheme with an

initial shadow segmentation network.

• The shadow removal network removes the shadow

of the removed object from the decomposed lighting,

aided by the shadow proxy and target proxy images.

• The inpainting subsystem separately inpaints the

lighting and texture behind the removed object. Our

learned lighting inpainting uses the target proxy to in-

form where the remaining shadows in the scene should

continue behind the removed object. For texture in-

painting, we use an off-the-shelf inpainting method.

Inpainting the decomposed texture, rather than the fi-

nal composite, prevents the inpainting method from

hallucinating its own shadows.

• Lastly, we recompose the lighting and texture images

back together to produce our final result.

We define I, I ′ as the input and output images, respec-

tively. P, P ′ are the shadow proxy and target proxy. The

intrinsic decomposition is denoted by I = LT, I ′ = L′T ′

with L,L′ being the lighting images and T, T ′ being the re-

flectance (texture) images. Mo is a binary mask which is

1 for pixels lying on the object to be removed and 0 else-

where. Mr is a binary receiver mask which is 1 for pixels

lying on the local scene receiving the shadows, and 0 for

pixels elsewhere. This restricts the network to operate on

a surface with a single texture, as otherwise the intrinsic

decomposition frequently mislabels shadows as changes in

reflectance if the surface reflectance can vary arbitrarily.

RGB images are processed in the log domain, turning

the intrinsic decomposition I = LT into a sum log(I) =
log(L) + log(T ) that is more naturally represented by

CNNs. Using synthetic training data enables full supervi-

sion of each subnetwork’s intermediate outputs.

Shadow Segmentation: This subnetwork produces a 1-

channel soft segmentation in [0, 1], where 1 is full shadow.

S = fSS(log(I), log(P ),Mr) (1)

Intrinsic Decomposition: This subnetwork decomposes
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the input image into 3-channel lighting L and texture T .

L, T = exp(fID(log(I), log(P ), S,Mr)) (2)

Shadow Removal: This subnetwork removes the

shadow of the object from the predicted lighting image, pro-

ducing one 3-channel output, the masked target lighting.

L′

r = exp(fSR( log(I), log(T ), log(L),

log(P ), log(P ′), S,Mr,Mo))
(3)

Lighting Inpainting: This subnetwork fills in the pre-

dicted lighting L′
r behind the removed object, continuing

shadows cast by other objects through the mask if neces-

sary. The target lighting L′ is then the composite of the

inpainted lighting and the masked target lighting.

L′

o = exp(fLI(log(L
′

r), log(P
′),Mo)) (4)

L′ = (1−Mo)L
′

r +MoL
′

o (5)

Texture Inpainting: We inpaint the texture image using

an inpainting operator g(T,Mo), synthesizing the pixels of

T in the hole region specified by the mask image Mo. For

our experiments we used HiFill [35] for g(T,Mo), trained

on the Places2 dataset [40].

T ′ = g(T,Mo) (6)

Final Composite: The previous stages predicted the ap-

pearance of the receiver within the target receiver mask

M ′
r = Mr +Mo. We composite the remaining pixels from

the original image, consisting of unaffected surfaces beyond

the local scene and other objects within the local scene.

I ′ = M ′

rT
′L′ + (1−M ′

r)I (7)

4.1. Training

Each subnetwork is independently trained with the

Adam optimizer for 60 epochs on 60000 training scenes,

with ground truth intermediates substituted for the outputs

of earlier subnetworks. We then train the whole system end-

to-end for 60 epochs. The system was implemented in Ten-

sorflow and trained on four Tesla V100 GPUs with a batch

size of 16. The learning rate was 10−4 decaying by 0.5 ev-

ery 10 epochs.

Our loss functions are described below. For all networks

except the lighting inpainting network, the inputs to the

losses are masked with Mr to only apply to pixels lying

on the receiver. For brevity we assume that the norm flat-

tens across input channels and image dimensions. We de-

note a ground truth supervision image with a hat, so that the

ground truth intrinsic decomposition is L̂, T̂ , ground truth

output image is Î ′, and so on.

Shadow Segmentation: It is difficult to define a ground

truth for what constitutes a shadow in a scene lit by an HDRI

map, since any object will occlude some part of the distant

illumination. To supervise this stage we therefore examine

the ratio of pixel values between the ground truth lighting

with all the objects compared to the ground truth lighting of

only the receiving surface. A shadow is defined as any pixel

where this ratio is is less than the median ratio on any of the

three color channels using a soft threshold:

Ŝ = max

(

σ

(

median(L̂/Lr)− L̂/Lr

α

))

(8)

The shadow segmentation subnetwork is supervised by

a class-balanced binary cross entropy term as well as a loss

on the gradients of the shadow segmentation:

ESS = λSES + λ∇SE∇S (9)

ES =
−Ŝ log(S)

||Ŝ||1
−

(1− Ŝ) log(1− S)

||1− Ŝ||1
(10)

E∇S = ||∇S −∇Ŝ||2 (11)

Intrinsic Decomposition: The intrinsic decomposition

loss function is the most involved of our losses. The effects

of each term, as well as comparisons to existing works in

intrinsic decomposition and shadow removal, are shown in

the supplementary material.

EID = λLTELT + λexclEexcl + λIEI + λ∇LE∇L (12)

For the data term, a multiscale loss on the predicted light-

ing and texture images was vital to ensure the model would

work well on high-contrast textures.

ELT = P (L, L̂) + P (T, T̂ ) (13)

where P (X, X̂) is an L2 loss on a Gaussian pyramid de-

composition of the images X, X̂ .

To ensure a clean decomposition, we impose the exclu-

sion losses of Zhang et al. [39] on the predicted lighting and

texture images, which in essence constructs 0-to-1-valued

edge maps at multiple scales, and penalizes edges lying at

the same location in the two decomposed images.

Eexcl =

i=3
∑

i=0

4i||Ψ(T ↓ i, L ↓ i)|| (14)

where X ↓ n denotes image X downsampled bilinearly

by a factor of 2n, and Ψ is as defined by Zhang et al.

We also have an L1 loss on the two decomposed images

recomposing into the input image.

EI = ||I − LT ||1 (15)
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Synthetic Real

RMSE Shadow RMSE Inpaint RMSE RMSE Shadow RMSE Inpaint RMSE

No-op 0.0455 0.2785 0.3755 0.0405 0.1413 0.2702

PatchMatch 0.0460 0.2790 0.2565 0.0401 0.1378 0.1288

HiFill 0.0479 0.2700 0.2555 0.0408 0.1305 0.1160

PatchMatch + Shadows 0.0402 0.2143 0.2282 0.0351 0.0969 0.1025

HiFill + Shadows 0.0461 0.2193 0.2346 0.0365 0.0855 0.0993

Pix2Pix (all) 0.3583 0.3243 0.4477 0.2502 0.2649 0.3129

Pix2Pix (receiver) 0.0820 0.2118 0.2323 0.1091 0.1526 0.1266

Pix2Pix + Proxy (receiver) 0.0802 0.1766 0.2244 0.0872 0.1187 0.1153

+Intrinsic Decomposition 0.0362 0.0882 0.2238 0.0618 0.0843 0.1055

+Shadow Segmentation 0.0246 0.0713 0.2213 0.0340 0.0631 0.1040

+Lighting Inpainting (Ours) 0.0248 0.0712 0.2143 0.0340 0.0616 0.0983

Table 1: Comparison of error rates for various shadow removal methods

Finally, we impose a sparse gradient prior on L to discour-

age textural details from leaking into the lighting.

E∇L = ||∇L||1 (16)

Shadow Removal and Lighting Inpainting: As with

the intrinsic decomposition, we apply a multiscale loss on

the predicted lighting after shadow removal and inpainting.

EL′ = λL′P (L′, L̂′) (17)

Note that because L′ is a composite of the results of

the shadow removal and lighting inpainting networks, the

shadow removal network is only penalized for pixels lying

on the receiver in the original input image while the light-

ing inpainting network is only penalized for pixels within

the mask of the removed object.

We also add a recomposition loss on the final output.

EI′ = λI′ ||Î ′ − L′T ′||1 (18)

5. Results

We evaluate our work both qualitatively and quantita-

tively on 5000 synthetic test scenes, generated the same way

as our training data, and 14 real scenes captured manually,

which include ground truth object removal results.

Commonly used quantitative metrics such as perceptual

losses [38, 18] or the RMSE, computed across the entire

image, are poor representations of the quality of shadow

removal results. A perceptually negligible color cast pro-

duced by a deep network across the entire image has an out-

sized effect on these metrics. To better represent the perfor-

mance of various systems, we analyze accuracy in targeted

regions of the image using a weighted RMSE. In addition

to the RMSE across the entire image, we report the Shadow

RMSE, which is computed across pixels within the ground

truth binary shadow mask Ŝ. We also report the RMSE

within the removed object’s pixels to separately evaluate in-

painting performance.

5.1. Test Data

The proxy geometry and images for real scenes were

captured using the Kinect v2 mounted on a tripod. We

captured three RGBD frames for each scene: I the com-

plete scene, Î ′ the target image with one or more objects re-

moved, and a bare scene with all objects removed. The ap-

proximate lighting was captured using a Ricoh Theta S 360

camera with 5 exposures for HDR placed approximately in

the center of the scene, roughly pointed at the Kinect.

We median-filtered the depth images to remove noise.

We then computed the best-fit plane for the input depth im-

age using RANSAC [12], and computed the receiver mask

Mr from pixels approximately lying on the plane. In this

work we manually specified the object masks Mo; real ap-

plications would use an automatic segmentation method.

To compute the proxy geometry, we formed a triangle

mesh from the depth map as we did with the synthetic data;

however for cleaner shadows we replaced the vertices corre-

sponding to the ground plane with a fitted plane. This geom-

etry was then rendered with the captured HDR environment

lighting to produce P, P ′. As we did not have ground truth

intrinsic decompositions, we used the difference between I
and Î ′ instead of L̂ and L̂′ to produce the shadow mask Ŝ
used in the Shadow RMSE metric.

5.2. End-to-End Comparisons

Most existing works on object removal do not focus

on removing shadows cast by the object. We compare to

two general approaches as baselines: pure inpainting and

generic image-to-image translation. We also include the

numerical error of the “no-op” procedure, which does not

transform the input at all. Quantitative results are shown

in Table 1 and qualitative results in Figure 3, exhibiting

varying lighting conditions (multiple overlapping shadows,

soft and hard shadows, high and low contrast shadows) and

background textures in both synthetic and real test scenes.

We compute the inpainting baselines using two methods:

the classical nonparametric PatchMatch [1], and a recent
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Figure 3: We compare our system to two object removal baselines on both synthetic and real test images. The first baseline is an image-to-

image translation network based on Pix2Pix [17] which is supplied with our renderings of the proxy scene. The second baseline is HiFill

[35], a state-of-the-art inpainting method, that inpaints both the removed object and an explicitly specified shadow mask.

learning-based approach HiFill [35]. For both baselines, we

include quantitative results both for a naive hole-fill, where

the object’s shadows are not handled at all, as well as for

an inpainting mask which includes the object’s shadows. In

Figure 3 we show the results of HiFill inpainting when pro-

vided the ground truth shadow region. With this extra infor-

mation, inpainting approaches work well for simple textures

(3a,3c), but often hallucinate shadows within the inpainted

region (3b). They also fail to take advantage of texture de-

tail inside the shadow region, and the resulting artifacts are

compounded when the region to inpaint is large (3d). Note

that, compared to our method, these inpainting baselines do

not use the proxy renderings.

For our image-to-image translation baseline, we use the

well-known Pix2Pix method [17]. We compare against

three variants of this baseline: one trained to predict the en-

tire output image I ′ from the input I and object mask Mo;

one trained to predict only the appearance of the receiving

surface (using HiFill to inpaint the object region); and one

trained to predict only the appearance of the receiver but

supplied with our proxy scene renderings P, P ′ in addition

to the input image and object mask. We show the results of

this last version in Figure 3. The method fails to accurately

identify the extents of shadows (3c,3e) and their intensities

(3a) and generalizes poorly to complex textures (3b,3d).

5.3. Validating our Architecture

We show the importance of each step of our pipeline,

starting with a single network to perform our generalized

differential rendering task and adding in each component

one by one. The results are shown in Figure 4 and the bot-

tom rows of Table 1. We start with a single Pix2pix U-Net
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(a) Input (b) Ground Truth (c) Pix2pix (e.g. U-net) (d) +Intrinsic Decomp. (e) +Shadow Segmentation (f) +Lighting Inpainting

Figure 4: This synthetic example (a) shows the importance of each component of our system. The ground truth removal is shown in (b). A

single U-net (c) hallucinates shadows in the inpainted region (red) and misidentifies shadows (green) with high-contrast textures. Adding

in a texture decomposition subnetwork significantly improves the inpainting (d); however the edges of the shadows are still faintly visible

(green). The shadow segmentation subnetwork eliminates these shadow ghosts (e). Some final artifacts visible within the silhouette of the

removed object are fixed with our lighting inpainting network (f).

generator, that given all our inputs, predicts the output im-

age excluding the pixels under the object mask, which are

inpainted using HiFill (Figure 4c). The most obvious ar-

tifacts are within the inpainted region, where the inpaint-

ing method frequently fills in shadow pixels; this method

also frequently misidentifies shadows, especially in high-

contrast textures. We then introduce a separate intrinsic de-

composition network, and allow the shadow removal net-

work to work only on the resulting lighting image (Fig-

ure 4d); This system sometimes fails to remove hard or

high-contrast shadows. Adding a shadow segmentation net-

work (Figure 4e) makes decompositions of hard shadows

much cleaner. Finally, we introduce a lighting inpainting

network (Figure 4f), as the shadow removal network alone

has trouble continuing shadows behind the object and some-

times leaves visible artifacts in the hole region.

Figure 5: Input images (left) virtually refurnished (right).

5.4. Discussion and Future Work

Our shadow removal enables more realistic mixed reality

experiences, ranging from consumer applications in real es-

tate and furniture retail, to socially beneficial uses for under-

standing physical resource allocation in environments such

as hospitals and schools. As an example, Figures 1 and 5

show results for a refurnishing scenario. In these results,

we run our pipeline twice – once for the wall, and once for

the floor. We then composite the two results together, and

then insert a virtual object with differential rendering.

In the second row of Figure 5, the glossy hardwood floor

shows a specularity of the couch we wish to remove; by

adding a specular component to the proxy model’s floor

plane, our pipeline is able to remove the specularity as well

as the shadow. Of course, this specularity is fairly sim-

ple, where the couch “occludes” the reflection of the much

brighter white wall. Since glossy surfaces are present in

many indoor scenes, handling more complex specularities

is an important area for further investigation. In this vein,

handling higher order light transport effects, such as color

bleeding, is also important for realistic results.

Several other artifacts are visible in Figure 5. A faint

outline on the left side of the removed couch can be seen;

this is due to the light from the window casting nonuniform

illumination onto the wall, which was not represented in the

training data. The baseboard is also partially removed, even

in regions where it was visible in the input image near the

piano leg. We built into the training data the assumption

that the texture is consistent over the entire receiving sur-

face. Without this restriction, the intrinsic decomposition

network tends to incorrectly assign shading variation to the

texture image. For similar reasons, we did not consider the

shadows cast on other the objects in the scene and focused

on a single receiver. Extending the pipeline to handle multi-

ple receivers, or using different representations of textures,

would be important additions to our work.

As a final note, any digital image manipulation method

carries the risk of misuse. This is especially true with

the current prevalence of social media, where false images

may be used to spread misinformation and disinformation

widely and rapidly. We strongly believe in the importance

of research on watermarking and other methods to verify

the authenticity of images and track image manipulations.
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