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What is this object? [Click]W

Describe this scene.

3D Dialogue
Can you please move the picture 
on the wall?

I have arrived at the picture on 
the wall near the couch. What would 
you like me to do with it?

Can you move it to the other 
wall, near the table?

Sure! I have moved the picture to the 
other wall near the table. Is there 
anything else you need me to do?
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wThis is a light brown couch, it is 

situated between two gray ottomans. 
It is under a big painting. The 
painting is gray, yellow and brown.

3D QA

What is behind the ottoman, that 
is next to the love seat?

Table is located behind ottoman 
that is next to love seat

What is behind the ottoman, that 
is next to the love seat? [Click]

Trash Can

The couch is located 
at <obj>229, 142, 30, 
38, 63, 53</obj>.

The room contains various couches 
and armchairs, providing comfortable 
seating options. Additionally, there 
are plants placed in different areas 
of the room, adding a touch of 
greenery. Lastly, a picture is hung 
on one of the walls.
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Figure 1. We propose LL3DA, a Large Language 3D Assistant that demonstrates mighty instruction-following capacities in under-
standing, reasoning, and planning within complex 3D environments. LL3DA takes both the textual instructions and potential visual

interactions into consideration to help remove ambiguities when addressing various tasks in diverse and complex 3D scenes.

Abstract

Recent progress in Large Multimodal Models (LMM)
has opened up great possibilities for various applications in
the field of human-machine interactions. However, develop-
ing LMMs that can comprehend, reason, and plan in com-
plex and diverse 3D environments remains a challenging
topic, especially considering the demand for understanding
permutation-invariant point cloud representations of the 3D
scene. Existing works seek help from multi-view images by
projecting 2D features to 3D space, which inevitably leads
to huge computational overhead and performance degrada-
tion. In this paper, we present LL3DA, a Large Language
3D Assistant that takes point cloud as the direct input and
responds to both text instructions and visual interactions.
The additional visual interaction enables LMMs to better

comprehend human interactions with the 3D environment
and further remove the ambiguities within plain texts. Ex-
periments show that LL3DA achieves remarkable results
and surpasses various 3D vision-language models on both
3D Dense Captioning and 3D Question Answering.

1. Introduction
The recent surge in Large Language Model (LLM) fam-

ilies [14, 31, 46, 52, 63] opens up great opportunities for

addressing various machine learning tasks in a generalized

way [30, 32, 40, 60]. During this LLM carnival, researchers

are also seeking generalized LLM solutions for various vi-

sion language tasks [37, 50, 62]. Among these, LLM-based

3D scene understanding is a valuable topic that would ben-

efit the development of autonomous driving [9, 23] and em-
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bodied AI agents [21, 49]. However, it is also challenging

given 1) the diversity and complication of 3D environments

and 2) the demands for understanding sparse 3D points.

Prior works have made initial success in various 3D vi-

sion and language tasks. The majority of these research

build 3D specialists to solve one specific down-stream task,

including 3D Question Answering (3D-QA) [2, 43], 3D
Visual Grounding (3D-VG) [7, 26, 55], and 3D Dense

Captioning (3D-DC) [10–12]. There are also several works

[4, 13, 34, 70] study the mutual promotion of different 3D

vision and language tasks with shared structure modelling

relations among objects. Recently, researchers have also

introduced LLMs for general purpose 3D understanding,

where Point-Bind and Point-LLMs [24, 57] mainly focus

on the understanding of 3D objects. Concurrently, 3D-

LLM [29] proposes an LLM-driven solution that aggregates

multi-view features for 3D perception, presenting mighty

capacities in understanding 3D object and scenes and fol-

lowing text instructions produced by human.

Though these methods have achieved remarkable suc-

cess in addressing various challenges in understanding the

3D world with natural language, there are certain limita-

tions. With limited supervision, 3D specialists could hardly

scale-up for better performance, while the joint pre-training

still requires separate heads for specific tasks. Extracting

multi-view features results in huge computational overhead

and ignores the essential geometry and depth information.

Additionally, plain texts often lead to ambiguities especially

in cluttered and complex 3D environments.

To address the above issues, we propose LL3DA, a Large

Language 3D Assistant that responds to both textual and vi-

sual interactions from human, with the ability to understand,

reason, and plan in complex 3D environments (Fig. 1). We

adopt a multi-modal transformer to aggregate information

from textual instructions, visual prompts, and the 3D scene

into a fixed length of learnable querying tokens via the at-

tention mechanism. The querying tokens are then projected

and used as the prefix for the textual instructions, serving

as the input to a pre-trained and frozen LLM. This de-

sign not only helps to address the contradiction between

the permutation-invariant 3D scene representations and the

LLM embedding space, but also extracts interaction-aware

3D scene representations for efficient instruction following.

We conduct extensive experiments to explore the capac-

ities of LL3DA in understanding, reasoning, and planning

within complex and diverse 3D environments. Our model

achieves state-of-the-art results on two widely used datasets

for 3D Dense Captioning [1, 7], and 3D Question Answer-

ing [2]. Additionally, by introducing additional visual inter-

actions, our method could further remove the ambiguities

within the vague textual instructions.

To summarize, our key contributions lie in:

• We present a LLM-based solution for understanding, rea-

soning, and planning in complex 3D environments.

• Our model takes both the textual instructions and visual

interactions as inputs, and extracts interaction-aware fea-

tures for effective instruction-following.

• Extensive experiments show that our method surpasses

various state-of-the-art 3D vision language models.

2. Related Work

3D Vision and Language alignment, pre-training, and un-

derstanding [5, 7, 20, 70] cover tasks requiring a model to

adopt its understanding towards a complex 3D scene an-

swering to, or answering with natural language. Among

those, 3D Dense Captioning (3D-DC) [10, 12, 54] ex-

pects a model to translate an input 3D scene into a set

of instance coordinates and natural language descriptions.

Existing methods could be categorized into “detect-then-

describe” models [4, 12, 54] and the “set-to-set” prediction

approaches [10, 11]. The former builds explicit relations on

the instance coordinate estimations, while the latter directly

learns the locations and descriptions for instances from the

input 3D scene. 3D Visual Grounding (3D-VG) [1, 7, 55]

demands a model to respond the natural language queries

with the instance coordinates in the 3D scene. The main-

stream of existing methods [4, 65, 70] address 3D-VG via

selecting a candidate from a 3D detector’s prediction. 3D
Question Answering (3D-QA) [2, 43, 59, 66] requires a

model to answer the questions with natural language based

on the input 3D scene. The majority of existing meth-

ods [2, 18, 48] directly select the desired response from a

given answer set. Researchers have also studied the mutual

promotion of various 3D vision language tasks via train-

ing their shareable architectures simultaneously on multiple

tasks [4, 13, 34, 70]. UniT3D [13] and 3DJCG [4] focus

on the joint promotion between 3D-DC and 3D-VG in the

relation modelling, while 3D-VLP [34] further includes 3D-

QA. Recently, 3D-LLM [29] introduces a family of LLM-

driven 3D generalists that could handle diverse textual in-

structions with reconstructed 3D features from multi-view

images [28]. In this paper, we present LL3DA, an LLM so-

lution that directly extracts features from the 3D scene, and

handles both visual prompts and textual instructions to di-

versify the possible interactions human could make with the

complex 3D environments.

Large Multimodal Models (LMM). Along with the rapid

development of Large Language Models (LLM) [15, 63],

researchers have made great recent efforts adapting LLMs

to visual understanding and reasoning tasks [25, 38, 56, 61].

Some methods project or compress global image features as

the prefix for text instructions [36, 40, 58, 69], while others

extract ROI features as LLM tokens for region-oriented in-

struction reasoning [6, 64]. Meanwhile, InstructBLIP [17]

proposes to extract textual instruction-aware visual features,

and has achieved remarkable success in addressing complex
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Figure 2. Overview of the Proposed Approach. (a) The overall pipeline of our proposed LL3DA first extracts interaction-aware 3D scene

embeddings, which are later projected to the prefix of textual instructions as the input of a frozen LLM. (b) The detailed design of the

Interactor3D, which aggregates visual prompts, textual instructions, and 3D scene embeddings into a fixed length querying tokens. (c) The

prompt encoder encodes the user clicks and box coordinates with the positional embeddings and ROI features, respectively.

and unseen instructions. Concurrently, researchers have

also made great attempts solving various 3D tasks using

LLMs. Notably, [24, 42, 57, 68] demonstrate remarkable

success in understanding and reasoning about 3D objects.

In this paper, we present an LLM-driven solution that could

handle both interactions in forms of visual prompts and text

instructions. We also propose to extract interaction-aware

3D scene representations for better instruction following.

3. Methodology
To build a general purpose agent that could handle both

visual and textual interactions with complex 3D environ-

ments, we propose LL3DA, an LLM driven auto-regressive

approach to 3D vision language tasks. In this section, we

first introduce the problem formatting in Sec. 3.1. Next, we

introduce our model designs in details (Sec. 3.2).

3.1. Problem Formatting

Model I/O. As shown in Fig. 2 (a), the input of our model

consists of a 3D scene represented by a set of points PC, the

textual instruction It, and potential visual interactions Iv
that serve as supplementary spatial identifiers. Here, point

cloud PC = [pin, fin] ∈ R
N×(3+F ), where pin ∈ R

N×3

and fin ∈ R
N×F are the point coordinates and the addi-

tional point features, including color, normal, and height.
The output of our model is free-form natural language, part

of whom could be interpreted into 3D coordinates.

Instruction Formatting. Following existing LMMs [57],

we begin the textual instructions It with the “### human:”
identifier, and ask the model to generate responses after the

“### assistant:” identifier. This endows the model with the

ability to distinguish information from the context and fur-

ther engage in multi-turn conversations.

Coordinate Representations. To provide LLMs with the

capacity to perceive and respond with 3D coordinates, we

convert the 3D points and 3D bounding boxes to plain

texts. Specifically, a point is represented by “<loc>x, y,

z</loc>”, and a bounding box is represented by its center

point and size, i.e. “<obj>cx, cy , cz , w, h, l</obj>”. Here,

all the numerical data is discretized into unsigned integers

within a range of [0, 255] with respect to the boundary of

the input 3D scene. This design could naturally fit in the

vocabulary of existing pre-trained LLMs [52, 63]. With-

out the introduction of any additional learnable tokens, we

could save the effort of tuning the LLMs.

3.2. Model Design

As shown in Fig. 2 (a), our model first aggregates a fixed-

length scene embeddings through the Interactor3D, which

takes the visual prompts, the textual instructions, and the

3D scene as the input. Next, the aggregated 3D scene em-

beddings are projected to be the prefix of text instructions,

and serve as the inputs of a frozen LLM. The detailed de-

sign of Interactor3D is shown in Fig. 2 (b), which consists

of a frozen 3D scene encoder E3D, a visual prompt encoder,

and a multi-modal transformer.

Scene Encoder. We adopt the masked transformer encoder

pre-trained on ScanNet detection [10] as the scene encoder,

E3D. The scene encoder takes PC as its input, and outputs

the 3D scene embeddings:

fenc = E3D (PC) = E3D (pin; fin) ∈ R
M×d. (1)

Here, fenc consists of d-dimensioned features for M points
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uniformly down-sampled from the input 3D scene through

the Farthest Point Sampling (FPS) algorithm. In practice,

we choose to keep the scene encoder frozen to save the

memory cost during training.

Visual Prompt Encoder. We mainly take two common

types of visual interactions into consideration, user clicks

and 3D box annotations [35]. Each user click is first normal-

ized within a range of [0, 1] by the size of the input 3D scene

pclick ∈ R
3. Then, we encode pclick with the 3D Fourier po-

sitional embeddings [51] function:

pos (pclick) = [sin (2πpclick ·B) ; cos (2πpclick ·B)] . (2)

Here, B ∈ R
3×(d/2) is a learnable matrix. The box annota-

tion is represented by the ROI feature fbox ∈ R
d extracted

by a pre-trained 3D object detector [10]. The two types

of the visual prompts are then projected with separate and

identical Feed Forward Networks (FFN).

fclick = FFNclick (pos (pclick))

fbox = FFNbox (fbox)
(3)

In practice, we represent each visual prompt with 8 tokens.

Multi-Modal Transformer (MMT) serves as a role to 1)

address the contradiction between the permutation-invariant

3D scene embeddings and position-sensitive causal LLMs,

2) bridge the gap between frozen unimodal experts, and 3)

fill the needs for interaction-aware feature extraction. In-

spired by the Q-Former architecture [17, 36], MMT aggre-

gates the visual information within a fixed number of 32

learnable querying tokens. In each layer, the queries interact

with the encoded visual prompts [fclick; fbox] and the textual

instructions It through a shared self-attention. Then, we al-

low the learnable querying tokens and the visual prompts to

interact with the task-agnostic 3D scene embeddings fenc
via cross-attention. The output of MMT is 32 queries writ-

ten as Q ∈ R
32×768, which are finally projected to the word

embedding space of LLMs through a simple linear projec-

tor. In practice, we notice that initializing Q-Former with

pre-trained BERT [19, 36] weights will lead to repetitive

outputs, thus we only choose to initialize the pre-trained

word and position embeddings from BERT.

LLM. We consider the decoder-only generative pre-trained

transformers [52, 63] as our large language model back-

bone. The decoder-only LLMs are sensitive to the input

orders because of the position embeddings and the causal

attention mask. The parameters and the embedding layers

of the LLMs are kept frozen to save memory cost. During

inference, we generate the responses via searching for the

optimal sequence s∗ that satisfies:

s∗ = argmax
s

P (s|PC, It, Iv) . (4)

In practice, we use beam search with a beam size of 4.

4. Multi-modal Instruction Tuning
A general purpose 3D agent is able to address various tasks

simultaneously in complex 3D scenes. Apart from introduc-

ing proper training data, it is important to guide the model

to generate the desired outputs with instructions. Therefore,

Sec. 4.1 will first introduce how we identify each task. After

that, Sec. 4.2 will present details for the training objective.

4.1. Tasks and Instructions.

As introduced in Sec. 3.1, LL3DA generates text responses

auto-regressively after the “### assistant:” identifier.

3D Dense Captioning requires the localization and descrip-

tion of instances in diverse 3D environments. We adopt ei-

ther user clicks and box annotations as the visual prompt to

identify the object to be described. Additionally, we design

two types of textual instructions that ask the model to ei-

ther “describe” or “describe and localize” the object, which

diversifies the tasks, and leads to better performance.

3D Question Answering requires the model to generate re-

sponse to the questions based on the global knowledge of

a 3D scene. To help the model better understand the 3D

environment, we also design two types of textual instruc-

tions that ask the model to either “answer” or “answer and

localize the related objects”. The latter serves as an auxil-

iary task widely adopted in various 3D-QA methods [2, 48].

To diversify the tasks during training, we randomly include

additional clicks on the objects related to the questions.

Scene Description requires the model to translate its global

knowledge of the 3D scene into natural language descrip-

tions, thus we simply ask the “describe” this 3D scene.

Embodied Conversation and Planning could be treated as

multi-turn conversations, where we use “### human:” and

“### assistant:” as identifiers to distinguish the source of

information as introduced in Sec. 3.1.

4.2. Instruction Following Tuning

During training, for tasks requiring additional visual inter-

actions, i.e. 3D-DC and 3D-QA, we randomly choose be-

tween clicks or boxes as means of object identification.

Training Objective. Our training objective is to optimize

the trainable parameters θ, so as to maximize the likelihood

of the target response sequence s given the input point cloud

PC, and the human interactions Iv and It:
θ∗ = argmax

θ
P (s|PC; Iv; It; θ) . (5)

In practice, this is accomplished by adopting the token-wise

cross-entropy loss that trains the model to predict the ith
token s[i] given the previous (i− 1) tokens, s[1,··· ,i−1].

L (θ) = −
|s|∑

i=1

logP
(
s[i]|PC; Iv; It; θ; s[1,··· ,i−1]

)
. (6)
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Table 1. Quantitative Comparisons for 3D Dense Captioning on ScanRefer[7] and Nr3D[1]. For fair comparison, we list methods that

are trained under the standard per-word cross-entropy loss without additional 3D scenes. We use the box estimations from Vote2Cap-DETR

to simulate the box annotations as the visual prompts. Our proposed LL3DA surpasses previous 3D specialists on both datasets.

Method
ScanRefer Nr3D

C@0.25↑ B-4@0.25↑ M@0.25↑ R@0.25↑ C@0.5↑ B-4@0.5↑ M@0.5↑ R@0.5↑ C@0.5↑ B-4@0.5↑ M@0.5↑ R@0.5↑
Scan2Cap[12] 56.82 34.18 26.29 55.27 39.08 23.32 21.97 44.78 27.47 17.24 21.80 49.06

MORE[33] 62.91 36.25 26.75 56.33 40.94 22.93 21.66 44.42 - - - -

SpaCap3D[54] - - - - 44.02 25.26 22.33 45.36 33.71 19.92 22.61 50.50

REMAN[44] 62.01 36.37 26.76 56.25 45.00 26.31 22.67 46.96 34.81 20.37 23.01 50.99

D3Net[8] - - - - 46.07 30.29 24.35 51.67 33.85 20.70 23.13 53.38

Contextual[67] - - - - 46.11 25.47 22.64 45.96 35.26 20.42 22.77 50.78

UniT3D[13] - - - - 46.69 27.22 21.91 45.98 - - - -

3DJCG[4] 64.70 40.17 27.66 59.23 49.48 31.03 24.22 50.80 38.06 22.82 23.77 52.99

3D-VLP[34] 70.73 41.03 28.14 59.72 54.94 32.31 24.83 51.51 - - - -

3D-VisTA∗[70] - - - - 61.60 34.10 26.80 55.00 - - - -

Vote2Cap-DETR[10] 71.45 39.34 28.25 59.33 61.81 34.46 26.22 54.40 43.84 26.68 25.41 54.43

LL3DA (Ours) 74.17 41.41 27.76 59.53 65.19 36.79 25.97 55.06 51.18 28.75 25.91 56.61

Table 2. Quantitative Comparisons for 3D Question Answering on ScanQA[2]. We categorize previous works into classification based

(“CLS”) and generation based (“GEN”) methods. The results from 3D-LLM∗ come from their fine-tuned version. LL3DA out-performs

previous methods on the validation set and two test sets.

Method
Answer

Type

Validation Test w/ object Test w/o object

C↑ B-4↑ M↑ R↑ C↑ B-4↑ M↑ R↑ C↑ B-4↑ M↑ R↑
ScanQA[2]

CLS

64.86 10.08 13.14 33.33 67.29 12.04 13.55 34.34 60.24 10.75 12.59 31.09

Clip-Guided[48] - - - - 69.53 14.64 13.94 35.15 62.83 11.73 13.28 32.41

Multi-CLIP[18] - - - - 68.70 12.65 13.97 35.46 63.20 12.87 13.36 32.61

3D-VLP[34] 66.97 11.15 13.53 34.51 70.18 11.23 14.16 35.97 63.40 15.84 13.13 31.79

3D-VisTA[70] - - - - 68.60 10.50 13.80 35.50 55.70 8.70 11.69 29.60

3D-LLM∗[29]
GEN

69.40 12.00 14.50 35.70 69.60 11.60 14.90 35.30 - - - -

LL3DA (Ours) 76.79 13.53 15.88 37.31 78.16 13.97 16.38 38.15 70.29 12.19 14.85 35.17

Here, |s| is the number of tokens in the desired response.

5. Experiments

To test the capacities of LL3DA, we provide numerous eval-

uations. To begin with, we introduce the datasets, metrics,

and implementation details (Sec. 5.1). Then, we compare

how our model understands and reasons in complex 3D en-

vironments with previous 3D specialists on 3D Dense Cap-

tioning and 3D Question Answering (Sec. 5.2). Addition-

ally, we conduct quantitative ablation studies on the model

design and training strategy (Sec. 5.3). Finally, Sec. 5.4

showcases several qualitative results.

5.1. Datasets, Metrics and Implementation Details

Datasets. In this paper, we experiment with 3D data from

ScanNet [16], a 3D dataset covering 1,201 and 312 diverse

and complex indoor 3D scenes for training and validation.

The language annotations used in this study are sourced

from ScanRefer [7], Nr3D [1], ScanQA [2], and the Scan-

Net subset of 3D-LLM [29]. This combination covers a

variety of tasks, including instance and scene descriptions,

conversations, embodied planning and question answering.

Please refer to the supplementary materials for more details

on the statistics of data.

Metrics. Here, we adopt C, B-4, M, R as abbreviations for

CiDEr [53], BLEU-4 [47], METEOR [3], and Rouge-L [39]

to evaluate the quality of the generated textual responses.

Implementation Details. Following previous works on 3D

vision language tasks [10, 12], we randomly sample 40k

points from each 3D scene as the 3D input. We adopt the

pre-trained OPT-1.3B [63] as our causal LLM backbone,

which is frozen and loaded in float16 to save memory cost.

We adopt the AdamW [41] optimizer with a weight decay of

0.1 and a learning rate decaying from 10−4 to 10−6 with a

cosine annealing scheduler for about 100k iterations. For all

the training tasks, we train with no more than eight Nvidia

RTX3090 (24G) GPUs within a day.

5.2. Comparison with SoTA Specialists

We evaluate the model’s capacity to understand and rea-

son in 3D environments via 3D-DC and 3D-QA. For each

evaluation task, we fine-tune the trainable parameters in our

model on each task for ∼30k iterations.

3D Dense Captioning demands a model to localize and de-

scribe any instance in a 3D scene. We benchmarks state-

of-the-art methods on the widely-used ScanRefer [7] and

Nr3D [1] dataset in Tab. 1 under the m@kIoU metric [12].

Here, m ∈ {C, B-4, M, R}, and the m score of a caption

is set to 0 if the IoU between the predicted box and the

object is less than the given threshold k. Following exist-

ing works [10, 12], we consider C@0.25 and C@0.5 as the
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main metric for ScanRefer, and C@0.5 for Nr3D. Among

the listed methods, UniT3D [13], 3DJCG [4], and 3D-VLP

[34] are pre-trained on multiple 3D vision and language

tasks annotated on ScanNet scenes. Additionally, UniT3D

[13] adopts off-the-shelf image caption models [45] and

multi-view images to generate additional instance-captions

for pre-training. It is worth mentioning that we compare the

results with the 3D-VisTA [70] model that is not trained on

additional 3D scenes. To evaluate our model, we adopt the

box predictions produced by Vote2Cap-DETR [10] as the

visual prompt. Results show that our method consistently

outperforms existing methods on both datasets. For exam-

ple, our method achieves 65.19% C@0.5 on ScanRefer and

51.18% C@0.5 on Nr3D, which is (+3.38% and +7.34%)

higher than the current state-of-the-art 3D vision and lan-

guage model, Vote2Cap-DETR.

3D Question Answering requires a model to generate re-

sponses to the natural language queries questioning towards

an 3D scene. We benchmark state-of-the-art methods on

the ScanQA [2] validation set as well as two test bench-

marks in Tab. 2, and consider CiDEr as the main metric.

The majority of the listed methods are based on classifica-

tion (marked “CLS”), i.e., selecting responses from a pre-

defined answer set. Meanwhile, 3D-LLM [29] tries to ad-

dress 3D-QA via auto-regressive text generation (marked

“GEN”), and we list their fine-tuned version for compari-

son. Results show that our method consistently outperforms

existing methods on all the evaluation sets, and surpasses

the generation based method, 3D-LLM, by a large margin

(+7.39% CiDEr score on the validation set).

5.3. Ablation Studies

In this section, we provide ablation studies on model de-

signs and training strategies. We evaluate on ScanRefer and

ScanQA to quantize the effectiveness.

Large Language Model

Multi-Modal
Transformer

Textual
Instructions

Visual
Prompts

Textual
Instructions

Large Language Model

Textual
Instructions

Visual
Prompts

Textual
Instructions

FFN

(a) Early Fusion (ours) (b) Direct Injection

Multi-Modal
Transformer

Figure 3. Two Different Ways to Encode Visual Prompts. Our

proposed method (a) adopts a unified transformer to aggregate fea-

tures from all kinds of interactions, while (b) directly concatenates

the visual prompts to the scene embeddings. Tab. 3 shows that

early fusion leads to a better performance.

Effectiveness of the Q-Former Design. We list two ways

to process the visual prompts in Fig. 3. Here, Fig. 3 (a)

is our proposed method that adopts a unified transformer to

aggregate information from both text instructions and visual

prompts, while Fig. 3 (b) is the “direct injection” version,

which only extract instruction-aware 3D feature with visual

prompts concatenated after the scene embeddings. We train

both models from scratch and evaluate their performance on

ScanRefer 3D Dense Captioning. The results (Fig. 3) show

that the method we use (Fig. 3 (a)) could better capture fea-

ture related to the visual prompts, leading to better instance

caption generation performance (+3.45% C@0.5).

Table 3. Effectiveness of Q-Former Design on ScanRefer[7].
We design two different ways of utilizing visual prompts. The

“early fusion” enables direct interaction with the 3D scene, thus it

achieves a better performance.

Visual Prompt C@0.5↑ B-4@0.5↑ M@0.5↑ R@0.5↑
direct 59.39 33.27 25.19 53.39

ours 62.84 35.81 25.81 54.45

Instructions as Auxiliary Tasks for 3D Dense Caption-
ing. We have introduced two types of task instructions

in Sec. 4.1 for 3D-DC, i.e. the “describe”-only instruc-

tions and “detect and localize” instructions. Additionally,

we have introduced two types of visual prompts (Fig. 2 &

Sec. 4.2). In this study, we show how they affect the per-

formance when serving as auxiliary tasks for 3D-DC by

evaluating on ScanRefer in Tab. 4. All the methods listed

are trained from scratch. In Tab. 4, “Aux.Loc” identifies

whether we train the model with the “detect and localize”

instructions, and “Clicks” identifies whether we train the

model with clicks as additional visual prompts. Results

show that they are both good auxiliary tasks for 3D-DC.

Table 4. Effectiveness of Instructions as 3D Dense Captioning
Auxiliary Tasks. We train the models from scratch and evaluate

on ScanRefer[7]. “Aux.Loc” identifies whether we train with the

“describe and localize” instructions. “Clicks” identifies whether

we train with clicks as additional visual prompts.

Aux.Loc Clicks C@0.5↑ B-4@0.5↑ M@0.5↑ R@0.5↑
- - 60.85 34.09 25.53 53.48

� - 61.81 34.15 25.49 53.83

- � 62.20 34.26 25.67 53.87

� � 62.84 35.81 25.81 54.45

Instructions as Auxiliary Tasks for 3D Question Answer-
ing. We have made a similar study to analyze how adopt-

ing additional “answer and localize” instructions and visual

prompts improves 3D-QA on ScanQA [2] as auxiliary tasks

in Tab. 6. We do not use any visual interactions during infer-

ence. Results show that the additional textual instructions

and visual prompts improve the task diversity and further

improve the performance for 3D-QA.

Performance as a Generalist. To test whether LL3DA can

distinguish different tasks given the textual instructions and

visual prompts, we evaluate our model on different tasks
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Table 5. Evaluation as a Generalist. The first three rows list the performance of models trained from scratch as experts on each dataset.

The results in the following three rows belong to the model fine-tuned from the generalist weights. The last row evaluates the model trained

as a generalist. ScanRefer[7] and Nr3D[1] are used to evaluate the dense captioning performance, and ScanQA[2] is used to evaluate

the question answering performance. Serving as a generalist, our method can differentiate each task, and produce strong results based on

textual instructions and visual prompts.

Method
ScanRefer Nr3D ScanQA

C@0.5↑ B-4@0.5↑ M@0.5↑ R@0.5↑ C@0.5↑ B-4@0.5↑ M@0.5↑ R@0.5↑ C↑ B-4 ↑ M↑ R↑
ScanRefer(scratch) 62.84 35.81 25.81 54.45 - - - - - - - -

Nr3D(scratch) - - - - 44.95 27.67 25.67 55.79 - - - -

ScanQA(scratch) - - - - - - - - 74.80 13.68 15.40 36.25

ScanRefer(fine-tuned) 65.19 36.79 25.97 55.06 - - - - - - - -

Nr3D(fine-tuned) - - - - 51.18 28.75 25.91 56.61 - - - -

ScanQA(fine-tuned) - - - - - - - - 76.79 13.53 15.88 37.31
w/o fine-tuning 62.98 35.97 25.66 54.65 23.94 13.37 22.31 45.78 75.67 13.33 15.37 37.02

Table 6. Effectiveness of Interactions as 3D Question Answer-
ing Auxiliary Tasks. We train the model from scratch and eval-

uate all the models from scratch on ScanQA[2] validation set.

“Aux.Loc” identifies whether we train with the “answer and lo-

calize” instructions, and “Visual Prompts” identifies whether we

train with visual prompts.

Aux.Loc Visual Prompts CiDEr↑ BLEU-4↑ METEOR↑ Rouge-L↑
- - 67.85 11.87 13.96 33.87

� - 72.73 13.27 14.90 35.87

- � 68.09 12.59 14.20 33.71

� � 74.80 13.68 15.40 36.25

without task-specific fine-tuning in Tab. 5. The first three

rows list the performance of LL3DA when trained from

scratch on one specific task, while the following three rows

represent the fine-tuned models. The last row indicates the

direct evaluation of LL3DA. Results show that our model

could distinguish 3D-DC and 3D-QA given the text instruc-

tions and visual prompts, and achieve strong performance

(62.98% C@0.5 on ScanRefer, 75.67% CiDEr on ScanQA).

However, the generalist model achieves poor performance

on Nr3D [1], which is because we did not try to differen-

tiate between Nr3D and ScanRefer during training in the

first place, as ScanRefer and Nr3D are used for the same

task. There is also an interesting observation that though

we did not differentiate between these two datasets for 3D-

DC, the model still tend to achieve high scores on Scan-

Refer (62.98% C@0.5). We are also excited to see that

the weights of the generalist model can serve as a strong

initialization for fine-tuning. For example, the fine-tuned

model on ScanRefer could achieve 65.19% C@0.5, which

is +2.35% higher than the model trained from scratch.

Importance of Textual Instructions. We further conduct

study to see whether the text instructions are necessary for

3D-DC in Tab. 7. The first row is our baseline method

that directly generates the captions based on visual prompts

without any text instructions, and the second row is our

method that is trained with the text instructions introduced

in Sec. 4.1. Both methods are trained from scratch for fair

comparison. We notice that since the LLM is frozen, certain

textual instructions are beneficial when generating results in

specific domains/tasks.

Table 7. Effectiveness of Instructions on 3D Dense Captioning.
We perform experiments on ScanRefer[7]. The baseline method

directly generates the captions given the input 3D scene and visual

prompts without any textual instructions.

Instructions C@0.5↑ B-4@0.5↑ M@0.5↑ R@0.5↑
- 60.20 34.79 25.40 54.03

� 62.84 35.81 25.81 54.45

Clicks for Better Question Answering. One major chal-

lenge of answering questions in complex 3D environments

is the vague identification of objects with plain texts. There-

fore, we try to click on some of the related objects along

with the textual instructions during evaluation, and see how

it could affect the generated answers on the ScanQA vali-

dation set in Tab. 8. Results show that this technique would

remove the ambiguities, and further improve the quality of

the answers (+6.12% C). This illustrates the importance of

visual interaction in complex 3D environments.

Table 8. Test Time Visual Interactions for Question Answering
on ScanQA[2]. The model achieves better performance on the

question answering when we add visual prompts to some of the

related objects along with the text instructions during evaluation.

Visual Prompts CiDEr↑ BLEU-4↑ METEOR↑ Rouge-L↑
- 76.79 13.53 15.88 37.31

� 82.91 11.80 16.74 39.97

5.4. Qualitative Results

We present several visualization results on different tasks in

Fig. 4 to show our model’s capacities in understanding, rea-

soning, and planning in different 3D environments. To pre-

vent repetition when generating long sequences, we com-

bine the top-k [22] and top-p [27] sampling strategy with

k = 50 and p = 0.95.
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2 chairs

How many chairs are behind 
the long table?t

3 chairs are behind long 
table

How many chairs are behind 
the long table? [Clicks]tCLICK

This is a brown armchair. It is 
to the right of the couch.

Describe this object in the 
3D scene.3

SpaCap3D: This is a chair with no arms. 
It is next to a desk.

Vote2Cap-DETR: This is a brown armchair. 
It is to the right of the table.
Ground Truth: The armchair is facing the 
desk. The armchair is located to the right 
of the couch, in the middle of the room.

3D Dense Captioning

3D Question Answering

+ Visual Prompts

3D Embodied Planning

1. pick up any trash off the floor. 2. 
Open the kitchen shelf. 3. Clean the 
kitchen sink with a cleaning solution. 
4. Clean the kitchen sink with a paper 
towel.

I want to clean the kitchen. What 
should I do?s

3D Scene Description

This room is a kitchen with a stove, stovetop, cabinets, refrigerator, 
oven, cooler, recycling bins, microwave, water heater, soap dish, trash can, 
a sink, and a refrigerator. There are multiple walls scattered in the room, 
creating a separate space for dining and cooking. The door leads to the 
kitchen. Another door and several windows hang around the area, providing a 
large view of the floor. As well as additional doors, walls, windows, 
doorstopper caps, kitchen items, sink and fridge, the food preparation and 
storage areas are visible.

Describe this 3D scene.D

Clean the refrigerator and cabinets

I want to clean the kitchen. I have done 
these things: 1. Turn on the lamp on the 
table. 2. Open the kitchen cabinet and 
take out cleaning supplies. 3. Clean the 
countertops with a cloth. 4. Clean the 
stove and microwave. What should I do 
next?

I
t

Figure 4. Qualitative Results. We provide several visualization results on various 3D vision and language tasks in diverse 3D environments

(living room, classroom, kitchen, and bedroom). Red highlights the wrong answer.

6. Conclusions
In this paper, we present LL3DA, a large language 3D as-

sistant that could take both textual- and visual- interactions

from human for understanding, reasoning, and planning in

complex 3D environments. Our model directly encodes the

3D point cloud and aggregates information from scenes and

human interactions with the attention mechanism. We show

that the visual interactions could remove the ambiguities

in cluttered 3D environments, showing mighty instruction-

following capacities. Experiments show that our method

could achieve remarkable results on various 3D vision-

language benchmarks. We hope our approach could inspire

further designs and training strategies for large 3D language

models. In future studies, we believe that the construction

of high-quality and diverse annotations will further enhance

the model’s reasoning and planning capabilities.
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