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Abstract

In this paper, we present ShapeMatcher, a unified self-
supervised learning framework for joint shape canonical-
ization, segmentation, retrieval and deformation. Given
a partially-observed object in an arbitrary pose, we first
canonicalize the object by extracting point-wise affine-
invariant features, disentangling inherent structure of the
object with its pose and size. These learned features
are then leveraged to predict semantically consistent part
segmentation and corresponding part centers. Next, our
lightweight retrieval module aggregates the features within
each part as its retrieval token and compare all the to-
kens with source shapes from a pre-established database
to identify the most geometrically similar shape. Finally,
we deform the retrieved shape in the deformation module to
tightly fit the input object by harnessing part center guided
neural cage deformation. The key insight of ShapeMaker
is the simultaneous training of the four highly-associated
processes: canonicalization, segmentation, retrieval, and
deformation, leveraging cross-task consistency losses for
mutual supervision. Extensive experiments on synthetic
datasets PartNet, ComplementMe, and real-world dataset
Scan2CAD demonstrate that ShapeMatcher surpasses com-
petitors by a large margin. Code is released at https:
//github.com/Det1999/ShapeMaker.

1. Introduction
In recent years, there has been a notable surge in re-

search interest focused on generating high-quality 3D mod-

els from scans of complex scenes [6, 15, 16, 21, 35, 49, 73].

This technology encourages extensive applications in both

artistic creation [56, 57], robotics [66, 67] and 3D scene

perception [41, 69]. Existing methods [41, 54] typically

directly utilize deep neural networks to reconstruct 3D
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Figure 1. Illustration of ShapeMatcher. Objects obtained from

real-world scans are typically noisy, partial and exhibit various

poses, making it challenging to conduct an effective R&D process

(Red ’X’ on the left). To address this issue, we propose Shape-

Matcher that first canonicalizes the objects and then segments

them into semantic parts, facilitating R&D processes (Green ’�’

on the right).

models from imperfect scans. However, the presence of

noise and occlusions poses a significant challenge in ac-

curately capturing fine-grained geometric structures. To

overcome this, Retrieval and Deformation (R&D) tech-

niques [10,28,40,46,56–58,64] have been developed. These

methods generally involve two key steps: first, identifying

the most geometrically similar source shape from a pre-

curated 3D database; and second, deforming the retrieved

shape to achieve precise alignment with the target input.

The R&D approach is particularly effective in producing

3D models enriched with fine details from source shapes.

However, existing R&D methods usually encounter two

primary challenges that make them susceptible to noise,

occlusion and pose variations, and difficult to be practi-

cally utilized. 1) Most R&D techniques [10, 17, 28, 40,

46, 56–58, 64] operate under the assumption that target

shapes are aligned in a pre-processed canonical space. Typ-
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the final published version of the proceedings is available on IEEE Xplore.
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ically, these methods are trained and tested on datasets

where shapes have been manually adjusted to this canonical

state. However, when these methods are deployed in real-

world settings, they necessitate either manual alignment of

scanned objects or the use of additional pose estimation net-

works [14, 18, 48, 71, 72]. Such procedures are not only

time-intensive and laborious but also prone to yielding in-

consistent results. This limitation significantly impedes the

direct application of these methods in real-world scenarios.

2) Previous methods [56, 57] do not design specially for

dealing with partially-observed shapes, making it difficult

to handle occluded objects. Although U-RED [17] consid-

ers the partial target shapes as input in the R&D process, it

directly encodes the shape as a global embedding, which is

not robust when dealing with significant occlusion.

To address the aforementioned two challenges, in this

paper, we present ShapeMatcher, a novel framework that

extends traditional R&D pipeline to joint self-supervised

learning of object canonicalization, segmentation, retrieval

and deformation. Our core contribution lies in that the four

highly-associated processes can be trained simultaneously

and supervise each other via constructing several cross-task

consistency losses (Fig. 1). Specifically, given a partially-

observed object scan in an arbitrary pose, ShapeMatcher

processes the objects in four steps. First, we follow [30],

which is based on Vector Neurons [13], to extract SE(3)-

invariant point-wise features by progressively separating

translation and rotation. We further follow [8] to normalize

the features to disassociate the object scale. Until here, we

successfully obtain affine-invariant point-wise features by

disentangling object’s inherent structure with its pose and

size. This facilitates the Canonicalization of the observed

object based on these intrinsic characteristics (Fig. 2 (B)).

Then we predict semantically consistent part segmentation

and corresponding part centers by feeding the learned fea-

tures into our Segmentation module (Fig. 2 (C)). Based on

the part segmentation, in the Retrieval module (Fig. 2 (D)),

we aggregate features within each part and collect them

together as a comprehensive retrieval token of the object.

For partial objects, we introduce a region-weighted strategy,

which assigns a weight to each part according to the point

inside it. Parts with more points are assigned higher weights

during retrieval, which is proved to be robust to occlusions.

We compare the tokens of the target object with each shape

in the pre-constructed database to identify the most geomet-

rically similar (most similar tokens) source shape. In the

final Deformation module (Fig. 2 (E)), the retrieved source

shape is deformed to tightly match the target object via part

center guided neural cage deformation [64].

To summarize, our main contributions are:

• We introduce ShapeMatcher, a novel self-supervised

framework for joint shape canonicalization, segmenta-

tion, retrieval and deformation, handling partial target

inputs under arbitrary poses. Extensive experiments

on the synthetic and real-world datasets demonstrate

that ShapeMatcher surpasses existing state-of-the-art

approaches by a large margin.

• We demonstrate that the four highly-associated tasks:

canonicalization, segmentation, retrieval and deforma-

tion, can be effectively trained simultaneously and su-

pervise each other via constructing consistencies.

• We develop the region-weighted retrieval method to

mitigate the impact of occlusions in the R&D process.

2. Related Works
Neural Shape Representation. The compact represen-

tation of 3D shapes in latent space, based on deep learn-

ing, has been a focal point for many researchers. Some at-

tempts, such as [9, 27, 36, 37, 42, 45, 61, 70], employ neu-

ral networks to construct an implicit function, while oth-

ers [1, 38, 52, 62, 68] directly model the shape of objects

explicitly using generative models. Another common ar-

chitecture in 3D shape representation learning, as seen in

[12, 29, 44, 60, 63], is to use an encoder-decoder approach

to generate latent representation vectors for various shapes.

Although these methods have demonstrated impressive rep-

resentation performance, they often struggle to generate

fine-grained shapes when dealing with occlusion and noise.

CAD Model Retrieval and Deformation. Retrieval and

Deformation (R&D) methods lead another way to recover

fine-grained geometric structures. Previous works directly

retrieve the most similar CAD models by comparing the

similarity of expression vectors in either descriptor space

[5, 46] or the latent space of neural networks [4, 10, 22, 34].

Considering the subsequent deformation error, recent ef-

forts introduce deformation-aware embeddings [56] or pro-

posed new optimization objectives [24] to better capture

the fine structure of deformed target objects. Nevertheless,

these methods yield deteriorated performance when facing

partial and pose-agnostic target shapes in real world. [17]

achieves an one-to-many retrieval module for addressing

the issue caused by partial observations, however, it receives

canonicalized target shapes as input, which limit its appli-

cability facing pose-agnostic target shapes in real world. As

the retrieved models often exhibit some deviation from the

target shape, the deformation module is used to minimize

this discrepancy. Traditional approaches [20, 23, 47] aim

to fit the target shape by directly optimizing the deformed

shape. Neural network based techniques attempt to learn a

set of deformation priors from a database of models. They

represent deformations as volume warping [25,32], cage de-

formations [64], vertex offsets [58], or flows [28,65]. These

methods typically constrain two shapes are aligned in the

same coordinate system, making them challenging to apply

in real-world scenarios.
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SO(3)-Equivariant Methods. An increasing body of

work [2,19,31,55,59] has initiated research on SO(3) equiv-

ariance. These efforts are mostly based on steerable con-

volutional kernels [33]. On the other hand, another set of

works achieves equivariance through pose estimation. [43]

estimates the object’s pose to factor out SO(3) transfor-

mations, achieving approximate equivariance. While [51]

learns pose estimation in a fully unsupervised manner, the

equivariant backbone they employ [50] achieves equivari-

ance primarily through data augmentation, leading to lim-

ited generalization. In this paper, we employ Vector Neural

Multi-Layer Perceptron [13] as the backbone to get neural

invariant features for object canonicalization. It achieves

SO(3) equivariance by lifting traditional scalar neurons to

vector neurons.

3. Method
Overview. ShapeMatcher consists of 4 modules, cor-

responding to the 4 highly-associated tasks. Each of the

first 3 modules: Canonicalization, Segmentation and Re-
trieval modules have two parallel branches, one for com-

plete point cloud (in orange background) and the other for

partial object input (in blue background). As shown in

Fig. 2, given a partial target shape Stgt ∈ R
N×3 in an ar-

bitrary pose, in the Canonicalization module, we progres-

sively decouples its inherent shape with rotation Rtgt ∈
SO(3), translation Ttgt ∈ R

3 and the 3D metric size

stgt ∈ R
3 via VN-MLP [8, 13, 30], yielding the affine-

invariant point-wise features Ftgt. The object can then be

canonicalized via inverse transformation based on intrin-

sics {Rtgt, Ttgt, stgt}. In the Segmentation module, Ftgt

is fed into a 4-layer MLP network to predict M parts and

corresponding part centers {K1
tgt,K

2
tgt, ...,K

M
tgt}. The seg-

mentation is semantically consistent across each category

and thus can be matched and compared for R&D. In

the Retrieval module, inside each region M i, we aggre-

gate the features of all points inside it as its retrieval to-

ken Qi. The retrieval token for the object is then repre-

sented as Qtgt = {Q1
tgt, Q

2
tgt, ..., Q

M
tgt}. Similarly, dur-

ing training, we obtain the intrinsics {Rsrc, Tsrc, ssrc}, part

centers {K1
src,K

2
src, ...,K

M
src} and retrieval tokens Qsrc =

{Q1
src, Q

2
src, ..., Q

M
src} via the branch for complete point

cloud. By comparing Qtgt and Qsrc of each source shape

inside the database, we identify the most geometrically sim-

ilar source shape Sr. In the final Deformation module, Ktgt

and Ksrc are leveraged to guide the neural cage deforma-

tion [64] to deform the retrieved Sr towards Stgt, yileding

Sdfm
src .

3.1. Canonicalization

As shown in Fig. 2 (B), the Canonicalization mod-

ule takes the target point cloud Stgt as input and disen-

tangle the inherent structure of Stgt with the intrinsics

{Rtgt, Ttgt, stgt}, yielding a point-wise affine-invariant fea-

ture Ftgt. Specifically, we follow VN-MLP [8, 13, 30] to

first decouple translation via VNT [30] and then extract ro-

tation via VNN [13,30]. We further follow [8] to normalize

the SE(3)-invariant features obtained above the remove the

influence of scaling, yielding Ftgt as follows,

Rtgt, Ttgt, F
∗
tgt = VN-MLP(Stgt) (1)

stgt, Ftgt = normalize(F ∗
tgt) (2)

where F ∗
tgt denotes the SE(3)-invariant features and Ftgt de-

notes the affine-invariant features. Thereby, the object can

be canonicalized with intrinsics as,

Sc
tgt = stgtRtgtStgt + Ttgt (3)

where Sc
tgt denotes the normalized and canonicalized shape

of Stgt. During training, in order to ensure that Ftgt fully

encapsulate the geometric information of Stgt, we integrate

a supplementary reconstruction branch which takes F ∗
tgt as

input and reconstruct Sc
tgt in the affine-invariant space [30].

Please refer to the Supplementary Material for details. For

source shape Ssrc from the database, we follow the same

procedures to extract Fsrc.

3.2. Segmentation

Given the affine-invariant features Ftgt, we segment the

input point cloud Stgt into M semantically consistent parts.

We use a 4-layer MLP Θl (Fig. 2 (C)) to predict a one-hot

segmentation label for each point and use another 4-layer

MLP Θc to predict M part centers {K1
src,K

2
src, ...,K

M
src}.

Noteworthy, we don’t need any ground truth annotations

in this segmentation process. Our experiments show that

the network can automatically learn semantically consistent

segmentation solely through consistency supervision from

the other three tasks. For source shape Ssrc, we follow a

similar process to obtain {K1
src,K

2
src, ...,K

M
src}.

3.3. Retrieval

The retrieval network aims to identify the model Ssrc

from an existing database that bears the closest resem-

blance to the target object Stgt after deformation. Tradi-

tional methods [17, 57] directly extract the global features

of objects for retrieval, which typically struggles with heavy

occlusion since the global features are susceptible to noise

and occlusion, and prone to producing erroneous retrieval

results. In contrast, we employ a novel region-weighted re-

trieval method to explicitly encode independent and seman-

tically consistent regions of the shape. This allows us to

accurately handle partial shapes by identifying the visible

regions to retrieve models most similar to the target.

Specifically, the part segmentation network Θl takes Ftgt

as input to predict M regions Fseg = [C1, C2, C3, ..., CN ]�
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Figure 2. The pipeline of ShapeMatcher. Given a target point cloud obtained from a single-view scan and a pre-established database (A),

ShapeMatcher generates the fine-grained reconstruction result using the joint 4 modules including Canonicalization (B), Segmentation
(C), Retrieval (D) and Deformation (E), where the first three contains the partial branch for target processing and the full branch for

source processing. Specifically, the target and source inputs are first canonicalized into the same affine-invariant space (B). Then, the

semantic-consistent region segmentation is yielded from the affine-invariant features (C). The segmented regions are fed to the region-

weight retrieval module (C) and the part center guided neural cage deformation module (E) for occlusion-robust R&D process. During

training, the partial-full consistency losses (F) are enforced for the two branches.

of Sc
tgt, where Fseg ∈ R

N×M , Ci ∈ R
M represents the

probability of point i belonging to each part center. Then

we use another 4-layer feature aggregator Θf (Fig. 2 (D))

to extract the retrieval tokens Q of all parts as follows,

Fcls = F�
seg ∗Θf (Ftgt), (4)

Qtgt = Fcls/(

N∑

n=1

F (n)
seg ). (5)

where Qtgt ∈ R
M×C contains the C-dimensional retrieval

tokens for all the M regions. Here we employ a soft assign-

ment strategy where each point inside Stgt is estimated M
values describing the probabilities belonging to each of the

M parts. Therefore, we first aggregate features Fcls on all

points belonging to each part and then normalize Fcls using

the sum of probabilities of points in each part, as in Eq. 4

and Eq. 5. Following a similar strategy, we can obtain Qsrc

for each source model in the pre-curated database. We just

need to compare Qtgt with the retrieval tokens Qsrc of all

source shapes using the weighted L1 distance,

Dis = ω
∑

L1(Qtgt −Qsrc) (6)

where vector ω ∈ R
1×M stores the ratio of point number

of each part with respect to the total point number N . In-

tuitively, parts with smaller point numbers contribute less

in calculating the distance score, which reduces the influ-

ence of noise and occlusion. The source shape Sr with the

smallest distance score is identified as the best retrieval.

3.4. Deformation

The Deformation module aims to deform the retrieved

shape Sr to tightly match the target shape Stgt. We utilize

the neural cage scaffolding strategy as in [26, 64]. First, the

neural cages Csrc for Sr is pre-calculated. We utilize the

part centers (Ktgt and Ksrc) to control the vertice offsets

Csrc2tgt of the neural cage Csrc to match Stgt. In particu-

lar, we employ a neural network ΘI to predict an influence

vector I ∈ R
Nc×M for each point concerning all cage ver-

tices by I = ΘI(concat(Ftgt, Fsrc)), where Nc denotes

the number of vertices used in Csrc. Csrc2tgt is computed

through the influence vectors I and the differences between

region centers (Fig. 2 (E)):

Csrc2tgt = Csrc +

M∑

i=1

Ii(K
(i)
src −K

(i)
tgt), (7)

Finally, we employ a sparse cage scaffolding strategy [26,

64] to achieve the deformation field of Ssrc. The deformed
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shape Ssrc2tgt of Ssrc can be expressed as follows:

Ssrc2tgt = Ssrc +Ψ(Csrc, Csrc2tgt), (8)

where Ψ computes the displacement of each point in Ssrc

by evaluating the differences between Csrc and Csrc2tgt,

thereby achieving deformation.

3.5. ShapeMatcher: Joint Training

Our core insight in ShapeMatcher is that the four highly-

associated tasks: Canonicalization, Segmentation, Retrieval
and Deformation can be trained simultaneously and su-

pervise each other via introducing cross-task consistency

terms. We mainly introduce two types of losses here, i.e.
partial-full consistency losses and task-oriented loss. For

more details, please refer to the Supplementary Material.

Task-Oriented Loss. In the Canonicalization, we mainly

use Chamfer Distance to constrain the canonicalized Sc
tgt

and Ŝc
tgt predicted in the affine-invariant space by the

supplementary reconstruction branch, to enforce the affine-

invarianty of F ∗
tgt in Sec. 3.1, by

Lcan = discham(Sc
tgt, Ŝ

c
tgt) + orth(Rtgt), (9)

with orth(Rtgt) serving the purpose of enforcing the or-

thogonality of matrices.

In the Segmentation, to keep consistency between the

part segmentation and the predicted part center, we jointly

train Θl and Θc with the following loss, which enforce that

each predicted part center Ki
tgt approximately lies in the

center of all points belonging to the part Mi,

Lseg =
M∑

m=1

‖K(m)
tgt − (F�

seg ∗ Sc
tgt)

(m)‖2 (10)

To train the Retrieval and Deformation simultaneously,

for an input target Stgt, we randomly select a source model

Ssrc from the database for training. Specifically, to elimi-

nate the influence of occlusion, we do not directly use the

global Chamfer Distance of Stgt and Ssrc as ground truth.

Instead, we employ a regional supervision strategy, ensur-

ing that occluded areas do not contribute to the training of

retrieval network. Taking the i-th region as an example, Si
tgt

represents all points in Stgt that belong to the i-th region.

We calculate the average of the nearest distances Di from

each point in Si
tgt to the deformed shape Sdfm

src to enforce

the learning of the regional retrieval tokens by

Lretrieval =
1

M

M∑

i=1

MSE(Q
(i)
tgt −Q(i)

src, Di). (11)

The deformation loss is achieved by directly constraining

the Chamfer Distance between Stgt and Sdfm
src , expressed

as:

Ldeform = discham(Stgt, S
dfm
src ) + ‖I‖2 (12)

where we regularize I using the L2 norm.

Partial-Full Consistency Losses. In the first two modules:

Canonicalization, Segmentation, the full branch serves as

a guidance to enhance the learning of the partial branch.

Therefore, in each module, we can enforce corresponding

consistency terms between the outputs of the two parallel

branches (Fig. 2 (F)).

During the consistency training process, for randomly

selected full input Sfull, we generate a mask Uf2p ∈ R
N to

crop it to simulate the situation of a partial input Spartial =
SfullUf2p.

In the Canonicalization module, to enforce the con-

sistency in the affine-invariant space between the two

branches, we apply the same transformation Uf2p to Sc
full

in the affine-invariant space as before and then use the

chamfer distance to constrain its distance to Sc
partial:

Lccan = discham(Sc
partial, S

c
fullUf2p) (13)

Similarly, in the Segmentation module, for the consistency

constraint of the part center prediction network Θc, we di-

rectly use the Chamfer Distance to constrain the region cen-

ters detected by the two branches:

Lccen = discham(Kpartial,Kfull). (14)

In the segmentation network Θl, we mask the segmentation

results of the full branch F
(full)
seg and compare them with the

results of the partial branch F
(partial)
seg :

Lcseg = discham(F (full)
seg Uf2p, F

(partial)
seg ). (15)

Joint Training. Generally, the joint training of Shape-

Matcher is divided into three stages. First, we train the full

branch by Lcan and Lseg for construction of Canonicaliza-
tion and Segmentation ability. Second, the partial branch is

introduced and trained by both the task-oriented losses for

Canonicalization and Segmentation Lcan and Lseg and the

partial-full consistency loss terms Lccan, Lccen and Lcseg .

Finally, after training Canonicalization and Segmentation
of the both branches, Lretrieval and Ldeform are adopted

for joint Retrieval and Deformation training simultaneously

utilizing the both branches to handle partial target inputs

and full source inputs respectively.

4. Experiments
4.1. Experimental Setup

In this section, we mainly focus on R&D experiments,

which better reflects the overall performance of the system.

The ablations and analysis also demonstrate the effective-

ness of considering joint Canonicalization and Part Seg-
mentation.

Datasets. We evaluate the effectiveness of our joint

framework using three datasets: two synthetic datasets,
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PartNet [39] and ComplementMe [53], and one real-world

dataset, Scan2CAD [3]. For datasets PartNet and Com-

plementMe, we follow the same database splits as in [57],

separating their target inputs into training and testing sets.

In our training process, we exclusively employ mesh mod-

els and do not utilize part segmentations as in [57], since

the process of ShapeMatcher is fully self-supervised and

does not need any additional annotations. The shapes used

in PartNet and ComplementMe datasets are sourced from

ShapeNet [7]. PartNet comprises 1,419 source models in

the database, with 11,433 target models in the training set

and 2,861 in the testing set. In ComplementMe, the num-

bers are 400, 11,311 and 2,825 respectively. In the synthetic

cases, three categories of tables, chairs, and cabinets are

evaluated on both datasets. Scan2CAD [3] is a real-world

dataset developed based on ScanNet [11] with capacity of

14,225 objects. The input point cloud data on Scan2CAD

is generated by reverse-projecting the depth images. In the

real-world cases, we conduct training on the categories of

tables, chairs, and cabinets from PartNet and directly test-

ing on Scan2CAD.

Baselines. Both baseline methods, Uy et al. [57] and

U-RED [17], are trained using the same data partitioning

strategy stated above. To ensure fairness in comparison with

ShapeMatcher, we augment the training data with pose vari-

ations, keeping other hyperparameters consistent with the

original paper. During testing, we evaluate scenarios where

target observations with arbitrary poses are directly used as

input. Additionally, we test scenarios where the inputs are

transformed using an offline pose estimation method [18],

simulating the two-stage route of traditional methods with

pre-canonicalizing (Uy et al. [57] + PE and U-RED [17] +

PE). For experiments on Scan2CAD, we directly use the

baseline models trained on PartNet with the 25% occlu-

sion setting to conduct zero-shot testing, since real-world

ground-truth models are inaccessible for training.

Evaluation Metrics. We utilize Chamfer Distance (CD)

on the magnitude of 10−2 to assess both full shape scenar-

ios and partial shape scenarios. We calculate the metrics

following [57] to use the best result among the top 10 can-

didate objects. The final average metrics are obtained by

averaging the results across all instances.

Implementation Details. During training, we uniformly

sample objects to obtain point clouds with M = 2500
points to represent shapes. We directly generate partial

point clouds from the corresponding full point clouds by

random cropping for the partial branch inputs. We apply

random pose augmentation to the input shape, specifically

with random translations Trand ∈ [−0.1, 0.1] and random

rotations Rrand ∈ [−1, 1] on three Eulerian angles respec-

tively. We set the initial learning rate to 1e − 3 and train

ShapeMatcher for 200 epochs in every training stage of

Sec. 3.5. Regarding the weight of the loss, in the first

stage considering only the full branch, Lcan and Lseg are

equally weighted. In the second stage introducing the par-

tial branch, we primarily emphasize the partial-full consis-

tency losses, assigning significant weights to Lccan, Lccen

and Lcseg with weights set as 5, 2, and 2 respectively, while

keeping the remaining weights default at 1. In the final stage

for joint R&D, both Lretrieval and Ldeform are equally

weighted.

4.2. Synthetic Cases

To validate the ability of ShapeMatcher tackling the

challenge of arbitrary poses and occlusions, we first use

synthetic datasets to simulate this scenario. We evaluate all

methods [17, 57] where object observations with arbitrary

poses are directly used as input. Additionally, we also re-

port results where inputs are transformed and canonicalized

using an offline pose estimation method [18] for baseline

methods (Uy et al. + PE and U-RED + PE). Moreover, we

analyze inference time of ShapeMatcher against the R&D
baselines in the Supplementary Material.

We conduct two types of inputs for evaluation: full in-

puts using the PartNet and ComplementMe datasets, and

partial input tests using 10%, 25%, and 50% occlusion rates

on the PartNet dataset. The results of the full input tests are

detailed in Table 1. In PartNet, our ShapeMatcher signifi-

cantly outperforms the current leading competitors. For the

Chamfer Distance on three categories, ShapeMatcher mea-

sures at 0.197, 0.150, and 0.519, maintaining the leading

position. Even when the processed PE results are used as

input, the baselines’ results still fall short of ShapeMatcher.

This demonstrates the effectiveness of adopting the affine-

invariant features in the joint Canonicalization step. Results

from ComplementMe supports the same conclusion, where

ShapeMatcher reports significantly better results compared

to the baseline methods. ShapeMatcher surpasses the top-

performing Uy et al. + PE by 85.2%. Such superior results

yielded by ShapeMatcher demonstrates that the joint con-

sideration of all four steps improves the matching accuracy

a lot.

For evaluation on partial inputs, we control the occlu-

sion rates of partial point clouds by controlling the position

of the cropping planes onto the full point clouds. The evalu-

ation on partial inputs are presented in Table 2. Concretely,

ShapeMatcher outperforms the current top method handling

partial inputs U-RED by 5.018, 5.666 and 7.241 at the oc-

clusion rate of 10%, 25% and 50% respectively. As the oc-

clusion rate increases, the superiority of the ShapeMatcher

method grows. Considering PE adopting, the same trend

is exhibited. ShapeMatcher surpasses the U-RED + PE by

0.525, 0.949, 2.434 under three occlusion rates. It demon-

strates that the proposed region-weighted retrieval brings

strong robustness of our method against occlusion.

As shown in Fig. 3 and 4, our results shows more geo-
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PartNet [39]

Method Chair Table Cabinet Average

Uy et al. [57] 4.269 6.302 4.118 5.271

Uy et al. [57] + PE 1.507 3.006 1.070 2.219

U-RED [17] 5.331 4.980 9.141 5.463

U-RED [17] + PE 1.025 0.359 1.423 0.725

Ours 0.197 0.150 0.519 0.200
ComplementMe [53]

Method Chair Table Cabinet Average

Uy et al. [57] 4.018 5.480 – 4.825

Uy et al. [57] + PE 1.439 2.454 – 1.999

U-RED [17] 8.575 5.800 – 7.044

U-RED [17] + PE 4.954 0.847 – 2.688

Ours 0.253 0.328 – 0.294

Table 1. The Chamfer Distance metrics for joint R&D results on

full shapes under arbitrary poses.

Occlusion Method Chair Table Cabinet Average

10%

Uy et al. [57] 4.372 6.395 4.179 5.365

Uy et al. + PE [57] 1.523 2.982 1.133 2.219

U-RED [17] 6.025 5.375 5.269 5.640

U-RED [17] + PE 1.207 1.012 1.669 1.147

Ours 0.676 0.481 1.212 0.622

25%

Uy et al. [57] 4.654 6.927 4.750 5.795

Uy et al. + PE [57] 1.803 3.195 1.607 2.481

U-RED [17] 5.196 7.215 8.164 6.442

U-RED [17] + PE 1.684 1.387 2.795 1.625

Ours 0.878 0.643 1.071 0.776

50%

Uy et al. [57] 6.070 9.322 7.929 7.841

Uy et al. + PE [57] 3.314 5.030 4.584 4.272

U-RED [17] 8.696 8.387 7.613 8.455

U-RED [17] + PE 4.722 2.015 7.903 3.628

Ours 1.197 1.079 1.872 1.194

Table 2. The Chamfer Distance metrics for joint R&D results on

partial shapes under arbitrary poses of PartNet dataset.

metric resemblance to the targets compared to other meth-

ods. This is attributed to the suitable joint consideration

of the four highly-associated processes, which accurately

decouples the input poses, mapping them to a consistent

space for accurate R&D. The region-weighted retrieval we

employ explicitly eliminates the influence of occluded ar-

eas, allowing for a more precise matching with the source

model.

4.3. Real-world Cases

We test the effectiveness of ShapeMatcher on real-world

datasets. In such case, ShapeMatcher is trained on the syn-

thetic PartNet with 25% occlusion and directly tested on

the partial scans of the real-world dataset Scan2CAD with-

out manual pose adjustments. Table 3 displays our results,

where our method significantly outperforms existing com-

petitors. Particularly, compared to the U-RED, in three cat-

egories, the reported Chamfer Distance are reduced by 92%,

96%, and 94% respectively. In comparison to Uy et al., the

Full Target 
Point Cloud

Uy et al. U-RED Ours
Retrieval    Deformation Retrieval    Deformation Retrieval    Deformation

Figure 3. Qualitative R&D results with full target inputs on Part-

Net.

Partial Target 
Point Cloud

Uy et al. U-RED Ours
Retrieval    Deformation Retrieval    Deformation Retrieval    Deformation

Figure 4. Qualitative R&D results with partial target inputs on the

occlusion rate of 25% on PartNet.

reported Chamfer Distance are reduced by 91%, 98%, and

92%. Even compared with the use of PE on the two baseline

methods, there remains a significant leap forward of Shape-

Matcher. This zero-shot experiments on real-world further

prove that the procedure of joint Canonicalization, Segmen-
tation, Retrieval and Deformation possesses a strong do-

main adaptation ability, showcasing the great potential of

ShapeMatcher in real-world applications. The visualiza-

tions on Scan2CAD are provided in the supplementary ma-

terial.

4.4. Ablation Studies

We conduct ablation experiments on PartNet, mainly on

two aspects. First, in the Canonicalization, we investigate

the importance of disentangling different pose intrinsics in

Table 4, and demonstrate the effectiveness of joint consid-

ering Canonicalization. Second, in Table 5, we ablate the

region-weighted Retrieval and the part center guided De-
formation. Moreover, the robustness against occlusion is
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Method Chair Table Cabinet Average

Uy et al. [57] 4.886 7.605 8.335 6.181

Uy et al. [57] + PE 3.362 6.657 7.261 4.905

U-RED [17] 5.490 5.131 10.091 5.945

U-RED [17] + PE 2.893 3.164 5.957 3.354

Ours 0.423 0.186 0.654 0.375

Table 3. The Chamfer Distance metrics for joint R&D results in

real-world Scan2CAD [3].

analyzed in Table 2.

Canonicalization Capability. To study the impact of

different intrinsics of object poses in the Canonicalization
process, we conduct ablations on decoupling of translations,

rotations and scales. The results are presented in Table 4.

Specifically, in row (1), we make no adjustments to the input

poses. Thanks to the regional-level R&D process, it shows

decent performance. However, there is still a noticeable gap

compared to row (4), indicating the significance of our pro-

posed joint Canonicalization. In row (2), we solely decou-

ple the input translations, resulting in a decrease of 14% in

reported metrics. Moving to row (3), upon this foundation,

we add decoupling for rotation, leading to a substantial de-

crease in reported Chamfer Distance, averaging at 0.244. In

row (4), we introduce scale decoupling, resulting in another

decrease in the reported metrics. It is evident that accu-

rate decoupling of rotation is a crucial aspect of the success

of the Canonicalization process. Moreover, it demonstrates

that to integrate Canonicalization and R&D process is in-

dispensable for the ShapeMatcher process.

Deformation and Retrieval Ability. To validate the ef-

fectiveness of our proposed region-weighted Retrieval and

the part center guided neural cage Deformation, we conduct

an ablation study on the PartNet dataset with the 25% occlu-

sion rate. The results are presented in Table 5. In row (1),

we conduct experiments using global retrieval and global

deformation. This means we directly use an MLP network

to extract overall point cloud features as the retrieval vector

[57]. In the deformation network, similarly, we directly use

an MLP network to generate neural cage offsets for defor-

mation [26,64]. Due to the lack of extraction of local infor-

mation, the reported Chamfer Distance is more than twice

of row (4). In row (2), we employ the global retrieval and

the part center guided neural cage deformation. This im-

provement allows much more tightly-matched deformation

by the retrieved source model, resulting in a 14% decrease

in reported metrics. In row (3), we conduct experiments us-

ing the regional retrieval and the global deformation. The

proposed regional-weighted retrieval handles occluded ob-

jects, reducing the impact of occluded parts and resulting in

a substantial decrease in Chamfer Distance, down to 0.973.

Occlusion Robustness. We test shapes at different oc-

clusion levels by altering the occlusion ratio in the input.

Trans. Rot. Scal. Chair Table Cabinet Average

(1) 0.571 0.502 1.233 0.590

(2) � 0.468 0.442 1.096 0.506

(3) � � 0.213 0.200 0.674 0.244

(4) � � � 0.197 0.150 0.519 0.200

Table 4. Ablations on the Canonicalization process, we demon-

strate the effectiveness of the joint Canonicalization by ablating

different pose intrinsics. Here, Trans. denotes the decoupling of

translation, Rot. represents the rotation, and Scal. signifies the

scale.

Gl. R. Re. R. Gl. D. Re. D. Chair Table Cabinet Average

(1) � � 1.672 1.446 1.800 1.570

(2) � � 1.539 1.305 1.641 1.431

(3) � � 1.042 0.874 1.223 0.973

(4) � � 0.878 0.643 1.071 0.776

Table 5. Ablations of the R&D process. GL. R. denotes the global

feature based retrieval [57], Re. R. represents the proposed region-

weighted retrieval, GL. D. signifies direct neural cage deformation

using global features [26, 64], and Re. D. denotes the adopted

regional part center guided neural cage deformation.

For each specific occlusion ratio, we deliberately crop a por-

tion of the complete point cloud to simulate occlusion. We

test scenarios with occlusion ratios of 10%, 25%, and 50%,

and the results are presented in Table 2. Observably, as the

occluded regions increased, the Chamfer Distance signifi-

cantly rises for the baseline methods. Taking the U-RED +

PE as an example, its reported metrics increase from 1.147
to 3.628, doubling in value, as the occluded area expands.

In contrast, our method increases by less than 1-fold, which

exhibits strong robustness against occlusion.

5. Conclusion
In this paper, we present ShapeMatcher, a unified self-

supervised learning framework for joint shape canonical-

ization, segmentation, retrieval and deformation. Given

a partially-observed object in an arbitrary pose, we first

canonicalize the object by extracting point-wise affine-

invariant features. Then, the affine-invariant features are

leveraged to predict semantically consistent part segmen-

tation and corresponding part centers. Afterwards, the

lightweight region-weighted retrieval module aggregates

the features within each part as its retrieval token and

compare all the tokens with source shapes from a pre-

established database to identify the most geometrically sim-

ilar shape. Finally, we deform the retrieved shape in the de-

formation module to tightly fit the input object by harness-

ing part center guided neural cage deformation. Extensive

experiments on synthetic datasets PartNet, ComplementMe,

and real-world dataset Scan2CAD demonstrate that Shape-

Matcher surpasses competitors by a large margin. In the

future, we plan to further applicate I-RED to various down-

stream tasks like robotic grasping. Limitations. are dis-

cussed in the Supplementary Material.
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