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Figure 1. The two primary challenges of short-form videos: the kaleidoscope content with various creation modes (top) and complicated
distortion arising from sophisticated video processing workflows (bottom). Regions with distortions are indicated by red boxes.

Abstract

Short-form UGC video platforms, like Kwai and TikTok,
have been an emerging and irreplaceable mainstream me-
dia form, thriving on user-friendly engagement, and kalei-
doscope creation, etc. However, the advancing content-
generation modes, e.g., special effects, and sophisticated
processing workflows, e.g., de-artifacts, have introduced
significant challenges to recent UGC video quality assess-
ment: (i) the ambiguous contents hinder the identification
of quality-determined regions. (ii) the diverse and com-
plicated hybrid distortions are hard to distinguish. To
tackle the above challenges and assist in the development
of short-form videos, we establish the first large-scale Kwai
short Video database for Quality assessment, termed KVQ,
which comprises 600 user-uploaded short videos and 3600
processed videos through the diverse practical processing
workflows, including pre-processing, transcoding, and en-
hancement. Among them, the absolute quality score of each
video and partial ranking score among indistinguish sam-
ples are provided by a team of professional researchers

† Equal contribution. B Corresponding authors.

specializing in image processing. Based on this database,
we propose the first short-form video quality evaluator,
i.e., KSVQE, which enables the quality evaluator to iden-
tify the quality-determined semantics with the content un-
derstanding of large vision language models (i.e., CLIP)
and distinguish the distortions with the distortion under-
standing module. Experimental results have shown the ef-
fectiveness of KSVQE on our KVQ database and popular
VQA databases. The project can be found at https:
//lixinustc.github.io/projects/KVQ/.

1. Introduction
Recent years have witnessed the significant advancement of
short-form UGC video platforms, where billions of users
have actively engaged in uploading and sharing their user-
generated content (UGC) videos that encompass personal
life, professional skills, and education, etc. Different from
traditional video platforms, such as YouTube, short-form
video platform aims to simplify content creation for users
and enhance the accessibility and conciseness of video con-
tent for viewers by limiting the video length, which achieves
great success since their mobile-friendly broadcasting, user-
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friendly engagement, kaleidoscope content creation, and
snackable content. Despite that, the variable and uncer-
tain subjective quality caused by non-professional shoot-
ing [8, 57] or bitrate constrain [11, 30, 37, 61] urgently
entails the development of the video quality assessment
(VQA) tailored for the short-form UGC (S-UGC) videos.

Recently, most existing databases [12, 45, 48, 53, 64]
and associated studies [4, 26, 44, 50, 51, 65, 66] for the
UGC video quality assessment are contributed for the in-
the-wild UGC videos from general media platforms (e.g.,
Youtube). And these excellent databases can be divided into
two main streams. One of the streams [12, 48, 64] merely
focused on the quality of UGC videos acquired from tra-
ditional stream media clients. Another line of these UGC
databases [24, 70] delved into the impact of compression
on UGC videos. In contrast, there are two primary chal-
lenges for the quality assessment of S-UGC videos that
prevent the application of existing UGC methods: (i) the
presence of various special creation/generation modes, e.g.,
special effects (Please see Fig. 1) and kaleidoscope con-
tents, including portrait, landscape, food, etc, which con-
fuses and impede the VQA models to accurately identify
the quality-determined region/contents. (ii) sophisticated
processing flow, e.g., transcoding and enhancement, along
with intricate distortions existing in user-uploaded videos,
which presents significant difficulties for the VQA model
in distinguishing and determining the video quality.

To further improve the quality assessment of S-UGC
videos, we establish the first large-scale kaleidoscope short-
form video database named KVQ. In particular, 4200 S-
UGC videos are collected to cover the primary creation
modes (e.g., special effect and three-stage form) and content
scenarios (e.g., food, stage, night, and so on) in the popu-
lar short-from UGC video platform, which is composed of
600 user-uploaded S-UGC videos and 3600 processed S-
UGC videos via several practical video processing work-
flows [3, 27, 56, 59] (e.g., pre-processing, enhancement,
transcoding). Notably, the selection of content and process-
ing strategies are determined by practical statistics in the
popular S-UGC platform, which is significant for the devel-
opment and measurement of S-UGC VQA. To provide accu-
rate annotation, a team of professional researchers special-
izing in image processing is responsible for the quality la-
beling of each video with the range of [1-5] and the interval
of 0.5. Despite that, there are still some videos with similar
subjective quality, which makes it hard to distinguish which
is better. To empower our KVQ with more fine-grained
quality estimation capability, we select 500 indistinguish-
able S-UGC video pairs and provide their ranked annota-
tions, which are not considered by existing UGC datasets.

Based on our KVQ benchmark, we introduce the first
Kaleidoscope Short-form UGC Video Quality Evaluator
(KSVQE). In particular, to identify the quality-determined

regions and mitigate the impacts of quality-unrelated con-
tent, it is necessary to enhance the content understanding
capability of our KSVQE. Considering the powerful fine-
grained semantic understanding capability of pre-trained
large vision-language model, CLIP [38], we propose the
quality-aware region selection module (QRS) and content-
adaptive modulation (CaM). In QRS, the learnable qual-
ity adapter is introduced to adapt the fine-grained seman-
tics from pre-trained CLIP as the guidance to identify
the quality-determined regions and keep it, while drop-
ping the quality-unrelated contents. The CaM is intro-
duced to perceive the content semantics for each region,
since the subjective quality is also associated with different
contents. To address the indistinguishability of distortions
in S-UGC videos caused by video shooting and sophisti-
cated processing workflows, we enhance the distortion un-
derstanding and adaptation capability by incorporating the
distortion prior captured with the distortion-aware model
CONTRIQUE [34]. Here, the CONTRIQUE is efficiently
fine-tuned toward the distortion distribution of our KVQ
database with a distortion adapter under the contrastive loss
function. With the above innovations, KSVQE achieves
SOTA performance on our proposed KVQ dataset, which
excessively outperforms the current best method Dover (re-
trained with our KVQ) by 0.032 on PLCC and 0.034 on
SROCC. Moreover, our proposed KSVQE owns great ap-
plicability for the commonly-used UGC-VQA datasets. The
contributions of this paper are summarized below:

• We built the first large-scale kaleidoscope short-form
video database, termed KVQ, which is composed of 4200
user-uploaded or processed short-form videos collected
from the popular short-form UGC video platform. The
reliable absolute quality label and partial ranked label for
indistinguishable samples are annotated by a group of
professional researchers specializing in image processing.

• We propose the first kaleidoscope short-form video qual-
ity evaluator, termed KSVQE, to solve two primary
challenges in KVQ: (i) unidentified quality-determined
region/content caused by various creation/generation
modes and kaleidoscope content scenarios. (ii) indistin-
guishable distortions caused by sophisticated processing
flows and unprofessional video shooting.

• To enable the content understanding capability of
KSVQE, we propose the quality-aware region selection
module (QRS) and content-adaptive modulation (CaM)
based on the pre-trained large vision-language model,
CLIP. Apart from that, we enhance the distortion under-
standing of KSVQE by designing the distortion-aware
modulation (DaM) via a pre-trained distortion extractor.

• The thorough analysis of our KVQ is provided and
extensive experiments on our proposed KVQ and the
commonly-used UGC VQA datasets have shown the ef-
fectiveness and applicability of our proposed KSVQE.
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2. Related Work
2.1. UGC-VQA databases

In recent years, to develop more realistic and challenging
video quality assessment (VQA) for user-generated content
(UGC), many UGC databases [10, 36, 43, 45, 53, 64, 70],
have been established collecting videos with authentic dis-
tortions. These databases can be categorized into two types
based on their collection scope. The first category [12, 48,
64]contains UGC databases collected from the real-world
media platform. Notably, LSVQ [64] includes a substan-
tial 39,076 videos. The Second category [24, 70] involves
UGC databases with simulated distortions approximating
realistic online video platforms, containing both originally
distorted and post-compressed videos. Our proposed KVQ
database, gathered from a short video platform, is similar
to the Second category but has two key differences. Firstly,
KVQ focuses extensively on short-form videos with vari-
ous creation modes and kaleidoscope content. Secondly,
KVQ underwent sophisticated video processing workflows
involving pre-processing, enhancement, and transcoding.

2.2. UGC-VQA methods

There are two main streams for user-generated content
video quality assessment (UGC-VQA) [6, 15, 26, 40, 44,
50, 51, 55, 65–68]. The first comprises traditional meth-
ods [16, 17, 35, 40], which are constrained by the limita-
tions of handcrafted features and lack of the adaptability to
handle more complex UGC databases. With the advance-
ment of deep learning, the second stream learning-based
methods often enable superior performance, which can be
categorized into three main types: temporal fusion, multi-
priors fusion, and fragment extraction. Temporal fusion-
based methods [4, 19, 52, 66] aim to adaptively fuse quality
features in the temporal domain. Multi-priors based meth-
ods [18, 28, 44, 70] typically incorporate multi-priors into
quality-aware features for final regression. Fragment-based
methods [49, 50] extract texture-level information and elim-
inate substantial spatio-temporal redundancies. However,
above methods do not incorporate the ability of content-
distortion understanding into the feature extraction process,
which hinders their capability to address the two challenges
in short-form video platforms.

3. Our proposed KVQ Database
To advance the progress of short-form video quality as-
sessment, we built the first large-scale KVQ database, in-
tending to assist the algorithm development. In contrast
to traditional UGC VQA databases [12, 36, 48, 64], our
KVQ database exhibits the following distinctive features
and advantages: (i) special but crucial application sce-
nario, i.e., short-form video platform, (ii) advancing con-
tent creation/generation modes and kaleidoscope contents,

(iii) practical and sophisticated processing workflows, (iv)
unique scoring strategy, i.e., the combination of absolute
and ranking quality score. In the following sections, we
will clarify the above features/advantages in detail.

3.1. Dataset Collection

Our dataset is composed of 4200 S-UGC videos, which
is collected following two principles: (i) ensure the con-
tent diversity and distortion diversity as much as possi-
ble and (ii) satisfy the practical online statistics and appli-
cation/requirements in the popular short-form video plat-
forms. The pipeline of our dataset collection is shown in
Fig. 2. Notably, in practical application, the previous UGC-
VQA methods usually perform poorly for content gener-
ated with advancing creation modes, such as special effects.
Considering that, we collect the datasets from several typ-
ical creation modes, including three-stage, special effects,
subtitled, live modes (Please see Fig. 1), and other tradi-
tional creation modes. The data are composed of nine pri-
mary content scenarios in the practical short-form video
platform, including landscape, crowd, person, food, por-
trait, computer graphic (termed as CG), caption, and stage.
In this way, these original user-uploaded data contents cover
almost all existing creation modes and scenarios, and the ra-
tio of each category of content satisfies the practical online
statistics. To further align the video features in the practical
platform, we make fine-grained video content adjustments
based on typical 6 video features, i.e., sharpness, complex-
ity, blurriness, noise, blocky, and colorfulness. Based on
the above collection strategies, we collect 600 original user-
uploaded S-UGC videos for next-stage processing.

Most UGC databases, e.g., UGC-VIDEO [24], simulate
the video processing pipeline for UGC videos with single or
simple processing tools, such as transcoding. However, in
practical short-form video platforms, the video processing
pipeline is sophisticated, including different pre-processing,
transcoding, and enhancement tools, intending to enhance
the subjective quality and reduce the coding bitrate. More-
over, the video processing pipeline is adaptive for each
video based on its content and quality. Therefore, to build
an applicable database, we exploit the representative video
processing strategy in a practical short-form video platform
for our KVQ database, which is shown in Fig. 2, where
enhancement ϕe(·), pre-processing ϕp(·), and transcoding
ϕt(·) work in a cascaded manner. Concretely, 50% of high-
quality videos are processed with six transcoding modes,
since they do not need enhancement and pre-processing.
Another 50% of low-quality videos select one enhance-
ment tool from tool pools of de-artifacts, denoise, and de-
blur. Then the pre-processing is made with a probability
of 0.5 for enhanced low-quality data, followed by transcod-
ing. In this way, 3600 processed S-UGC videos are ob-
tained, which can be divided into three groups correspond-
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Figure 2. The overview for establishing the KVQ dataset involves several key steps. Initially, we collect the original short-form videos to
cover the primary creation modes and content scenarios. Subsequently, we make fine-grained video content adjustments based on the 6
video features. Finally, sophisticated video processing workflows are applied to incorporate various hybrid distortions.

ing to three typical working flows, i.e., ϕt(·), ϕt(ϕe(·)) and
ϕt(ϕp(ϕe(·))). Based on the above collection strategy, we
collect 4200 S-UGC videos as our database. No questions
on licenses existed in this work since the data collection is
authorized by the short-form video platform and owners.

3.2. Human Study

The human study is carried out with 15 professional re-
searchers specializing in image processing in the standard
environment for quality assessment. Despite the profes-
sional labeling, it is still hard to achieve fine-grained ab-
solute scoring with single-stimulus (SS) methods [13]. To
enable the fine-grained evaluation capability, we propose
mixed scoring, where the absolute Mean Opinion Score
(MOS) value is provided for each video with the range of
[1-5] and the interval of 0.5, and the ranking score is pro-
vided for the indistinguishable S-UGC videos. For the ab-
solute MOS value, we follow the standard subjective pro-
cedure in ITU-R BT 500.13 [2]. Each participant is given
the training with unified instruction. After scoring, the data
cleaning process is performed for each video.

We notice that there are two representative indistinguish-
able scenarios. The first scenario occurs for different video
contents (i.e., non-homogeneous video pairs), where the
difference of MOSs is less than 0.5. Another scenario is
that the transcoding levels do not match their assessed qual-
ity order for the same content (i.e., the homogeneous video
pairs) since the adaptive enhancement and preprocessing.
Therefore, to improve the fine-grained evaluation capabil-
ity, we select 250 homogeneous video pairs and 250 non-
homogeneous video pairs for ranking labeling.

3.3. Subjective Quality Analysis

In this subsection, we conduct a thorough analysis of the
subjective quality score for our KVQ. Specifically, we visu-

Figure 3. The MOS distribution of different semantic categories
(left) and the histogram of the overall MOS distribution (right).

alize the MOS distribution for 9 content scenarios in Fig. 3.
We can observe that the MOS distributions of different con-
tents are similar except for the night and stage scenarios,
due to that the dark night scenario and complex stage mo-
tion are prone to cause a bad perception experience.

To investigate the impacts of different processing work-
flows on subjective quality, we visualize the MOS distribu-
tion of three video groups. As stated in section 3.1, based
on the distortions in 600 original S-UGC videos, we can
divide it into three groups, where the high-quality video
group 1 is only processed with different transcoding modes.
From Fig. 5, we can observe that the subjective quality will
decrease with the QP increases since the compression ar-
tifacts increase. By comparing the subjective quality of
original videos and the processed ones in the first and sec-
ond QP intervals in Video Group 2 (i.e., processed with en-
hancement and transcoding), we can find that the enhance-
ment tools can improve the subjective quality effectively de-
spite the compression occurring. Since the pre-processing
is achieved with a probability of 0.5, the comparison be-
tween Video Group 2 and 3 has demonstrated that the pre-
processing can eliminate the decrease of subjective qual-
ity, especially in the low-bitrate range, such as QP interval
six. The above subjective quality analysis is consistent well
with the functions of different video processing tools, which
proves the reliability of our human study in some content.

25966



S Channel-wise Split

C Concatenation

Sim Cosine Similarity

Quality-Aware 

Importance

transformer  

layer # 1 

transformer  

layer # m 

transformer  

layer # L 

𝑪𝑳𝑺

𝑷

A
d

a
p

ter 𝒇

𝑇
𝑊

𝐻

N 𝑇

Sim

QRS
3D 

Block 

# 1 

3D 

Block 

# m 

3D 

Block 

# L1 

CS

A
d

a
p

ter 𝒇

Spatial Distortion 

Extractor 𝑭𝒅

Adapter 𝒇𝒅

Key Frames

Fragments

Selected 𝑭𝒓𝒂𝒈𝒎𝒆𝒏𝒕𝒔 

Quality 

Score

𝑸𝒄 𝑪𝑳𝑺

𝑷

𝑸𝒄

Adapter 𝒇𝒅

𝑭𝒅
𝒂 𝑭𝒅

𝒂

S

CaM

DaM

CaM

DaM

Figure 4. The overall framework of KSVQE. It contains a quality-aware region selection module (QRS) and content-adaptive modulation
(CaM) to incorporate content understanding, and distortion-aware modulation (DaM) to enhance distortion understanding.

Figure 5. MOS distribution of videos of the three video groups
corresponding to the three video processing workflows.

4. Our Proposed Method
To solve two primary challenges in the S-UGC quality as-
sessment: (i) the presence of advanced creation modes and
kaleidoscope contents prevent the UGC VQA model from
identifying the quality-determined regions, (ii) the sophisti-
cated processing flows increase the difficulties for distortion
distinguishment, we propose the first short-form UGC video
quality evaluator, i.e., KSVQE. The purpose is to enhance
the content and distortion understanding capability for the
VQA model under special S-UGC scenarios and eliminate
the intervention from quality-unrelated regions. The whole
framework of KSVQE is shown in Fig. 4. We adopt the
powerful 3D-Swin Transformer as our backbone for qual-
ity regression, and its effectiveness has been validated in a
series of works [49, 52, 54, 72]. To improve the training ef-
ficiency while keeping the diversity of contents, we exploit
the fragment strategy [49, 50] for the T frames of S-UGC
video X , which divides the original video into N patches
and randomly samples a fragment with the size h×w from
each patch. Then the composite image with N fragments is
utilized as the input X̃ ∈ RT×

√
Nh×

√
Nw of our KSVQE.

4.1. Content Understanding

It is noteworthy that not all patches in one S-UGC video
are quality-related and there are some patches in one image

that even intervene in the evaluation of quality since the new
creation modes, such as special effects in Fig. 1. To solve
this, we propose to increase the content understanding ca-
pability of our KSVQE with the help of a pre-trained large
foundation model CLIP [1, 22, 25, 39, 58, 75]. To mine the
global semantic, We feed Nt key frames sampled from the
resized video into CLIP visual encoder.

CLIP has revealed its powerful fine-grained semantic
perception capability [42, 60, 69], attributed to millions of
training text-image pairs from the web. Despite that, di-
rectly applying it for content understanding still does not
meet the requirements in VQA since it is required to be
quality-aware. Therefore, we propose a quality adapter,
which is incorporated into the class token (i.e., semantics)
of the last two layers of CLIP to achieve patch-wise quality-
aware content understanding with the constraint of quality
assessment. Concretely, given the output features [CLS,P ]
of CLIP for key frame in S-UGC video, where CLS is the
class token and P ∈ RN1×Cc is the features corresponding
each patch. With the quality adapter [5, 9] f(·), the seman-
tic class token can be adapted into quality-aware space as
Qc = f(CLS). And the patch-wise quality-aware seman-
tic importance I can be computed with:

I = QcP
T /∥Qc∥∥PT ∥. (1)

Based on this, we propose two innovative modules to elim-
inate the impacts of advancing creation modes and improve
the adaptation capability for the quality assessment of dif-
ferent kaleidoscope contents. And we interpolate impor-
tance I to match the fragment number N .

Quality-aware Region Selection (QRS). It is notewor-
thy that the advancing creation models usually introduce
amounts of quality-unrelated content that is ambiguous for
VQA. For instance, in the three-stage creation, large-area
backgrounds with special effects are not focused by hu-
mans. To mitigate the side impacts of quality-unrelated re-
gions, we propose to achieve the quality-aware region se-
lection. Specifically, based on quality-aware semantic im-
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portance score I ∈ RN obtained from adapted CLIP, we
select the most quality-aware K patches by their indexes
as inds = TopK(I). Here the Differentiable TopK Selec-
tion [7, 47] is exploited to enable the training of QRS.

Content-adaptive Modulation (CaM). Notably, the per-
ception of the image is closely associated with the content
semantics [14, 20, 41, 62, 71, 74] (i.e., semantic-adaptive).
To boost the semantic adaptability of our KSVQE, we pro-
pose the CaM in Fig. 4, where the fine-grained semantics
of each patch P from CLIP from the last two layers are in-
serted into the same position of 3D swin transformer. Con-
cretely, we utilize the features Fs, including selected K
patches, from the 3D Swin Transformer as the query, to
warp the related semantics P̃ from corresponding CLIP fea-
tures P with multi-head cross attention (MHCA). Then the
spatial-wise scale and offset modulation coefficients γs and
βs are generated with convolution layers lss and lso to fuse
the fine-grained semantic information of each patch:

F̃sc = lss(P̃ )Fs + lso(P̃ ). (2)

4.2. Distortion Understanding and Modulation

To improve the quality assessment for S-UGC videos, it is
crucial to enhance the distortion understanding capability
for the quality evaluator, which can handle the challenge of
indistinguishability of distortions arising from the sophisti-
cated process workflows in Sec.3.1.

To achieve this, we need to extract the distortion pri-
ors from selected S-UGC fragments and fuse them into the
quality evaluator. In this work, we exploit the popular pre-
trained CONTRIQUE [34] as a spatial distortion extractor
to extract fragment-wise features as Fd = D(X̃). However,
it inevitably suffers from the distribution shifts since the
distortions in our KVQ database are greatly different from
existing databases. Considering that, we propose the dis-
tortion adapter fd to adapt the pre-trained CONTRIQUE to
the target distortion distribution in our KVQ database with
the distortion contrastive loss, where distortions in the same
processing pattern are regarded as positive pairs and others
as negative pairs. In this way, we can obtain a good spatial-
wise distortion prior for S-UGC videos as F a

d = fd(Fd).

Distortion-aware modulation (DaM) . To incorporate
the distortion prior into our KSVQE, we propose the
distortion-aware modulation by exploiting the multi-head
cross attention (MHCA) to warp the captured spatial distor-
tion features with the query of the quality feature Fs from
3D swin transformer. To let the evaluator perceive the tem-
poral distortion in S-UGC videos, we also exploit the multi-
head self-attention (MHSA) to interact with the warped spa-
tial distortion features as F̃ a

d = MHSA(MHCA(Fs, F
a
d ).

As shown in Fig. 4(c), the distortion modulation is achieved

with the channel-wise feature style modulation [32], and the
channel-wise scale and offset are obtained through apply-
ing two linear layers (i.e., lds and ldo) to the mean and stan-
dard deviation of feature F̃ a

d :

F̃sd = lds(std(F̃
a
d ))Fs + ldo(avg(F̃

a
d )). (3)

With the help of QRS, CaM, and DaM, KSVQE performs
greatly and bridges the void in the QA of S-UGC videos.

5. Experiment
5.1. UGC-VQA Databases

We verify our framework on four datasets: our proposed
KVQ dataset, KoNViD-1k [12], Youtube-UGC [48] and
LSVQ [64]. For the KVQ dataset, we randomly split it into
an 80% training set and a 20% test set according to the refer-
ence content. For LSVQ, we follow the public split version
[64] to validate our method. For the rest of the databases,
we follow the previous standard method [21, 23, 29, 33, 49]
and split the databases with an 80%-20% train-test ratio.
And the performance reported depends on the checkpoint
of the last iteration in training.

5.2. Implementation Details

For the details about KSVQE, we utilize the CLIP visual
encoder from ViT-B [38] to extract semantic priors. For
KSVQE, the input fragments are of size 32×288×288 with
a 2-frame interval, consisting of (9× 9) fragments, each of
size 32. After region selection of QRS, the input for 3D
Swin Transformer is realistically reshaped to 32×224×224
with (7 × 7) fragments. For visual ViT-B [38] of CLIP,
we resize the original video in the spatial dimension to be
32 × 224 × 224. Regarding CONTRIQUE, we feed each
fragment with a size of 32 × 32. And the number of CLIP
layers used for modulation is set as 2 through our optimal
experiments results. We adopt two widely used criteria for
performance evaluation: Pearson linear correlation coeffi-
cient (PLCC) and Spearman rank order correlation coeffi-
cient (SROCC). A higher value for these coefficients indi-
cates a stronger correlation with quality annotations. Fol-
lowing [31, 49], the PLCC loss is used. More details can be
found in the supplementary.

5.3. Experiment Results

To verify the effectiveness of our proposed KSVQE, We se-
lect seven UGC-VQA methods for comparison: traditional-
based methods (TLVQM [17] and VIDEVAL [45]), deep
learning-based methods (VSFA [19], GSTVQA [4], Sim-
pleVQA [44], FastVQA [49] and Dover [50]). For fair
comparison without pretrained weight on KVQ, we remove
the aesthetic branch for Dover as Dover* due to the lack

Exclude the aesthetic branch for a fair comparison [50].
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Table 1. Performance of existing SOTA methods and the proposed KSVQE on our built KVQ and four in-the-wild VQA datasets. The
“N/A” means missing corresponding results in the original paper. The best and second-best results are bolded and underlined.

Method KVQ KoNViD-1k YouTube-UGC LIVE-VQC LSVQ test LSVQ 1080p
SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC SROCC PLCC

VIQE [73] 0.221 0.397 0.628 0.638 0.513 0.476 0.659 0.694 N/A N/A N/A N/A
TLVQM [17] 0.490 0.509 0.773 0.768 0.669 0.659 0.798 0.802 0.772 0.774 0.589 0.616

RAPIQUE [46] 0.740 0.717 0.803 0.817 0.759 0.768 0.754 0.786 N/A N/A N/A N/A
VIDEVAL [45] 0.369 0.639 0.773 0.768 0.669 0.659 0.752 0.751 0.795 0.783 0.545 0.554

VSFA [19] 0.762 0.765 0.773 0.775 0.724 0.743 0.773 0.795 0.801 0.796 0.675 0.704
GSTVQA [4] 0.786 0.781 0.814 0.825 N/A N/A 0.788 0.796 N/A N/A N/A N/A

PVQ [63] 0.794 0.801 0.791 0.786 N/A N/A 0.827 0.837 0.827 0.828 0.711 0.739
SimpleVQA [44] 0.840 0.847 0.856 0.860 0.847 0.856 N/A N/A 0.867 0.861 0.764 0.803

FastVQA [49] 0.832 0.834 0.891 0.892 0.855 0.852 0.849 0.862 0.876 0.877 0.779 0.814
Dover* [50] 0.833 0.837 0.908 0.910 0.841 0.851 0.844 0.875 0.877 0.878 0.778 0.812

KSVQE 0.867 0.869 0.922 0.921 0.900 0.912 0.861 0.883 0.886 0.888 0.790 0.823

Table 2. Ablation study for the three proposed components (i.e., QRS, CaM, and DaM).

Content Understanding Distortion Understanding KVQ KoNViD-1k YouTube-UGC
QRS CaM DaM SROCC PLCC SROCC PLCC SROCC PLCC

" " " 0.867 0.869 0.922 0.921 0.900 0.912

% % % 0.832 0.834 0.891 0.892 0.855 0.852
" % % 0.847 0.853 0.917 0.920 0.887 0.903
% " % 0.842 0.847 0.918 0.914 0.895 0.900
% % " 0.839 0.843 0.915 0.914 0.893 0.910
% " " 0.850 0.852 0.921 0.912 0.896 0.904

Table 3. Performance on the ranking pairs in KVQ. There are 100
pairs, involving 50 non-homogeneous and 50 homogeneous pairs.

Rank non-homogeneous homogeneous all pairs

TLVQM [17] 0.56 0.64 0.6
VIDEVAL [45] 0.36 0.60 0.48

VSFA [19] 0.54 0.92 0.73
GSTVQA [4] 0.58 0.98 0.78

SimpleVQA [44] 0.58 0.96 0.77
FastVQA [49] 0.66 0.86 0.76
Dover* [50] 0.70 0.88 0.79

KSVQE 0.76 0.86 0.81

Table 4. Cross-dataset evaluations of “other datasets → KVQ”.

Test:KVQ KoNViD-1k YouTube-UGC LIVE-VQC

SimpleVQA 0.459/0.394 0.396/0.401 0.345/0.392
FastVQA 0.506/0.480 0.450/0.409 0.505/0.496

KSVQE 0.528/0.504 0.499/0.412 0.539/0.533

Table 5. Cross-dataset evaluations of “KVQ → other datasets”.

Train:KVQ KoNViD-1k YouTube-UGC LIVE-VQC

SimpleVQA 0.475/0.481 0.675/0.674 0.528/0.521
FastVQA 0.641/0.654 0.645/0.676 0.614/0.675

KSVQE 0.650/0.661 0.742/0.764 0.720/0.768

of aesthetic scores. As shown in Tab. 1, the traditional
methods [17, 45, 46, 73] that rely on manual feature ex-
traction face challenges in addressing complex UGC-VQA
scenarios. Specifically, KSVQE shows superior perfor-

mance across the KVQ, KoNViD-1k, and Youtube-UGC
datasets. Notably, KSVQE outperforms the second-best
method Dover* (w.o. aesthetic branch) by a substantial
margin of 0.034/0.032 in terms of SROCC and PLCC on
KVQ, 0.014/0.011 on KoNViD-1k, and 0.059/0.061 on
Youtube-UGC, 0.009/0.010 on LSVQ. It illustrates that
with the help of content and distortion understanding,
KSVQE can achieve accurate quality perception.

We also test KSVQE on the ranked pair in Tab. 3. The ac-
curacy is used to evaluate the performance of rank-pair pre-
diction. The results show that our KSVQE can exceed the
second-best method Dover* with 0.06 of accuracy in non-
homogeneous video pairs and 0.02 in all video pairs. Dis-
tinguishing quality in non-homogeneous video pairs is more
challenging compared to homologous video pairs. This
aligns with the difficulty arising from the presence of var-
ious creative modes, kaleidoscopic content scenarios, and
indistinguishable distortions of sophisticated workflows.
We conduct two cross-dataset evaluations: “KVQ→other
datasets” and “other datasets→KVQ” in Tab. 5 and Tab. 4.
We can find that: i) In the two settings, KSVQE can ob-
tain the optimal performance, which shows that KSVQE
has better generalization ability. ii) Through comparing the
generalization performances of “KVQ→other datasets” and
“other datasets→KVQ”, our KVQ is more challenging than
others, since training on KVQ yields good results on other
datasets, while the reverse is worse.
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Table 6. Ablation study for multiple variants of selection in QRS.

Region Selection KVQ KoNViD-1k YouTube-UGC
SROCC PLCC SROCC PLCC SROCC PLCC

baseline 0.832 0.834 0.907 0.909 0.884 0.900
RS 0.843 0.845 0.916 0.915 0.896 0.905

QRS 0.847 0.853 0.917 0.920 0.894 0.906

5.4. Ablation Study

To validate the effectiveness of the QRS, CaM, and DaM,
ablation studies are conducted and the results are presented.
In Tab. 2, the 3th row, which does not include the three
components, serves as our baseline: a fully-trained 3D Swin
Transformer with fragment input of dimensions 32× 224×
224. Meanwhile, the 2th row, which incorporates all three
components, represents our proposed method, KSVQE.

The effectiveness of QRS. By comparing the 3th and 4th

rows, the inclusion of QRS yields a significant improve-
ment of 0.015/0.019 over the baseline on KVQ. This obser-
vation highlights the advantage of identifying the quality-
determined region and dropping the quality-unrelated con-
tents, such as large areas of solid color background in three-
stage short videos. The visualization result of selected frag-
ments can be seen in the supplementary. To prove the
fine-grained semantic understanding of CLIP can mine the
quality-determined region, we replace the learnable selec-
tion with some variants, and the experiment results can be
seen in Tab. 6. The “baseline” denotes the original fragment
sampling and the “RS” represents the random selection of
a region from the region candidate of interest. Our QRS
achieves the best performance, showing the effectiveness of
mining the quality-determined region.

The effectiveness of CaM. The results of 3th row and 5th

row in Tab. 2 show that the CaM can bring the performance
gain compared with the baseline in all databases. Especially
for KVQ, the CaM exhibits a performance improvement
of 0.010/0.013 on SROCC and PLCC, which illustrates
the necessity of quality perception associated with differ-
ent semantics for short-form videos with various generation
modes. In Tab. 7, we present various modulation variants.
The first variant, “CA”, involves only multi-head cross at-
tention. The second variant, “SM” retains only spatial-wise
modulation. The Third variant, “CA+CM” combines multi-
head cross attention and channel-wise modulation. Through
the comparison of these variants of CaM in Tab. 7, it is
demonstrated that the “CA+SM” (i.e., our CaM) provides
the best performance, allowing for a richer quality-aware
semantic instruction in KSVQE on the spatial dimension.

The effectiveness of DaM. As depicted in Tab. 2, we
conducted a performance comparison between the results
in the 6th row (i.e., “baseline+DaM”) and the baseline.

Table 7. Ablation study for multiple variants for CaM and DaM.

CaM KVQ KoNViD-1k YouTube-UGC
SROCCPLCCSROCCPLCCSROCC PLCC

CA 0.835 0.831 0.912 0.910 0.883 0.899
SM 0.833 0.840 0.915 0.912 0.887 0.900

CA+SM (CaM) 0.842 0.847 0.918 0.914 0.895 0.900
CA+CM 0.838 0.840 0.913 0.916 0.879 0.893

DaM KVQ KoNViD-1k YouTube-UGC
SROCCPLCCSROCCPLCCSROCC PLCC

CASA 0.830 0.837 0.911 0.909 0.887 0.898
CM 0.831 0.836 0.909 0.913 0.895 0.904

CASA+CM (DaM) 0.839 0.843 0.915 0.914 0.893 0.910
CASA+SM 0.830 0.833 0.913 0.914 0.894 0.903

Our findings revealed that DaM led to an improvement of
0.009 of PLCC on KVQ. This result underscores the signif-
icance of distortion guidance, particularly in distinguishing
more complex distortions in sophisticated processing work-
flows. Similarly, we also evaluate the other variants: only
cross-attention and self-attention (CASA), only channel-
wise modulation (CM) and a combination of attention mod-
ules and spatial-wise modulation(CASA+SM). We can find
that DaM with “CASA+CM” performs best, showing the
necessity of the local distortion aggregation and channel-
wise style injection of distortion prior.

The effectiveness of CaM and DaM. By comparing the
7th row (i.e., CaM+DaM) with the 5th row (i.e., CaM) and
the 6th row (i.e., DaM) in Tab. 2, the combinationå has
a 0.008/0.005 increase in the terms of SROCC and PLCC
compared with CaM and exhibits a performance improve-
ment of 0.011/0.009 than DaM on the KVQ database. It
reveals that the proposed modules can effectively ease the
two primary challenges of kaleidoscope content and indis-
tinguishable distortion in the KVQ database.

6. Conclusion
In this work, we take the first step to investigate S-UGC
VQA from both subjective and objective studies. To address
key challenges of kaleidoscope content and various process-
ing flows in S-UGC videos, we build a large-scale kaleido-
scopic short-form video database, named KVQ, which cov-
ers the primary creation modes, common content scenarios,
as well as sophisticated video processing workflows. More-
over, we propose KSVQE based on the content-distortion
understanding to identify quality-aware regions and per-
ceive complex distortions. Experimental results reveal the
efficacy of KSVQE. We hope to inspire future research for
advancing VQA algorithms in S-UGC.
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