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Figure 1. Top: DUSt3R takes as input an unconstrained collection of images and outputs pointmaps, from which various geometric quantities
can be straightforwardly derived. Bottom: Fully-consistent 3D reconstructions without input camera poses nor intrinsics. From left to
right: input image, colored point-cloud, rendered with shading. DUSt3R can also reconstruct scenes without any visual overlap (top-right).

Abstract
Multi-view stereo reconstruction (MVS) in the wild re-

quires to first estimate the camera intrinsic and extrinsic
parameters. These are usually tedious and cumbersome to
obtain, yet they are mandatory to triangulate corresponding
pixels in 3D space, which is at the core of all best perform-
ing MVS algorithms. In this work, we take an opposite
stance and introduce DUSt3R, a radically novel paradigm
for Dense and Unconstrained Stereo 3D Reconstruction of
arbitrary image collections, operating without prior infor-
mation about camera calibration nor viewpoint poses. We
cast the pairwise reconstruction problem as a regression of
pointmaps, relaxing the hard constraints of usual projective
camera models. We show that this formulation smoothly
unifies the monocular and binocular reconstruction cases.
In the case where more than two images are provided, we fur-
ther propose a simple yet effective global alignment strategy
that expresses all pairwise pointmaps in a common refer-
ence frame. We base our network architecture on standard
Transformer encoders and decoders, allowing us to leverage
powerful pretrained models. Our formulation directly pro-
vides a 3D model of the scene as well as depth information,
but interestingly, we can seamlessly recover from it, pixel
matches, focal lengths, relative and absolute cameras. Exten-

sive experiments on all these tasks showcase how DUSt3R
effectively unifies various 3D vision tasks, setting new perfor-
mance records on monocular & multi-view depth estimation
as well as relative pose estimation. In summary, DUSt3R
makes many geometric 3D vision tasks easy. Code and mod-
els at https://github.com/naver/dust3r.

1. Introduction
Unconstrained dense 3D reconstruction from multiple RGB
images is one long-researched end-goal of computer vi-
sion [21, 58, 72]. In a nutshell, it is the task of estimat-
ing the 3D geometry and camera parameters of a particular
scene, given a set of photographs of this scene. Not only
does it have numerous applications like mapping [12, 59],
navigation [13], archaeology [70, 99], cultural heritage
preservation [37], robotics [63], but perhaps more impor-
tantly, it holds a fundamentally special place among all the
tasks from the 3D vision research field. Indeed, it sub-
sumes nearly all geometric 3D vision tasks, and modern
approaches for 3D reconstruction thus consists in a sequen-
tial succession of many components, such as keypoint de-
tection [23, 26, 53, 77] and matching [9, 51, 81, 92], ro-
bust estimation [3, 9, 137], Structure-from-Motion (SfM)
and Bundle Adjustment (BA) [18, 50, 83], dense Multi-
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View Stereo (MVS) [84, 103, 119, 134], etc. This rather
complex chain is of course a viable solution in some set-
tings [30, 57, 61, 106, 110, 112, 123], yet we argue it is
quite unsatisfactory: each task is not solved perfectly and
adds noise to the next step, increasing the complexity and
the engineering effort required for the pipeline to work as a
whole. The absence of communication between each compo-
nent is also quite telling: it would seem more reasonable if
they helped each other, i.e. dense reconstruction should nat-
urally benefit from the sparse scene that was built to recover
camera poses, and vice-versa. On top of that, key steps in
this pipeline are brittle and prone to break in many cases [50].
For instance, the crucial stage of SfM that serves to estimate
all camera parameters is typically known to fail in many
common situations, e.g. when the number of scene views is
low [85], for objects with non-Lambertian surfaces [14], in
case of insufficient or overly large camera motion [12], etc.

In this paper, we present DUSt3R, a radically novel ap-
proach for Dense Unconstrained Stereo 3D Reconstruction
from un-calibrated and un-posed cameras. The main compo-
nent is a network that can regress a dense and accurate scene
representation solely from a pair of images, without prior
information regarding the scene nor the cameras (not even
the intrinsic parameters). The resulting scene representation
is based on 3D pointmaps with rich properties: they simulta-
neously encapsulate (a) the scene geometry, (b) the relation
between pixels and scene points and (c) the relation between
the two viewpoints. From this output alone, practically all
scene parameters (i.e. cameras and scene geometry) can be
straightforwardly recovered. This is possible because the
network jointly processes the input images and the resulting
3D pointmaps, thus learning to associate 2D patterns with
3D shapes and having the opportunities of solving multi-
ple tasks simultaneously, enabling internal ‘collaboration’
between them.

Our model is trained in a fully-supervised manner using
a simple regression loss, leveraging large public datasets for
which ground-truth annotations are either synthetically gen-
erated [56, 82], reconstructed from SfM softwares [47, 122]
or captured using dedicated sensors [22, 75, 94, 126]. We
drift away from the trend of integrating task-specific modules
[125], and instead adopt a fully data-driven strategy based
on a generic transformer architecture, not enforcing any geo-
metric constraints at inference, but being able to benefit from
powerful pretraining schemes [114]. The network learns
strong geometric and shape priors, which is reminiscent of
those commonly leveraged in MVS, like shape from texture,
shading or contours [87].

To fuse predictions from multiple images pairs, we revisit
bundle adjustment (BA) for the case of pointmaps, hereby
achieving full-scale MVS. We introduce a global alignment
procedure that, contrary to BA, does not involve minimiz-
ing reprojection errors. Instead, we optimize the camera

poses and the scene geometry directly in 3D space, which
is fast and shows excellent convergence in practice. Our
experiments show that the reconstructions are accurate and
consistent between views in real-life scenarios with various
unknown sensors. We further demonstrate that the same
architecture can handle real-life monocular and multi-view
reconstruction scenarios seamlessly. Examples of reconstruc-
tions are shown in Fig. 1 and in the accompanying video.

In summary, our contributions are fourfold. First, we
present the first holistic end-to-end 3D reconstruction
pipeline from un-calibrated and un-posed images, that uni-
fies monocular and binocular 3D reconstruction. Second, we
introduce the pointmap representation for MVS applications,
that enables the network to predict the 3D shape in a canoni-
cal frame, while preserving the implicit relationship between
pixels and the scene. This effectively drops many constraints
of the usual perspective camera formulation. Third, we intro-
duce an optimization procedure to globally align pointmaps
in the context of multi-view 3D reconstruction. Our proce-
dure can extract effortlessly all usual intermediary outputs
of the classical SfM and MVS pipelines. In a sense, our ap-
proach unifies all 3D vision tasks and considerably simplifies
over the traditional reconstruction pipeline, making DUSt3R
seem simple and easy in comparison. Fourth, we demon-
strate promising performance on a range of 3D vision tasks
In particular, our all-in-one model achieves state-of-the-art
results on monocular and multi-view depth benchmarks, as
well as multi-view camera pose estimation.

2. Related Work
For the sake of space, we summarize here the most related
works in 3D vision, and refer the reader to Sec. B of the
supplementary for a more comprehensive review.
Structure-from-Motion (SfM) [18, 19, 40, 42, 83] aims
at reconstructing sparse 3D maps while jointly determin-
ing camera parameters from a set of images. The tradi-
tional pipeline starts from pixel correspondences obtained
from keypoint matching [4, 5, 39, 53, 80] between multiple
images to determine geometric relationships, followed by
bundle adjustment to optimize 3D coordinates and camera
parameters jointly. Recently, the SfM pipeline has under-
gone substantial enhancements, particularly with the incor-
poration of learning-based techniques into its subprocesses.
These improvements encompass advanced feature descrip-
tion [23, 26, 77, 101, 127], more accurate image match-
ing [3, 15, 27, 28, 51, 65, 81, 92, 96, 107], featuremetric
refinement [50], and neural bundle adjustment [49, 116]. De-
spite these advancements, the sequential structure of the SfM
pipeline persists, making it vulnerable to noise and errors in
each individual component.
MultiView Stereo (MVS) is the task of densely reconstruct-
ing visible surfaces, which is achieved via triangulation be-
tween multiple viewpoints. In the classical formulation of
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MVS, all camera parameters are supposed to be provided
as inputs. The fully handcrafted [31, 33, 84, 111, 133], the
more recent scene optimization based [30, 57, 60, 61, 106,
110, 112, 123], or learning based [45, 55, 69, 121, 124, 136]
approaches all depend on camera parameter estimates ob-
tained via complex calibration procedures, either during the
data acquisition [1, 20, 85, 126] or using Structure-from-
Motion approaches [42, 83] for in-the-wild reconstructions.
Yet, in real-life scenarios, the inaccuracy of pre-estimated
camera parameters can be detrimental for these algorithms
to work properly [78]. In this work, we propose instead to
directly predict the geometry of visible surfaces without any
explicit knowledge of the camera parameters.

Direct RGB-to-3D. Recently, some approaches aiming at di-
rectly predicting 3D geometry from one or two RGB images
have been proposed. Since the problem is by nature ill-posed
without introducing additional assumptions, these methods
leverage neural networks that learn strong 3D priors from
large datasets to solve for ambiguities. These methods can
be classified into two groups. The first group leverages class-
level object priors [66–68] or diffusion models to generate
novel views for object-centric reconstruction [52]. A sec-
ond group of works, closest to our method, focuses instead
on general scenes. When starting from a single image, an
extensive usage of monocular depth estimation networks is
made [6, 73, 129, 131]. Depthmaps indeed encode a form
of 3D information and, combined with camera intrinsics,
can straightforwardly yield pixel-aligned 3D point-clouds.
SynSin [115], for example, performs new viewpoint syn-
thesis from a single image by rendering feature-augmented
depthmaps knowing all camera parameters. If unknown,
camera intrinsics can be recovered by exploiting temporal
consistency in video frames [35, 90, 117] or regressed by
a specialized network [128, 130]. All these methods are,
however, intrinsically limited by the quality of depth esti-
mates, which arguably is ill-posed for monocular settings.
To solve this issue, multi-view networks for direct 3D recon-
struction like DeMon and DeepV2D have been proposed in
the past [98, 102, 139]. They are essentially based on the
idea of building a differentiable SfM pipeline, replicating
the traditional pipeline but training it end-to-end. As before,
however, ground-truth camera intrinsics are required as in-
put, and the output is generally a depthmap and a relative
camera pose [102, 139]. In contrast, our network outputs
pointmaps, i.e. dense 2D fields of 3D points, which han-
dle camera poses implicitly without requiring any camera
intrinsic parameters.

Pointmaps. Using a collection of pointmaps as shape rep-
resentation is quite counter-intuitive for MVS, but its usage
is widespread for Visual Localization tasks, either in scene-
dependent optimization approaches [7, 8, 10, 24, 46, 108,
109] or scene-agnostic inference methods [76, 95, 120]. Sim-
ilarly, view-wise modeling is a common theme in monocular

3D reconstruction works [48, 88, 97, 105] and in view syn-
thesis works [115], the idea being to store the canonical 3D
shape in multiple canonical views to work in image space.
These approaches usually leverage explicit perspective cam-
era geometry, via rendering of the canonical representation.

3. Method
Before delving into the details of our method, we introduce
below some essential concepts.
Pointmap. In the following, we denote a dense 2D field
of 3D points as a pointmap X ∈ RW×H×3. In association
with its corresponding RGB image I of resolution W ×H ,
X forms a one-to-one mapping between image pixels and
3D scene points, i.e. Ii,j ↔ Xi,j , for all pixel coordinates
(i, j) ∈ {1 . . .W} × {1 . . . H}. We assume here that each
camera ray hits a single 3D point, i.e. ignoring the case of
translucent surfaces.
Cameras and scene. Given camera intrinsics K ∈ R3×3,
the pointmap X of the observed scene can be straight-
forwardly obtained from the ground-truth depthmap D ∈
RW×H as Xi,j = K−1Di,j [i, j, 1]

⊤. Here, X is expressed
in the camera coordinate frame. In the following, we de-
note as Xn,m the pointmap Xn from camera n expressed in
camera m’s coordinate frame:

Xn,m = PmP−1
n h (Xn) (1)

where Pm, Pn ∈ R3×4 are the world-to-camera poses for
images m and n, and h : (x, y, z) → (x, y, z, 1) is the
homogeneous mapping.

3.1. Overview

We wish to build a network that solves the 3D reconstruction
task for the generalized stereo case through direct regression.
To that aim, we train a network f that takes as input two RGB
images I1, I2 ∈ RW×H×3 and outputs two corresponding
pointmaps X1,1, X2,1 ∈ RW×H×3 with associated confi-
dence maps C1,1, C2,1 ∈ RW×H . Note that both pointmaps
are expressed in the same coordinate frame of I1, which
radically differs from existing approaches but offers key ad-
vantages (see Secs. 1, 2, 3.3 and 3.4). For the sake of clarity
and without loss of generalization, we assume here that both
images have the same resolution of W ×H , but naturally in
practice their resolution can differ.
Network architecture. The architecture of our network f
is inspired by CroCo [114], making it straightforward to
heavily benefit from CroCo pretraining [113]. As shown in
Fig. 2, it is composed of two identical branches (one for each
image) comprising each an image encoder, a decoder and
a regression head. The two input images are first encoded
in a Siamese manner by the same weight-sharing ViT en-
coder [25], yielding two token representations F 1 and F 2:

F 1 = Encoder(I1), F 2 = Encoder(I2).
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Figure 2. Architecture of the network. Two views of a scene (I1, I2) are first encoded in a Siamese manner with a shared ViT encoder.
The resulting token representations F 1 and F 2 are then passed to two transformer decoders that constantly exchange information via
cross-attention. Finally, two regression heads output the two corresponding pointmaps and associated confidence maps. Importantly, the two
pointmaps are expressed in the same coordinate frame of the first image I1. The network is trained using a simple regression loss (Eq. (4))

The network then reasons over both of them jointly in the
decoder. Similarly to CroCo [114], the decoder is a generic
transformer network equipped with cross attention. Each
decoder block thus sequentially performs self-attention (each
token of a view attends to tokens of the same view), then
cross-attention (each token of a view attends to all other
tokens of the other view), and finally feeds tokens to a MLP.
Importantly, information is constantly shared between the
two branches during the decoder pass. This is crucial in
order to output properly aligned pointmaps. Namely, each
decoder block attends to tokens from the other branch:

G1
i = DecoderBlock1

i

(
G1

i−1, G
2
i−1

)
,

G2
i = DecoderBlock2

i

(
G2

i−1, G
1
i−1

)
,

for i = 1, . . . , B for a decoder with B blocks and initial-
ized with encoder tokens G1

0 := F 1 and G2
0 := F 2. Here,

DecoderBlockv
i (G

1, G2) denotes the i-th block in branch
v ∈ {1, 2}, G1 and G2 are the input tokens, with G2 the
tokens from the other branch. Finally, in each branch a sep-
arate regression head takes the set of decoder tokens and
outputs a pointmap and an associated confidence map:

X1,1, C1,1 = Head1
(
G1

0, . . . , G
1
B

)
,

X2,1, C2,1 = Head2
(
G2

0, . . . , G
2
B

)
.

Discussion. The output pointmaps X1,1 and X2,1 are re-
gressed up to an unknown scale factor. It should be noted
that our generic architecture never explicitly enforces any ge-
ometrical constraints. Hence, pointmaps do not necessarily
correspond to any physically plausible camera model (but
they closely fit in practice, see Sec. E in the supplementary).
Rather, we let the network learn all relevant priors present
from the train set, which only contains geometrically con-
sistent pointmaps. Using a generic architecture allows to
leverage strong pretraining technique, ultimately surpassing
what existing task-specific architectures can achieve. We
detail the learning process in the next section.

3.2. Training Objective

3D Regression loss. Our sole training objective is based
on regression in the 3D space. Let us denote the ground-

truth pointmaps as X̄1,1 and X̄2,1, obtained from Eq. (1)
along with two corresponding sets of valid pixels D1,D2 ⊆
{1 . . .W}×{1 . . . H} for which the ground-truth is defined.
The regression loss for a valid pixel i ∈ Dv in view v ∈
{1, 2} is simply defined as the Euclidean distance:

ℓregr(v, i) =

∥∥∥∥1zXv,1
i − 1

z̄
X̄v,1

i

∥∥∥∥ . (2)

To handle the scale ambiguity between prediction and
ground-truth, we normalize the predicted and ground-truth
pointmaps by scaling factors z = norm(X1,1, X2,1) and
z̄ = norm(X̄1,1, X̄2,1), respectively, which simply repre-
sent the average distance of all valid points to the origin:

norm(X1, X2) =
1

|D1|+ |D2|
∑

v∈{1,2}

∑
i∈Dv

∥Xv
i ∥ . (3)

Confidence-aware loss. In reality, and contrary to our as-
sumption, there are ill-defined 3D points, e.g. in the sky or
on translucent objects. More generally, some parts in the
image are typically harder to predict than others. We thus
jointly learn to predict a score for each pixel which repre-
sents the confidence that the network has about this particular
pixel. The final training objective is the confidence-weighted
regression loss from Eq. (2) over all valid pixels:

Lconf =
∑

v∈{1,2}

∑
i∈Dv

Cv,1
i ℓregr(v, i)− α logCv,1

i , (4)

where Cv,1
i is the confidence score for pixel i, and α is a

hyper-parameter controlling the regularization term [17]. To
ensure a strictly positive confidence, we typically define
Cv,1

i = 1 + exp cv,1i ≫ 0, with cv,1i ∈ R. This has the
effect of forcing the network to extrapolate in harder areas,
e.g. those ones covered by a single view. Training network
f with this objective allows to estimate confidence scores
without an explicit supervision. Examples of input image
pairs with their corresponding outputs are shown in Fig. 3
and in the supplementary in Figs. 1, 2 and 5.
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Figure 3. Reconstruction examples on two scenes never seen during training. From left to right: RGB, depth map, confidence map,
reconstruction. The left scene shows the raw result output from f(I1, I2). The right scene shows the outcome of global alignment (Sec. 3.4).

3.3. Downstream Applications

The rich properties of the output pointmaps allows us to
perform various convenient operations with relative ease.
Point matching. Establishing correspondences between pix-
els of two images can be trivially achieved by nearest neigh-
bor (NN) search in the 3D pointmap space. To minimize
errors, we typically retain reciprocal (mutual) correspon-
dences M1,2 between images I1 and I2, i.e. we have:

M1,2 = {(a, b) | a = NN1,2(b) and b = NN2,1(a)}

with NNn,m(a) = argmin
b∈{0,...,WH}

∥∥∥Xn,1
b −Xm,1

a

∥∥∥ .
Recovering intrinsics. By definition, the pointmap X1,1 is
expressed in I1’s coordinate frame. It is therefore possible
to estimate the camera intrinsic parameters by solving a
simple optimization problem. In this work, we assume that
the principal point is approximately centered and pixels are
squares, hence only the focal f∗

1 remains to be estimated:

f∗
1 = argmin

f1

W∑
i=0

H∑
j=0

C1,1
i,j

∥∥∥∥∥(i′, j′)− f1
(X1,1

i,j,0, X
1,1
i,j,1)

X1,1
i,j,2

∥∥∥∥∥ ,
with i′ = i− W

2 and j′ = j − H
2 . Fast iterative solvers, e.g.

based on the Weiszfeld algorithm [71], can find the optimal
f∗
1 in a few iterations. For the focal f∗

2 of the second camera,
the simplest option is to perform the inference for the pair
(I2, I1) and use above formula with X2,2 instead of X1,1.
Relative pose estimation can be achieved in several fashions.
One way is to perform 2D matching and recover intrinsics
as described above, then estimate the Epipolar matrix and
recover the relative pose [40]. Another, more direct way is
to compare the pointmaps X1,1 ↔ X1,2 (or, equivalently,
X2,2 ↔ X1,2) using Procrustes alignment [54] to get the
scaled relative pose P ∗ = σ∗[R∗|t∗]:

P ∗ = argmin
σ,R,t

∑
i

C1,1
i C1,2

i

∥∥∥σ(RX1,1
i + t)−X1,2

i

∥∥∥2 ,
which can be achieved in closed-form. Procrustes alignment
is, unfortunately, sensitive to noise and outliers. A more
robust solution is to rely on RANSAC [29] with PnP [40, 44].
Absolute pose estimation, also termed visual localization,
can likewise be achieved in several different ways. Let IQ

denote the query image and IB the reference image for

which 2D-3D correspondences are available. First, intrinsics
for IQ can be estimated from XQ,Q as explained above.
Then, one possibility is to run PnP-RANSAC [29, 44] from
2D pixel correspondences obtained between IQ and some
IB , which in turn yields 2D-3D correspondences for IQ.
Another solution is to get the relative pose between IQ and
IB as described previously. Then, we convert this pose to
world coordinate by scaling it appropriately, according to the
scale between XB,B and the ground-truth pointmap for IB .

3.4. Global Alignment

The network f presented so far can only handle a pair of
images. We now present a fast and simple post-processing
optimization for larger scenes. It enables the alignment of
pointmaps predicted from multiple images into a joint 3D
space. This is possible thanks to the rich content of our
pointmaps, which encompasses by design two aligned point-
clouds and their corresponding pixel-to-3D mapping.
Pairwise graph. Given a set of images {I1, I2, . . . , IN}
for a given scene, we first construct a connectivity graph
G = (V, E) where N images form vertices V and each edge
e = (n,m) ∈ E indicates that images In and Im share
some visual content. To that aim, we either use existing
off-the-shelf image retrieval methods, or we pass all pairs
through network f (inference takes ≈25ms on a H100 GPU)
to measure their overlap from the average confidence in both
pairs, and then filter out low-confidence pairs.
Global optimization. We use the connectivity graph G
to recover globally aligned pointmaps {χn ∈ RW×H×3}
for all cameras n = 1 . . . N . To that aim, we first pre-
dict, for each image pair e = (n,m) ∈ E , the pair-
wise pointmaps Xn,n, Xm,n and their associated confidence
maps Cn,n, Cm,n. For the sake of clarity, let us define
Xn,e := Xn,n and Xm,e := Xm,n. Since our goal involves
to express all pairwise predictions in a common coordinate
frame, we introduce a pairwise pose Pe ∈ R3×4 and scaling
σe > 0 associated to each pair e ∈ E . We then formulate the
following optimization problem:

χ∗ = argmin
χ,P,σ

∑
e∈E

∑
v∈e

HW∑
i=1

Cv,e
i ∥χv

i − σePeX
v,e
i ∥ . (5)

Here, with some abuse of notation, we write v ∈ e for v ∈
{n,m} if e = (n,m). The idea is that, for a given pair e, the
same rigid transformation Pe should align both pointmaps
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Xn,e and Xm,e with the world-coordinate pointmaps χn and
χm, since Xn,e and Xm,e are by definition both expressed
in the same coordinate frame. To avoid the trivial optimum
where σe = 0, ∀e ∈ E , we enforce that

∏
e σe = 1.

Recovering camera parameters. A straightforward exten-
sion to this framework enables to recover all cameras parame-
ters. By simply replacing χn

i,j := P−1
n h(K−1

n Dn
i,j [i, j, 1]

⊤)
(i.e. enforcing a standard camera pinhole model as in Eq. (1)),
we can thus estimate all camera poses {Pn}, associated in-
trinsics {Kn} and depthmaps {Dn} for n = 1 . . . N . To
accelerate convergence, we initialize all parameters using
pairwise relative pose estimates propagated along a maxi-
mum spanning tree of G, see Sec. G of the supplementary.
Discussion. We point out that, contrary to traditional bundle
adjustment, this global optimization is fast and simple to
perform in practice. Indeed, we are not minimizing 2D
reprojection errors, as bundle adjustment normally does, but
3D projection errors. The optimization is carried out using
standard gradient descent and typically converges after a few
hundred steps, requiring mere seconds on a standard GPU.

4. Experiments with DUSt3R
Training data. We train our network with a mixture
of eight datasets: Habitat [82], MegaDepth [47], ARK-
itScenes [22], Static Scenes 3D [56], Blended MVS [122],
ScanNet++ [126], CO3D-v2 [75] and Waymo [94]. These
datasets feature diverse scene types: indoor, outdoor, land-
marks, synthetic, real-world, object-centric, etc. When im-
age pairs are not directly provided with the dataset, we ex-
tract them based on the method described in [113]. Specifi-
cally, we utilize off-the-shelf image retrieval and point match-
ing algorithms to match and verify image pairs. All in all,
we extract 8.5M pairs in total.
Training details. During each epoch, we randomly sam-
ple an equal number of pairs from each dataset to compen-
sate disparities in dataset sizes. We wish to feed relatively
high-resolution images to our network, say 512 pixels in
the largest dimension. To mitigate the high cost associated
with such input, we train our network sequentially, first on
224×224 images and then on larger 512-pixel images. We
randomly select the image aspect ratios for each batch (e.g.
16/9, 4/3, etc), so that at test time our network is familiar
with different image shapes. We crop images to the desired
aspect-ratio, and resize the largest dimension to 512 pixels.

We use standard data augmentation techniques and train-
ing set-up overall. Our network architecture comprises a ViT-
Large for the encoder [25], a ViT-Base for the decoder, both
with patches of 16×16 pixels, and a DPT head [73]. We refer
to the supplementary in Sec. H for more details on the train-
ing and architecture. Before training, we initialize our net-
work with the weights of an off-the-shelf CroCo pretrained
model [114]. Cross-View completion (CroCo) is a recently
proposed pretraining paradigm inspired by MAE [41] that

has been shown to excel on various downstream 3D vision
tasks [113], and is thus particularly suited to our framework.
Evaluation. In the remainder of this section, we bench-
mark DUSt3R on a representative set of classical 3D vision
tasks, each time specifying datasets, metrics and compar-
ing performance with existing state-of-the-art approaches.
We emphasize that all results are obtained with the same
DUSt3R model (our default model is denoted as ‘DUSt3R
512’, other DUSt3R models serve for the ablations in Sec.
F of the suppl.), i.e. we never finetune our model on a par-
ticular downstream task (zero-shot settings). During test, all
images are rescaled to 512 pixels while preserving their as-
pect ratio. Since there may exist different ‘routes’ to extract
task-specific outputs from DUSt3R, as described in Sec. 3.3
and Sec. 3.4, we precise each time the employed method.
Recovering intrinsics with DUSt3R is possible in monocu-
lar and binocular settings, see Sec. E of the supplementary.
Qualitative results. As shown in Fig. 1, DUSt3R yields
high-quality dense 3D reconstructions even in challenging
situations. It can even reconstruct scenes for which images
share no visual overlap (top-right office example). We refer
the reader to the supplementary in Sec. A for more visual-
izations of pairwise and multi-view reconstructions.

4.1. Map-free Visual Localization

Dataset. We experiment with the Map-free relocalization
benchmark [2], an extremely challenging test-bed were the
goal is to localize the camera in metric space given a single
reference image (i.e. without any map). The benchmark
comprises a training set which we do not use at all, 65 vali-
dation and 130 test scenes. For each scene, the pose of every
frame in a video clip must be independently estimated w.r.t.
a single reference image. The video clip is captured with
a different device at a different moment (possibly months
before or after the reference image), and the ground-truth is
privately held-out, making the benchmark as fair as possible.
Protocol. The evaluation returns absolute camera pose ac-
curacy (localization thresholds of 5◦, 25cm) and Virtual
Correspondence Reprojection Error (VCRE) measured as
the average Euclidean distance of the reprojection errors of
virtual 3D points projected according to ground truth and
estimated camera poses. To evaluate DUSt3R, we first ex-
tract pixel correspondences as described in Section 3.3 of the
main paper, then we estimate the relative camera pose using
RANSAC via the essential matrix using the provided bench-
mark code. To find the metric scale of the scene, we leverage
metric depth from an off-the-shelf DPT-KITTI again us-
ing the provided code, similarly to most other methods like
RoMa [28], LoFTR [92] and SuperPoint-SuperGlue [23, 81].
Results. Comparisons with the state of the art on the pri-
vately held-out test set are reported in Tab. 1. Overall,
DUSt3R outperforms all state-of-the-art approaches, some-
times by a large margin, achieving less than 1 meter of
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VCRE (< 90px) Pose Error (< 25cm and 5◦)
depth Reproj. ↓ Prec. ↑ AUC ↑ Median Error↓ Precision ↑AUC ↑

RPR [2] DPT 147.1 px 40.2% 0.402 1.68m 22.5° 6.0% 0.060
SIFT [53] DPT 222.8 px 25.0% 0.504 2.93m 61.4° 10.3% 0.252
SP+SG [81] DPT 160.3 px 36.1% 0.602 1.88m 25.4° 16.8% 0.346
LoFTR [92] DPT 166.7 px 33.4% 0.618 2.31m 39.4° 9.8% 0.269
LoFTR [92] KBR 165.0 px 34.3% 0.634 2.23m 37.8° 11.0% 0.295
RoMa [28] DPT 128.8 px 45.6% 0.669 1.23m 11.1° 22.8% 0.407
FAR [79] (auto) 137.0 px 44.2% 0.680 1.48m 17.2° 17.7% 0.392

DUSt3R DPT 115.8 px 50.3% 0.697 0.98m 7.1° 21.4% 0.393

Table 1. Comparison with the state of the art on the test set of the
Map-free benchmark [2]. Methods are ranked by VCRE AUC.

median translation error, whereas other approaches usually
achieve between 1.5 and 2.5 meters in median translation
error. In terms of reprojection error, DUSt3R achieves more
than 50% precision at 90 pixel threshold and almost 70% in
AUC, which is again far better than most other approaches,
including RoMa [28] which relies on the powerful DINOv2
pretraining [62]. It thus appears that correspondences output
by DUSt3R are more robust than ones byexisting matching
methods, even though these methods are explicitly designed
and trained for matching, whereas DUSt3R is not. Indeed,
we point out that pixel correspondences are only one of many
by-products of our proposed reconstruction framework.

4.2. Multi-view Pose Estimation

We evaluate DUSt3R for the task of multi-view relative pose
estimation, with and without global alignment (Sec. 3.4).
Datasets. Following [104], we use two multi-view datasets,
CO3Dv2 [75] and RealEstate10k [140] for the evaluation.
CO3Dv2 contains 6 million frames extracted from approxi-
mately 37k videos, covering 51 MS-COCO categories. The
ground-truth camera poses are annotated using COLMAP
from 200 frames in each video. RealEstate10k is an in-
door/outdoor dataset with 10 million frames from about 80K
video clips on YouTube, the camera poses being obtained
by SLAM with bundle adjustment. We follow the protocol
introduced in [104] to evaluate DUSt3R on 41 categories
from CO3Dv2 and 1.8K video clips from the test set of
RealEstate10k. For each sequence, we random select 10
frames and feed all possible 45 pairs to DUSt3R.
Baselines and metrics. We compare DUSt3R pose es-
timation results, obtained either from PnP-RANSAC or
global alignment, against the learning-based RelPose [135],
PoseReg [104] and PoseDiffusion [104], and structure-based
PixSFM [50], COLMAP+SPSG (COLMAP [84] extended
with SuperPoint [23] and SuperGlue [81]). Similar to [104],
we report the Relative Rotation Accuracy (RRA) and Rel-
ative Translation Accuracy (RTA) for each image pair to
evaluate the relative pose error and select a threshold τ = 15
to report RTA@15 and RRA@15. Additionally, we calcu-
late the mean Average Accuracy (mAA)@30, defined as the
area under the curve accuracy of the angular differences at
min(RRA@30,RTA@30).

Results. As shown in Table 2, DUSt3R with global align-
ment (GA) achieves the best overall performance on the
two datasets and significantly outperforms the state-of-the-
art PoseDiffusion [104]. Moreover, DUSt3R with PnP also
demonstrates superior performance over both learning and
structure-based existing methods. It is worth noting that
RealEstate10K results reported for PoseDiffusion are from
the model trained on CO3Dv2. Nevertheless, we assert that
our comparison is justified considering that RealEstate10K
is not used either during DUSt3R’s training. We also report
performance with less input views (between 3 and 10) in the
supplementary (Sec. C), in which case DUSt3R also yields
excellent performance on both benchmarks.

4.3. Monocular Depth

For this monocular task, we simply feed the same input im-
age I to the network as f(I, I). By design, depth prediction
is simply the z coordinate in the predicted 3D pointmap.
Datasets and metrics. We benchmark DUSt3R on
two outdoor (DDAD [38], KITTI [34]) and three indoor
(NYUv2 [89], BONN [64], TUM [91]) datasets. We com-
pare DUSt3R ’s performance to state-of-the-art methods
categorized in supervised, self-supervised and zero-shot set-
tings, this last category corresponding to DUSt3R. We use
two metrics commonly used for monocular depth evalua-
tions [6, 90]: the absolute relative error AbsRel between
target y and prediction ŷ, AbsRel = |y − ŷ|/y, and the pre-
diction threshold accuracy, δ1.25 = max(ŷ/y, y/ŷ) < 1.25.
Results. In zero-shot setting, the state of the art is rep-
resented by the recent SlowTv [90]. This approach col-
lected a large mixture of curated datasets with urban, natu-
ral, synthetic and indoor scenes, and trained one common
model. For every dataset in the mixture, camera parameters
are known or estimated with COLMAP. As Table 2 shows,
DUSt3R adapts well to outdoor and indoor environments.
It outperforms the self-supervised baselines [6, 36, 93] and
performs on-par with SoTA supervised baselines [73, 132].

4.4. Multi-view Depth

We evaluate DUSt3R for the task of multi-view stereo
depth estimation. Likewise, we extract depthmaps as the
z-coordinate of predicted pointmaps. In the case where mul-
tiple depthmaps are available for the same image, we rescale
all predictions to align them together and aggregate all pre-
dictions via a simple averaging weighted by the confidence.
Datasets and metrics. Following [86], we evaluate it on
the DTU [1], ETH3D [85], Tanks and Temples [43], and
ScanNet [20] datasets. We report the Absolute Relative
Error (rel) and Inlier Ratio (τ) with a threshold of 1.03 on
each test set, and the averages across all test sets. Note that
we do not leverage the ground-truth camera parameters and
poses nor the ground-truth depth ranges, so our predictions
are only valid up to a scale factor. In order to perform
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Outdoor Indoor
Methods Train DDAD[38] KITTI [34] BONN [64] NYUD-v2 [89] TUM [91]

Rel↓ δ1.25 ↑ Rel↓ δ1.25 ↑ Rel↓ δ1.25 ↑ Rel↓ δ1.25 ↑ Rel ↓ δ1.25 ↑
DPT-BEiT[73] D 10.70 84.63 9.45 89.27 - - 5.40 96.54 10.45 89.68
NeWCRFs[132] D 9.59 82.92 5.43 91.54 - - 6.22 95.58 14.63 82.95
Monodepth2 [36] SS 23.91 75.22 11.42 86.90 56.49 35.18 16.19 74.50 31.20 47.42
SC-SfM-Learners [6] SS 16.92 77.28 11.83 86.61 21.11 71.40 13.79 79.57 22.29 64.30
SC-DepthV3 [93] SS 14.20 81.27 11.79 86.39 12.58 88.92 12.34 84.80 16.28 79.67
MonoViT[138] SS - - 09.92 90.01 - - - - -
RobustMIX [74] T - - 18.25 76.95 - - 11.77 90.45 15.65 86.59
SlowTv [90] T 12.63 79.34 (6.84) (56.17) - - 11.59 87.23 15.02 80.86
DUSt3R 224-NoCroCo T 19.63 70.03 20.10 71.21 14.44 86.00 14.51 81.06 22.14 66.26
DUSt3R 224 T 16.32 77.58 16.97 77.89 11.05 89.95 10.28 88.92 17.61 75.44
DUSt3R 512 T 13.88 81.17 10.74 86.60 8.08 93.56 6.50 94.09 14.17 79.89

Methods
Co3Dv2 RealEstate10K

RRA@15 RTA@15 mAA(30) mAA(30)

RelPose [135] 57.1 - - -
Colmap+SPSG [23, 81] 36.1 27.3 25.3 45.2
PixSfM [50] 33.7 32.9 30.1 49.4
PosReg [104] 53.2 49.1 45.0 -
PoseDiffusion [104] 80.5 79.8 66.5 48.0

DUSt3R 512 (w/ PnP) 94.3 88.4 77.2 61.2
DUSt3R 512 (w/ GA) 96.2 86.8 76.7 67.7

Table 2. Left: Monocular depth estimation on multiple benchmarks. D-Supervised, SS-Self-supervised, T-transfer (zero-shot). (Parentheses)
refers to training on the same set. Right: Multi-view pose regression on the CO3Dv2 [75] and RealEst10K [140] with 10 random frames.

Methods
GT GT GT Align KITTI ScanNet ETH3D DTU T&T Average

Pose Range Intrinsics rel ↓ τ ↑ rel ↓ τ ↑ rel ↓ τ ↑ rel ↓ τ ↑ rel↓ τ ↑ rel↓ τ ↑ time (s)↓

(a)
COLMAP [83, 84] ✓ × ✓ × 12.0 58.2 14.6 34.2 16.4 55.1 0.7 96.5 2.7 95.0 9.3 67.8 ≈ 200

COLMAP Dense [83, 84] ✓ × ✓ × 26.9 52.7 38.0 22.5 89.8 23.2 20.8 69.3 25.7 76.4 40.2 48.8 ≈ 200

(b)
MVSNet [121] ✓ ✓ ✓ × 22.7 36.1 24.6 20.4 35.4 31.4 (1.8) (86.0) 8.3 73.0 18.6 49.4 0.07
MVSNet Inv. Depth [121] ✓ ✓ ✓ × 18.6 30.7 22.7 20.9 21.6 35.6 (1.8) (86.7) 6.5 74.6 14.2 49.7 0.32
Vis-MVSSNet [134] ✓ ✓ ✓ × 9.5 55.4 8.9 33.5 10.8 43.3 (1.8) (87.4) 4.1 87.2 7.0 61.4 0.70

(c)

DeMon [102] ✓ × ✓ × 16.7 13.4 75.0 0.0 19.0 16.2 23.7 11.5 17.6 18.3 30.4 11.9 0.08
DeepV2D KITTI [98] ✓ × ✓ × (20.4) (16.3) 25.8 8.1 30.1 9.4 24.6 8.2 38.5 9.6 27.9 10.3 1.43
DeepV2D ScanNet [98] ✓ × ✓ × 61.9 5.2 (3.8) (60.2) 18.7 28.7 9.2 27.4 33.5 38.0 25.4 31.9 2.15
MVSNet [121] ✓ × ✓ × 14.0 35.8 1568.0 5.7 507.7 8.3 (4429.1) (0.1) 118.2 50.7 1327.4 20.1 0.15
MVSNet Inv. Depth [121] ✓ × ✓ × 29.6 8.1 65.2 28.5 60.3 5.8 (28.7) (48.9) 51.4 14.6 47.0 21.2 0.28
Vis-MVSNet [134] ✓ × ✓ × 10.3 54.4 84.9 15.6 51.5 17.4 (374.2) (1.7) 21.1 65.6 108.4 31.0 0.82
Robust MVD Baseline [86] ✓ × ✓ × 7.1 41.9 7.4 38.4 9.0 42.6 2.7 82.0 5.0 75.1 6.3 56.0 0.06

(d)

DeMoN [102] × × ✓ ∥t∥ 15.5 15.2 12.0 21.0 17.4 15.4 21.8 16.6 13.0 23.2 16.0 18.3 0.08
DeepV2D KITTI [98] × × ✓ med (3.1) (74.9) 23.7 11.1 27.1 10.1 24.8 8.1 34.1 9.1 22.6 22.7 2.07
DeepV2D ScanNet [98] × × ✓ med 10.0 36.2 (4.4) (54.8) 11.8 29.3 7.7 33.0 8.9 46.4 8.6 39.9 3.57
DUSt3R 224-NoCroCo × × × med 15.14 21.16 7.54 40.00 9.51 40.07 3.56 62.83 11.12 37.90 9.37 40.39 0.05
DUSt3R 224 × × × med 15.39 26.69 (5.86) (50.84) 4.71 61.74 2.76 77.32 5.54 56.38 6.85 54.59 0.05
DUSt3R 512 × × × med 9.11 39.49 (4.93) (60.20) 2.91 76.91 3.52 69.33 3.17 76.68 4.73 64.52 0.13

Methods GT cams Acc.↓ Comp.↓ Overall↓

(a)

Camp [11] ✓ 0.835 0.554 0.695
Furu [32] ✓ 0.613 0.941 0.777
Tola [100] ✓ 0.342 1.190 0.766
Gipuma [33] ✓ 0.283 0.873 0.578

(b)

MVSNet [121] ✓ 0.396 0.527 0.462
CVP-MVSNet [119] ✓ 0.296 0.406 0.351
UCS-Net [16] ✓ 0.338 0.349 0.344
CER-MVS [55] ✓ 0.359 0.305 0.332
CIDER [118] ✓ 0.417 0.437 0.427
PatchmatchNet [103] ✓ 0.427 0.277 0.352
GeoMVSNet [136] ✓ 0.331 0.259 0.295

DUSt3R 512 × 2.677 0.805 1.741

Table 3. Left: Multi-view depth evaluation with different settings: a) Classical approaches; b) with poses and depth range, without
alignment; c) absolute scale evaluation with poses, without depth range and alignment; d) without poses and depth range, but with alignment.
(Parentheses) denote training on data from the same domain. The best results for each setting are in bold. Right: MVS results on the DTU
dataset, in mm. Traditional handcrafted methods (a) have been overcome by learning-based approaches (b) that train on this specific domain.

quantitative measurements, we thus normalize predictions
using the medians of the predicted depths and the ground-
truth ones, as advocated in [86].
Results. We observe in Tab. 3 (left) that DUSt3R achieves
state-of-the-art accuracy on ETH-3D and outperforms most
recent state-of-the-art methods overall, even those using
ground-truth camera poses. Time-wise, our approach is also
much faster than the traditional COLMAP pipeline [83, 84].
This showcases the applicability of our method on a large
variety of domains, either indoors, outdoors, small scale or
large scale scenes, while not having been trained on the test
domains, except for the ScanNet test set, since the train split
is part of our Habitat dataset. We additionally provide the
comparison with other baselines in Tab. 7 of supplementary.

4.5. 3D Reconstruction

Finally, we measure the quality of our full reconstructions
obtained after the global alignment procedure described
in Sec. 3.4. We again emphasize that our method is the first
one to enable global unconstrained MVS, in the sense that we
have no prior knowledge regarding the camera parameters.
In order to quantify the quality of our reconstructions, we
simply align the predictions to the ground-truth coordinate
system. This is done by fixing the parameters as constants
in Eq. (5). This leads to consistent 3D reconstructions ex-
pressed in the coordinate system of the ground-truth.
Datasets and metrics. We evaluate our predictions on the

DTU [1] dataset. We apply our network in a zero-shot setting,
i.e. we do not finetune on the DTU train set and apply our
model as is. In Tab. 3 (right) we report the averaged accuracy,
averaged completeness and overall averaged error metrics as
provided by the authors of the benchmarks. The accuracy for
a point of the reconstructed shape is defined as the smallest
Euclidean distance to the ground-truth, and the completeness
of a point of the ground-truth as the smallest Euclidean
distance to the reconstructed shape. The overall is simply
the mean of both previous metrics.
Results. Our method does not reach the accuracy levels of
the best methods. In our defense, these methods all lever-
age GT poses and train specifically on the DTU train set
whenever applicable. Furthermore, best results on this task
are usually obtained via sub-pixel accurate triangulation, re-
quiring the use of explicit camera parameters, whereas our
approach relies on regression, which is known to be less ac-
curate. Yet, without prior knowledge about the cameras, we
reach an average accuracy of 2.7mm, with a completeness
of 0.8mm, for an overall average distance of 1.7mm. We
believe this level of accuracy to be of great use in practice,
considering the plug-and-play nature of our approach.

5. Conclusion
We presented a novel paradigm to solve not only 3D recon-
struction in-the-wild without prior information about scene
nor cameras, but a whole variety of 3D vision tasks as well.
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