
Supplementary Material:
Probing the 3D Awareness of Visual Foundation Models

Mohamed El Banani1 Amit Raj2 Kevis-Kokitsi Maninis2 Abhishek Kar2 Yuanzhen Li2

Michael Rubinstein2 Deqing Sun2 Leonidas Guibas2 Justin Johnson1 Varun Jampani 2∗

1 University of Michigan 2 Google Research

A. Additional Experimental Details
We provide a high-level summary of the experimental setup
in the main body of the paper and omitted details to enhance
readability. In this section, we provide a more extensive
coverage of our experimental setup, as well as explain the
rationale behind some of our design choices. We will also re-
lease the code at https://github.com/mbanani/probe3d
to allow others to replicate and expand on our analysis.

A.1. Visual Foundation Models

Our experiments consider 26 checkpoints that span ten learn-
ing objectives that cover five different forms of supervision.
The models were chosen with two criteria in mind: (1) cov-
erage of the main approaches used for large-scale training
and (2) comparable model and training scale to allow com-
parisons. We only use publicly-available checkpoints to
understand the 3D awareness of the models that are com-
monly used. Although we tried to find comparable models,
we note that these models were trained on different data sets
using different recipes, which confounds our findings, as
discussed in App. C.

We discuss all the models we used, explain their learning
objective, and specify the checkpoints we used. While many
of our comparisons focused on the models listed in Table
1, we used all checkpoints to calculate the correlations pre-
sented in Figure 8. We also discuss some of the additional
trends that we observed in App. B.

MAE. He et al. [13] showed that training vision transform-
ers to reconstruct images based on randomly masked inputs
is an effective pretraining task. Such models are trained
with a large masking ratio; e.g., 75% of the input image
patches are masked. In our experiments, we use the ViT-
B/16 and ViT-L/16 models trained on ImageNet-1k. We use
the checkpoint1 available on the Transformers library [41].

FCMAE. Fully-convolutional masked autoencoders (FC-
MAE) are similarly trained to reconstruct images. However,

* Current affiliation is Stability AI.
1https://huggingface.co/facebook/vit-mae-base

unlike MAE, they use a ConvNeXt backbone instead of vi-
sual transformers. Woo et al. [42] extended the previous
work to convolutional architectures and proposed several
architectural changes to further improve performance. In
our experiments, we use the ConvNeXtv2 base architecture,
which has a model capability comparable to the base visual
transformer architectures. Following the analysis of Gold-
blum et al. [12], we use the model pre-trained on ImageNet-
22k to allow a more comparable training data to other models.
We use the checkpoints available in the timm library [40]. 2

DINO. Caron et al. [5] proposed a self-distillation approach
for model pretraining. The proposed approach trains a stu-
dent network to generate features similar to a teacher net-
work, where the teacher is an exponential moving average
of the student network. At its core, this approach relies on
instance discrimination as the model is trained to learn to
generate similar embeddings for different crops of the same
image instance. In our work, we evaluate the ViT-B/16 ar-
chitecture trained on ImageNet-1k. We use the checkpoint
released by the authors.3

iBOT. Zhou et al. [50] combine ideas from DINO and MAE
by training a model to reconstruct masked dense features
based on a teacher network. iBOT uses both an image-
level and a dense distillation objective. We analyze the
ViT-B/16 and ViT-L/16 architectures trained on ImageNet-
1k and ImageNet-22k. We evaluate the checkpoints released
by the authors.4

DINOv2. Oquab et al. [26] scale up the hybrid approach
proposed by Zhou et al. [50] while improving the training
recipe and incorporating improved losses and regularizers.
Furthermore, the training data and recipe are both scaled up
in magnitude, resulting in much better performance. This in-
cludes the collection of a large curated private dataset called
LVD-142M which is curated through the use of the clustered

2https://huggingface.co/timm/convnextv2 base.fcmae ft
in22k in1k 384

3https://github.com/facebookresearch/dino
4https://github.com/bytedance/ibot
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features a pre-trained self-supervised model using several
downstream datasets, including NYUv2 [35]. Although DI-
NOv2 was trained on ImageNet-22k, those weights are not
publicly available. We discuss the impact of these curated
datasets in App. C. We also consider DINOv2 + reg which
incorporates register tokens [7], however, we find that it re-
sults in slightly worse performance than the classic DINOv2
model. We evaluate the ViT-B/14 and ViT-L/14 models for
DINOv2 and the ViT-B/14 DINOv2 model with registers.
We use the checkpoints released by the authors.5

DeiT III. Touvron et al. [38] propose an updated training
recipe for supervised vision transformers that incorporates
recent best practices of self-supervised learning. The re-
sult is a much stronger supervised transformer compared
to previous training recipes. We evaluate the ViT-B/16 and
ViT-L/16 architectures trained on ImageNet-22k. We use the
checkpoint released by the authors.6

CLIP. Vision and language models are trained to generate
aligned feature embeddings using a contrastive objective.
The original CLIP family of models was proposed by Rad-
ford et al. [29] and included a wide variety of architectures
in a private dataset of 400M image-text pairs called WIT.
More recently, Ilharco et al. [14] trained several CLIP mod-
els using several architectures trained on publicly available
datasets. We consider five CLIP checkpoints. First, we
evaluated the ViT-B/16 and ViT-L/14 checkpoints released
by OpenAI. Second, we evaluate the ViT-B/16 checkpoint
released by OpenCLIP [14] that was trained on LAION [34].
7 Finally, we consider two ConvNeXt-base [22] checkpoints
trained with and without additional augmentations [36] that
were also released by OpenCLIP. We use these models to
try and shed some insight on why the CLIP trained model
performs poorly relative to the other models.

SigLIP. SigLIP [46] also learns from images and cap-
tions, but instead replaces the contrastive objective with
an instance-wise sigmoid loss. The sigmoid loss does not
require the computation of all pairs across the batch, as it
only relies on the image and text embedding. This simplifies
the objective while enabling further scaling up of the batch
size for training. The publicly available checkpoints were
trained on WebLI; a private dataset. We use the checkpoint
available through OpenCLIP [14].7

StableDiffusion. StableDiffusion [32] is trained using
text-conditioned image generation using a denoising ob-
jective. This family of models has achieved remarkable
generation performance. In our experiments, we use the
text-conditioned checkpoint of StableDiffusion v2-1.8 Fol-
lowing previous work [44, 48, 49], we extract features from

5https://github.com/facebookresearch/dinov2
6https://github.com/facebookresearch/deit
7https://github.com/mlfoundations/open clip
8https://huggingface.co/stabilityai/stable-diffusion-2-1

the decoding blocks of the UNet. However, we deviate from
previous work in two ways. First, some prior work [37, 47]
computes features the image with different sampled noise
and then averages them. While this form of ensembling is
unique to diffusion-based models, it is possible to compute
features based on image crops and similarly average them.
To enable fair comparison, we simply computed features
once for each image and instead experimented with different
noise levels, and we observed that low noise levels appear to
work best. In our experiments, we set the noise level to t=1.
Second, previous work often computes features using both
the image and some auxiliary information; e.g., VPD [49]
uses the image class to generate prompts for feature extrac-
tion. Such auxiliary information is not used by other models,
nor is it available in many settings. Instead, we use an empty
vector as a prompt similar to Zhan et al. [47].

MiDaS. MiDaS is a family of models trained on a collection
of monocular depth datasets using a scale-invariant depth
estimation objective [30]. In this work, we consider Mi-
DaS 3.0 [31] DPT Large which trains a dense prediction
transformer (DPT) head on top of the features extracted
from a ViT-L/16. While newer iterations of MiDaS 3.1 and
ZoeDepth [4] include base-size transformers, we cannot
use them due to their reliance on relative positional biases.
Specifically, most ViTs rely on absolute learned or heuris-
tic positional encoding, which can be easily interpolated
to handle variable image sizes with minimal performance
deterioration. However, we find that interpolating relative
positional biases severely deteriorates performance. As a
result, we instead use MiDaS 3.0 which used absolute posi-
tional embeddings. We note that the use of a larger backbone
likely exaggerates the performance of MiDaS in our analysis.
We use the checkpoint released by the authors.9

SAM. Kirillov et al. [16] recently proposed interactive class-
agnostic segmentation as a training objective to allow gen-
eralizable open-world segmentation. The model is trained
on a novel 10M image dataset with 1 billion masks [16].
Although the SAM architecture uses a mask decoder and
a prompt encoder, the features are computed by a visual
transformer backbone. We use the ViT-B/16 and ViT-L/16
backbones from the SAM base and large models. We use
the checkpoint released by the authors.10

A.2. Evaluation Datasets

NAVI. NAVI is a dataset of objects annotated with high-
quality 3D information that was proposed by Jampani et al.
[15]. The dataset depicts a set of 36 objects in a wide range
of poses and environments. High-quality object meshes
are aligned to each image, which provides accurate depth
and pose annotation. We extend the dataset by generating

9https://github.com/isl-org/MiDaS
10https://github.com/facebookresearch/segment-anything
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surface normal annotations for each image. The dataset is
organized into multiview image collections which include a
larger number of multiview images of the object in the same
pose and scene, as well as a wild set that depicts the object
in different poses and environments. We use the full dataset
and use multiview images for training and validation, and
the wild set for testing. Furthermore, we exclude 2 objects
from the dataset as they do not have multiview and wild-set
images. For correspondence estimation, we only use the
wild set images and for each image, we sample a pair that
has a relative rotation between 0 and 120 degrees.

NYU v2. The NYU Depth v2 dataset is a dataset of indoor
scenes proposed by Silberman et al. [35]. The dataset con-
sists of RGB-D video collected using a Microsoft Kinect
camera and includes dense annotation for both depth and
semantic segmentation. Furthermore, Ladickỳ et al. [17] pro-
vided surface normal annotations for the labeled set of 1449
images. We use the original train/test split for surface normal
estimation. For depth estimation, we also included unlabeled
instances, providing us with a total of 24231 images for
training.

ScanNet Pairs. ScanNet [6] is a large dataset of RGB-D
videos depicting indoor scenes. Sarlin et al. [33] extracted a
small subset of 1500 image pairs as a benchmark for corre-
spondence estimation. Since our correspondence estimation
experiments do not require training, we use all pairs as a test
set.

SPair 71k. SPair-71k [24] is a dataset of image pairs
that were extracted from the PASCAL datasets [10, 43]. The
image pairs capture a set of 18 categories and depict different
object instances of the same class. Furthermore, 8 of the
categories depict non-rigid objects; e.g., cats, cows, humans.
All images are annotated with class-specific keypoints, and
image pairs are further annotated with amount of viewpoint
variation as judged by the human annotator. We follow
the experimental setup of Zhang et al. [48] of sampling an
equal number of image pairs for each class, but instead use a
larger number of 200 image pairs per class. We extend this
setup by separating the sampled pairs based on the annotated
viewpoint variation, which is a subjective measure of how
much the viewpoint changed between the two instances and
is annotated with 0, 1, or 2.

A.3. Evaluation Tasks

We evaluate all models on four tasks: monocular depth esti-
mation, surface normal estimation, semantic correspodnence
estimation, and geometric correspondence estimation. We
chose those tasks because they evaluate the model along the
two dimensions of 3D awareness we are interested in: single-
image 3D understanding and multiview consistency. While
we train the models for depth and surface normal estimation,
we directly evaluate the features for correspondence. We

note that while we use the same setup for evaluating cor-
respondence for NAVI and NYU, SPair follows a different
setup due to the existence of keypoints, which we describe
separately. We describe each of the tasks and their evaluation
procedure below.

A.3.1 Monocular Depth

Task Definition: Given an image, estimate a depth value
for each pixel in the image. This problem is ill-posed be-
cause it suffers from scale ambiguity; i.e., a larger object
that is further away will produce the same image as a smaller
object that is closer to the camera. Although the regularity of
our environment still allows objects to learn accurate metric
depth for specific image collections, such models struggle
to generalize to other image collections as different camera
intrinsics or image augmentations can introduce effects sim-
ilar to scale ambiguity [45]. An alternative approach is to
predict depth up to scale and then scaling it appropriately.

We use metric depth estimation for NYU due to the regu-
larity of the data and to enable direct comparison to previous
work. However, we observe that scale-invariant is more ap-
propriate for NAVI due to the larger variance in cameras as
well as a relatively small depth variation in the object surface
relative to how far the object is. As a result, we scale the
depth for NAVI objects between 0 and 1 for a scale-invariant
depth estimation task where 0 means the closest pixel to the
camera and 1 means the furthest point on the object from the
camera. This variation still enables models to learn accurate
depth, as shown in the main paper, and allows us to use
standard depth evaluation metrics.

We use the AdaBins [3] parameterization of depth esti-
mation due to its relatively strong performance. Rather than
regressing the depth values, Bhat et al. [3] proposes dividing
the depth range into several bins and estimating the proba-
bility of each. The final depth value is the weighted sum of
the bin probabilities and the bin center values. Similar to
Oquab et al. [26], we use 256 uniformly distributed bins and
only estimate the bin probabilities. We use a depth range of
0-10m for NYU and 0-1 for NAVI.

Losses: We use a combination of the scale-invariant sig-
moid depth loss [8] and the gradient matching loss [19]
similar to Oquab et al. [26].

Evaluation Metrics: We follow the evaluation setup of
Eigen et al. [8] and compute the root mean square error and
the prediction accuracy at different thresholds. The accuracy,
δi, is computed as the number of pixels whose ratio of depth
prediction to ground-truth is less than 1.25i:

δi(d
pr, dgt) =

1

N

∑
j∈N

max(
dprj

dgtj
,
dgtj
dprj

) < 1.25i (1)

where dpr is predicted depth and dgt is ground-truth depth.
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Probe: We use a non-linear multiscale convolutional probe
inspired by the DPT decoder [31]. The probe takes as input
multiscale features that are extracted from several stages in
the network. Prior work has shown that vision transformer
features focus on different objects at different layers [1, 48]
and that the granularity is not consistent between models [39,
47]. Instead of using a probe at a single layer, we train a
multistage probe on features extracted from several layers.
ConvNeXt architectures often group their layers into four
stages. We follow this delineation and extract features after
every stage. For ViTs, we split the layers into 4 equally sized
blocks and extract features after each block; e.g., for ViT-B,
this is after layers 3, 6, 9, and 12. For StableDiffusion, the
decoding portion of the UNet consists similarly of 4 blocks.
We extract the features after each of these blocks. Since
prior work has found that the earliest-stage features are often
not useful, we only train the model on the latter three stages.
This is flipped for StableDiffusion (earlier three stages) as
we are sampling from the decoding part of the UNet.

Optimization: We train models for 10 epochs with a linear
warm-up of the learning rate for 1.5 epochs and cosine decay
to 0. We use the AdamW optimizer [21] with a linear rate of
0.001 and a weight decay of 0.01.

A.3.2 Surface Normals

Task Definition: Given an image, our goal is to estimate
the direction of the surface at every pixel. The direction is
predicted as a unit norm that is orthogonal to the surface at
the point.

Training Loss: The cosine distance is a commonly used
loss due to its relative simplicity. However, Bae et al. [2]
observe that the model can be severely penalized by areas
that are ambiguous. As a result, they propose predicting a
fourth value that captures uncertainty and calibrating the loss
using that value. The loss uses the estimated uncertainty of
the weight loss at each pixel, while encouraging the model
to minimize its uncertainty. We use the loss formulation
proposed by Bae et al. [2] in our experiments.

Evaluation Metrics: For each pixel, we compute the error
as the relative angle between the predicted and ground-truth
surface normals in degrees. Similar to depth estimation, we
compute the RMSE for each image as well as the accuracy
at different thresholds. However, instead of using the ratio as
done in depth, we simply compute the accuracy at different
angular thresholds (11.25◦, 22.5◦, 30◦) similar to previous
work [2, 11, 27].

Probe: We use the same probe as depth estimation with
the main difference of the final layer output dimensionality
being 4 instead of 256. The four values correspond to the
x-, y-, and z-components of the surface normal direction

the uncertainty value used in the loss computation. We
normalize the 3 directional components to a unit normal.

Optimization: The optimization procedure is identical to
that used for depth estimation.

A.3.3 Geometric Correspondence

Task Definition: Given two images that depict the same
object or scene from different viewpoints, the goal is to
identify pairs of pixels in images that depict the same 3D
point in space. We consider two settings: object-centric and
scene-centric. For the scene-centric evaluation, we allow
correspondences to be computed for all pixels across the
images. However, for object-centric evaluation, we only
consider pixels that lie on the object mask.

Inference Procedure: Given two images, we first extract a
feature map for each image. We then estimate the correspon-
dence using the nearest neighbors in the feature space. This
provides us with the correspondence for each pixel, many of
which will be inaccurate. We filter the correspondences us-
ing Lowe’s ratio test [23] which aims to find unique matches
by discounting points that have more than one strong cor-
respondence. For each point p, we find its first and second
nearest neighbors: q0 and q1. We then compute the ratio r
as follows:

r = 1− D(p, q0)

D(p, q1)
(2)

where D(x, y) is the cosine distance between x and y. We
rank the correspondences using the ratio test and keep the
top 1000 correspondences.

Evaluation: Correspondences are evaluated based on either
2D projection error or 3D metric error. Given an estimated
correspondence between pixel locations p in image 1 and
q in image 2, the 2D projection distance is computed by
first projecting the point p into the 3D space using known
depth and intrinsics and then projecting it into image 2 using
known intrinsics of the camera and the relative viewpoint
between the two images. This allows us to find the actual
location of the point p when projected in image 2: p′. The
2D correspondence error can be computed as the distance
between p′ and q in the image plane. This works very well
for scenes, but can be problematic for objects where points
that are not invisible can still be projected into the image
plane. While it is possible to omit surface points that are not
visible, the approach ignores a lot of points on thin structures;
e.g., points on a wire. Instead, we can simply compute the
3D correspondence error by focusing both points p and q in
a shared 3D space and computing the distance between them.
We use the 2D projection error for scenes and the 3D error
for objects.
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We evaluate performance using correspondene recall; i.e.,
the percentage of correspondences whose error is below a
specific threshold. Since we are interested in the consistency
of representation, we split the image pairs based on the
viewpoint change between them where θji means the error
for image pairs whose relative viewpoint angle is between
i and j degrees. One thing to note is that while two views
with a relative angle of 180◦ depict the opposite side of the
object with no mutually visible surfaces, a room viewed
from the opposite corner has a relative viewpoint change
of 180◦ with a large portion of the images being mutually
visible. Hence, while increasing relative viewpoints imply
increasing difficult, the numbers are not directly comparable,
as one is viewing the scene from inside of it, but viewing the
object from its outside.

A.3.4 Semantic Correspondence

Task Definition: Given two images and a set of semantic
keypoints in image one, the goal is to find the location of
the pixel belonging to those key points in the second image.
Key points are often semantic parts; e.g., a cat’s left ear or
the front right wheel of the car. Unlike the previous task
where one has to find a set of points in both images that
match each other, the set of points in the first image are
already specified. Furthermore, while the previous task is
matching points belonging to the same scene or the same
object instance, semantic keypoints are defined at the class
level so the images often depict two different instance; e.g.,
two different cats or two different cars.

Inference Procedure: We follow previous work [37, 48]
and simply use nearest neighbors. There is no need for
filtering, as the goal is to just find the point in the second
image that is most similar to the keypoint.

Evaluation Metrics: The evaluation is often based on
the percentage of keypoints within a pixel threshold; i.e.,
the percentage of predicted keypoints within N pixels of
the ground-truth match. The evaluation is based on the as-
sumption that each keypoint has a single valid match in the
second image. This results in each evaluation only consid-
ering the predicted keypoint and its ground-truth location,
and ignoring everything else. We evaluate all models using
this procedure in App. B, but we also consider an alternative
evaluation as discussed in the main paper.

An alternative way to evaluate the prediction is to com-
pare to all keypoints in that image. Instead of asking how
close the prediction is to the ground truth for the same key-
point type, we can ask which ground-truth keypoint is clos-
est to the prediction. This allows us to understand which
keypoints are getting confused with each other, rather than
how many keypoints are correctly classified. This is impor-
tant since the threshold is usually 10-20% of the size of the

bounding box, which can include several different keypoints.
Previous work reports the average performance for all

pairs. Instead, we separate the performance for image pairs
of different viewpoint changes. Specifically, we use the
annotation of viewpoint variation provided by SPair [24] and
report the performance for different viewpoint difficulties.

A.4. Performance Correlation

One question tackled in our paper is how well performance
is correlated across tasks. If several tasks are measuring
the same capability, we would expect their performance to
be well correlated. Although a high correlation could be
caused by a variety of other factors. Hence, while a high
correlation provides some evidence that tasks measure the
same capability, a very low correlation would imply that
tasks are not related.

We compute the correlation of model performance across
different tasks and task domains. Specifically, we compute
the Pearson correlation coefficient, which assumes a linear
relationship between models. One possibility is that the re-
lationships across tasks may not be linear and that a rank
correlation might be well-suited. Empirically, we observe
that both statistical measures often result in similar trends
with some minor exceptions. When considering cases where
the correlations deviate from each other, we find that they
are caused by fluctuations in the rankings that arise for very
small changes in performance for similarly performing mod-
els. As a result, we choose to report the Pearson correlation
coefficient as a descriptive statistic of the relationships be-
tween model performance.

When considering the overall model performance, such as
Figure 1, we aggregate performance across all tasks. Since
the absolute performance values are not directly comparable,
we instead rely on the model rankings. While a model’s rank-
ing can fluctuate due to minor differences, such fluctuations
tend to get canceled out when averaging the ranking across
multiple tasks. We convert the rankings to a normalize rating
where a 1 means the best performing model and 0 means the
worst performance model. The overall ratings are shown in
Figure 1. We emphasize that such ratings represent relative,
not absolute, model performance. Hence, a rating of 1 does
not mean the representations are 3D aware, but rather that
they are more 3D aware than the other models considered.

B. Additional Results
We chose to focus on general performance trends and salient
comparisons in the main body of the paper. Here, we report
the complete results for all the models and tasks considered
in Tables 1 to 5. Additionally, we attempt to provide some
targeted comaprisons that shed some light on some of the
findings discussed in the main paper, as well as address some
of the confounders introduced by using publicly available
checkpoints.
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What explains the low performance of vision and lan-
guage models? One interesting finding is that vision and
language models perform poorly across all tasks. Although
previous work has shown that CLIP struggles with 2D spa-
tial relationships [18, 20], the disparity in performance that
we observe is quite surprising. This makes it difficult to
determine what causes the performance disparity. Below, we
consider several possibilities: training data, training objec-
tive, model architecture, and augmentations.

One possibility is that CLIP’s WIT dataset does not cap-
ture such relationships. However, we note that the OpenCLIP
model trained on LAION and the SigLIP model trained on
WebLI both achieve very similar performance as seen in
Tabs. 1 to 5. Furthermore, StableDiffusion achieves a very
strong performance despite also being trained on LAION.

Another possibility is that this is caused by the training
objective; i.e., the contrastive objective discourages such
relationships. Our experiments suggest that the training ob-
jective is likely the major culprit, but it remains unclear what
about the objective is causing this issue. It is unclear whether
semantics inhibits spatial understanding since both DeiT and
StableDiffusion achieve a strong performance despite learn-
ing from some form of semantics. Furthermore, it is not
the discriminative aspect of the learning objective, as DeiT
and DINO are both trained with discriminative objects and
also perform well. On the other hand, SigLIP learns from a
non-contrastive objective and performs poorly.

We find that the greatest improvement comes from chang-
ing the backbone from ViT to ConvNeXt. This change re-
sults in a qualitative change in CLIP’s performance; e.g.,
from predicting flat surfaces for depth to generating some-
thing that looks like a depth map. We note that this is not
because ConvNeXt is a strictly superior architecture; e.g.,
we find that DeiT’s ViT performs better than ConvNeXt for
supervised training on ImageNet-22k.

One final difference is the use of augmenations during
training. Most of the approaches considered rely on aug-
mentation to create a learning signal such as self-supervised
learning or to provide additional diversity in the training data.
However, CLIP relies on minimal augmentation, and we are
unaware of any transformer-based checkpoints that train with
augmentations. Instead, we consider two CLIP ConvNeXt
checkpoints that were trained with and without AugReg [36].
We find that augmentation boosts performance, but the gains
are relatively small. It remains unclear if such augmentations
would be more impactful when used with ViT backbones.

In conclusion, we find that none of the factors individu-
ally explain the low performance of vision language models,
although choice of architecture appears to be a useful direc-
tion to further puruse. Our findings also suggest that the
training signal or model architecture does not independently
determine the 3D awareness of features. However, more
controlled experiments are needed to confirm this claim.

What is the impact of model scale? While our experiments
focused on ViT-B backbones, we also evaluated the large
checkpoints and report their performance here. Although
using a larger backbone typically increases performance, the
improvement is fairly marginal. Furthermore, we find that
the reported patterns and correlations do not change when
we consider the larger checkpoints.

What is the impact of model architecture? We choose a
subset of our models and compare their performance when
trained with ViT or ConvNeXt backbones. While Con-
vNeXts result in a huge performance gain for CLIP models,
the results are mixed for other models; e.g., FCMAE and
DeIT. As noted earlier, our experiments suggest that model
architecture and training objective are not independent when
it comes to 3D awareness. However, more research is needed
to further explore this relationship.

What is the impact of training dataset? While dataset
scale appears to impact performance, the results are often
mixed or marginal. Our main data point here is to compare
models trained on ImageNet-1k and ImageNet-22k. Beyond
scale, dataset curation appears to have a significant impact on
performance as reported by Oquab et al. [26]. Despite these
confounders, we find that the variation in performance due
to different datasets is smaller than the variation caused by
training objectives. Nevertheless, we hope that future work
can shed some light on the impact of such datasets, and more
importantly, on what properties of the dataset encourage or
inhibit 3D awareness.

Additional SPair Confusion Matrices. In the main body
of the paper, we visualize the confusion matrices for the chair
class under different viewpoint variations. The chair class is
most representative of this distinction for two reasons: (1)
its keypoints neatly segment into semantic groups that only
differ based on their relative location in the chair’s canonical
frame of references; and (2) semantically similar keypoints
can be visible in the same image in different relative orienta-
tions for each other. Many other classes do not fulfill those
criteria, especially the second point. For example, several
keypoints for humans and animals are unique; e.g., mouth,
nose, tail, forehead. In other cases, semantically related key-
points almost always appear in the same 2D configuration.
For example, eyes and ears often appear in the same 2D
configuration when they are both visible. As a result, their
2D relative locations are very strongly correlated with their
identity, making it difficult to assess the 3D awareness of
the model. This is confounded by common photographic
biases in datasets; e.g., most human and naimal faces are
often pictured facing the camera. Finally, many symmetric
keypoints are almost never covisible. It is very rare for both
front left and front right wheels to be covisible in the same
image. Most car pictures featuring more than 1 visible wheel
are side views. Hence, for most pairs of car views, a combi-
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Horse Aeroplane

Figure 1. Keypoint confusion matrices for horses and aeroplanes. We find similar confusion patters in other SPair classes where large
viewpoint changes result in high confusion between semantically related classes (highlighted in red). Furthermore, we find that keypoints
that experience a lot of deformation (e.g., knees and hooves) are confused for all image pairs as they appear in different 2D locatons relative
to each other. However, we find that classes (highlighted in grey) that often appear in the same 2D configuration do not suffer from this
effect.

nation of coarse semantic class (i.e., car wheel) and relative
location in the image can result in accurate correspondence.

We observe these findings in the data. We present the con-
fusion matrices StableDiffusion features on two additional
classes: horses and airplanes. The results are shown in Fig. 1.
First, we find that unique classes, such as tail tip and tail
base, have a similar accuracy across viewpoint variations.
Furthermore, classes that appear in similar orientations, such
as eyes or ears, are similarly unaffected. We note that the
ear annotation refers to the front of the ear for horses. Mean-
while, the top of the ear, which is also visible when the horse
is looking away, exhibits a different behavior where it is far
more confused when for larger viewpoint changes.

We observe similar patterns for airplanes where unique
keypoints such as the nose, windshield, and cockpit of the
airplane are accurately predicted for large viewpoint changes.
Meanwhile, the wheels, wings, and stabilizers are confused
for larger viewpoint changes. To support that this is not
simply due to some keypoints being more difficult, one can
compare the performance for vertical stabilizers with the
performance for right and left stabilizers. While the right
and left stabilizers are confused, the vertical stabilizer, which
looks the same but has a very different orientation, is still
accurately predicted for larger viewpoint changes.

Finally, we observe interesting trends for knees and
hooves that appear to be confused regardless of viewpoint
change. Since animals can deform, hooves and legs consis-
tently appear in different orientations, especially for horses,
which are often pictured while moving. Nevertheless, the
confusion is strongly restricted to the semantically equiv-
alent classes. This strongly suggests that while the model
understands semantics, it lacks 3D awareness.

C. Limitations

Our goal is to understand to what extent current large-scale
models “understand” the 3D world that images depict, as

well as what factors encourage or discourage such under-
standing from emerging. This is very challenging, as our
collective understanding of what models learn or how they
represent what they learn is still very limited. Furthermore,
there is no consensus on how 3D geometry should be repre-
sented, nor what it even means for a model to have 3D under-
standing. Finally, there are concrete challenges in evaluation
that make it difficult to conduct controlled experiments. The
study presented in this work is a first step toward answering
these questions. While our experiments and analysis provide
some initial answers to this question, our study suffers from
several limitations that limit the strength of the conclusions
we can draw and point to several avenues for future explo-
ration. We discuss the limitations below and outline some
open questions that we hope future work will address.

Comparisons are limited to publicly available check-
points. We focused on our analysis on publicly available
checkpoints due to their availability and common use in
the literature. However, as a result, our experiments often
compare models trained with different recipes on different
datasets. This is a significant confounding variable, as it is
unclear if the trends we are observing are due to the main
differentiators we observe or some minor implementation
detail.

Ideally, we would train the same backbone architecture
on the same dataset with the same training recipe, but with
different objectives as in [9, 25]. However, the computa-
tional resources needed to train and tune all models are
prohibitively large. This problem is also likely to be exacer-
bated with the current trend of moving towards ever larger
scales. Beyond the resources required, different approaches
often have different data requirements such as curation, la-
bels, captions, or dense annotations. There are currently no
large-scale datasets that meet all those requirements.

We tried to make comparisons more fair by choosing
model checkpoints of comparable model capacity and pre-
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training data scale. Although we expected that the dataset
or pre-training scale might end up dominating all other ef-
fects, our experiments suggest that other factors can be more
important. For example, while CLIP is trained on a much
larger dataset than DINO, DINO consistently outperforms
CLIP. Furthermore, model performance does not seem to
be very sensitive to training data, with CLIP achieving simi-
lar performance whether it was trained on WIT or LAION.
We hope that our analysis identified interesting patterns and
that future work can conduct much more controlled experi-
ments that focus on a specific model comparison or dataset
comparison.

Our analysis focuses on two specific aspects of 3D aware-
ness. Our ability to perceive and infer 3D properties is
remarkable. While many tasks can showcase this ability, we
restrict our analysis to single-image surface reconstruction
and multiview consistency. While those two aspects are fun-
damental to 3D understanding, they are not comprehensive.
The ability to reconstruct the full 3D shape, predict deforma-
tion, and estimate physical properties such as support and
containment fall under the general umbrella of 3D under-
standing. However, it is unclear which of those properties
should be readily perceived from the image as opposed to
inferred with more complex processing. While such delin-
eations can be more philosophical in nature, they can guide
the experimental design, as it is important to understand
what we are looking for before designing experiments to find
it. We expect that more comprehensive benchmarks of 3D
understanding would measure such capabilities as well, and
we hope that this work provides an initial step towards the
study of this problem.

Our experimental methodology focuses on probing meth-
ods. Our analysis has focused on linear probe and zero-shot
analysis approaches. We have done this to analyze the fea-
tures as they are without changing them to better adapt to 3D
tasks. While we argue that frozen features provide a more ac-
curate understanding of the 3D awareness of the features, it
would definitely be useful to understand how much of those
patterns transfer to fine-tuning setups. Furthermore, if we
consider recent advances in natural language processing, we
see a rise in in-context learning with similar adaptations in
computer vision. While linear probes could still be applied,
it is likely that prompting-based methods will be more suited
to analyze the 3D awareness of such models.

8



Table 1. Depth Estimation Results. We present the depth estimation results for all models. Models are grouped based on the supervisory
signal.

NYU NAVI

Model Architecture Dataset δ1 δ2 δ3 RMSE δ1 δ2 δ3 RMSE
Self-Supervised Models
MAE [13] ViT-B16 IN-1k 67.89 91.43 97.92 0.6602 36.28 63.44 79.72 0.1568
MAE [13] ViT-L16 IN-1k 70.22 92.50 98.00 0.6298 35.21 62.60 79.41 0.1588
FCMAE [42] CNXTv2-B IN-22k 82.73 97.63 99.67 0.4860 48.61 76.15 88.44 0.1205
DINO [5] ViT-B16 IN-1k 80.44 96.52 99.26 0.5071 56.62 81.26 91.01 0.1043
iBOT [50] ViT-B16 IN-1k 83.87 97.47 99.51 0.4635 57.11 82.00 91.49 0.1025
iBOT [50] ViT-B16 IN-22k 85.04 97.82 99.55 0.4452 55.75 81.06 91.14 0.1044
iBOT [50] ViT-L16 IN-1k 85.14 97.74 99.56 0.4451 62.56 85.27 93.19 0.0919
iBOT [50] ViT-L16 IN-22k 91.08 98.98 99.79 0.3670 66.29 87.31 94.27 0.0833
DINOv2 [26] ViT-B14 LVD 93.43 99.41 99.90 0.3307 68.84 89.13 95.31 0.0763
DINOv2 [26] ViT-L14 LVD 94.84 99.57 99.93 0.3086 71.42 90.34 95.91 0.0721
DINOv2 + reg [7] ViT-B14 LVD 92.93 99.37 99.91 0.3355 66.56 87.94 94.74 0.0806
Classification-Supervised Models
DeiT III [38] ViT-B16 IN-22k 86.89 98.20 99.73 0.4240 59.74 83.78 92.61 0.0960
DeiT III [38] ViT-L16 IN-22k 89.55 98.75 99.78 0.3866 64.93 86.79 93.98 0.0855
ConvNeXt [22] CNXT-B IN-22k 80.15 96.88 99.46 0.5105 43.63 71.60 85.49 0.1342
Vision Language Models
CLIP[28] ViT-B16 WIT 52.11 81.70 93.72 0.9450 24.95 48.73 68.52 0.1993
CLIP[28] ViT-L14 WIT 51.73 81.59 93.85 0.9445 23.97 46.71 66.34 0.2058
CLIP[14] ViT-B16 LAION 52.46 82.15 94.05 0.9351 24.33 47.43 67.31 0.2031
CLIP[14] CNXT-B LAION 78.10 96.26 99.33 0.5285 45.24 73.35 86.68 0.1286
CLIP + AugReg[14] CNXT-B LAION 82.14 97.24 99.48 0.4784 48.22 75.85 88.09 0.1211
SigLIP [46] ViT-B16 WebLI 63.81 89.72 97.33 0.7187 36.49 63.07 79.20 0.1571
SigLIP [46] ViT-L16 WebLI 65.26 90.53 97.78 0.6931 35.94 62.43 78.78 0.1588
Text-Conditioned Image Generation Models
StableDiffusion [32] UNet LAION 82.60 97.05 99.48 0.4801 51.86 78.68 89.77 0.1094
Densely-Supervised Models
SAM [16] ViT-B16 SA-1B 75.60 95.00 98.94 0.5665 49.28 76.36 88.40 0.1206
SAM [16] ViT-L16 SA-1B 81.57 97.12 99.49 0.4905 52.45 79.17 90.25 0.1105
MiDaS [31] ViT-L16 MIX 6 78.65 96.05 98.99 0.5300 58.53 82.58 91.60 0.1001
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Table 2. Surface Normal Estimation Results. We present the surface normal estimation results for all models. Models are grouped based
on the supervisory signal.

NYU NAVI

Model Architecture Dataset 11.25◦ 22.5◦ 30◦ RMSE 11.25◦ 22.5◦ 30◦ RMSE
Self-Supervised Models
MAE [13] ViT-B16 IN-1k 44.60 66.08 74.37 30.34 30.27 57.70 69.97 32.12
MAE [13] ViT-L16 IN-1k 45.60 67.50 75.67 29.57 30.36 58.20 70.54 31.59
FCMAE [42] CNXTv2-B IN-22k 43.87 68.73 78.05 27.24 28.91 58.06 70.76 31.54
DINO [5] ViT-B16 IN-1k 49.11 69.32 77.02 28.35 39.56 65.85 76.23 28.75
iBOT [50] ViT-B16 IN-1k 52.60 72.52 79.60 26.89 40.65 66.79 76.99 28.32
iBOT [50] ViT-B16 IN-22k 54.54 73.79 80.52 26.10 22.75 50.60 64.10 35.03
iBOT [50] ViT-L16 IN-1k 54.53 74.30 81.06 25.78 43.45 69.20 78.84 27.24
iBOT [50] ViT-L16 IN-22k 58.51 76.68 82.90 24.46 45.19 70.51 79.84 26.56
DINOv2 [26] ViT-B14 LVD 62.01 79.32 85.32 22.41 47.55 72.92 81.89 25.27
DINOv2 [26] ViT-L14 LVD 64.05 80.78 86.48 21.55 50.15 74.70 83.12 24.52
DINOv2 + reg [7] ViT-B14 LVD 61.37 79.12 85.22 22.54 45.81 72.00 81.28 25.66
Classification-Supervised Models
DeiT III [38] ViT-B16 IN-22k 39.58 64.22 74.07 29.44 26.91 55.66 68.71 32.47
DeiT III [38] ViT-L16 IN-22k 55.73 75.34 82.00 25.05 32.91 61.54 73.49 29.92
ConvNeXt [22] CNXT-B IN-22k 25.79 47.42 59.15 35.40 21.72 50.54 64.75 34.34
Vision Language Models
CLIP[28] ViT-B16 WIT 28.85 51.93 63.07 35.34 17.01 42.06 56.10 39.58
CLIP[28] ViT-L14 WIT 28.07 50.74 61.97 35.84 15.03 38.87 52.93 41.41
CLIP[14] ViT-B16 LAION 30.11 53.65 64.60 34.68 16.23 40.95 55.07 39.90
CLIP[14] CNXT-B LAION 43.54 67.93 77.06 27.88 31.28 59.41 71.60 31.08
CLIP + AugReg[14] CNXT-B LAION 45.50 69.53 78.43 27.07 34.17 62.29 73.87 29.82
SigLIP [46] ViT-B16 WebLI 30.68 52.73 63.60 34.96 21.47 47.60 60.93 36.69
SigLIP [46] ViT-L16 WebLI 31.68 54.11 64.97 34.20 21.24 46.83 60.19 37.01
Text-Conditioned Image Generation Models
StableDiffusion [32] UNet LAION 58.29 76.28 82.64 24.68 40.31 67.18 77.55 27.86
Densely-Supervised Models
SAM [16] ViT-B16 SA-1B 46.37 70.40 78.98 26.89 36.66 64.25 75.36 29.01
SAM [16] ViT-L16 SA-1B 52.03 74.61 82.20 24.87 39.23 66.87 77.59 27.66
MiDaS [31] ViT-L16 MIX 6 49.58 69.82 77.17 28.51 39.94 66.36 76.66 28.54
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Table 3. Correspondence Estimation Results for ScanNet. We present the ScanNet correspondence estimation results for all models. The
results are presented for features extracted at different layers with performance binned for different relative viewpoint changes between
image pairs. The highest performing set of results for each model are highlighted and bolded.

Block0 Block1 Block2 Block3

Model Architecture Dataset θ15
0 θ30

15 θ60
30 θ180

60 θ15
0 θ30

15 θ60
30 θ180

60 θ15
0 θ30

15 θ60
30 θ180

60 θ15
0 θ30

15 θ60
30 θ180

60

Self-Supervised Models
MAE [13] ViT-B16 IN-1k 3.4 2.8 3.8 2.3 4.7 3.6 3.9 2.6 7.8 5.5 4.9 3.0 12.5 8.0 6.0 3.6
MAE [13] ViT-L16 IN-1k 5.2 3.8 4.1 2.6 8.2 6.3 5.2 3.1 14.1 10.1 7.0 4.1 15.6 10.9 7.5 4.3
FCMAE [42] CNXTv2-B IN-22k 26.2 19.8 12.1 5.5 60.8 49.7 28.1 9.8 31.6 22.4 13.2 5.8 36.8 26.2 14.9 7.2
DINO [5] ViT-B16 IN-1k 14.3 9.5 7.9 3.9 42.8 32.4 21.0 9.1 44.5 34.1 22.2 9.8 45.0 34.3 22.6 10.7
iBOT [50] ViT-B16 IN-1k 19.3 13.0 9.5 4.1 37.2 26.6 17.6 7.8 39.0 28.7 18.9 8.8 37.8 27.4 18.4 9.1
iBOT [50] ViT-B16 IN-22k 14.2 10.1 7.8 3.6 27.9 19.2 12.6 6.2 36.0 25.8 16.5 8.0 30.1 20.7 13.9 7.0
iBOT [50] ViT-L16 IN-1k 30.3 20.7 14.0 5.8 43.8 32.8 21.0 9.1 44.7 33.8 22.0 10.1 46.0 34.6 22.8 10.8
iBOT [50] ViT-L16 IN-22k 27.9 20.0 13.1 5.5 42.2 31.1 19.9 8.8 41.3 30.5 19.6 9.3 40.4 29.9 20.3 10.2
DINOv2 [26] ViT-B14 LVD 25.4 19.5 12.7 4.9 47.1 36.4 22.4 8.4 37.6 26.8 16.8 7.5 37.0 27.5 19.7 11.2
DINOv2 [26] ViT-L14 LVD 12.6 10.4 7.8 4.0 27.6 19.4 12.5 4.7 34.7 23.7 15.8 6.4 36.4 26.8 20.4 12.1
DINOv2 + reg [7] ViT-B14 LVD 29.0 24.6 15.1 5.8 56.1 47.3 29.5 10.3 48.4 37.8 24.2 10.0 41.9 33.6 23.2 12.2
Classification-Supervised Models
DeiT III [38] ViT-B16 IN-22k 17.6 12.1 8.8 3.4 38.3 29.7 17.9 7.2 28.5 21.3 14.0 6.6 20.7 13.7 9.2 5.0
DeiT III [38] ViT-L16 IN-22k 34.3 26.8 16.6 5.4 36.4 27.8 16.7 7.0 26.5 19.4 12.7 6.3 28.3 20.6 14.0 7.5
ConvNeXt [22] CNXT-B IN-22k 22.8 17.1 9.9 4.7 42.9 32.9 18.1 6.9 10.2 6.7 3.9 2.6 15.0 10.6 5.7 3.6
Vision Language Models
CLIP[28] ViT-B16 WIT 10.5 8.3 6.5 4.4 3.7 3.3 3.8 2.6 3.0 2.4 3.1 2.1 2.5 2.1 2.7 1.8
CLIP[28] ViT-L14 WIT 8.4 7.3 5.8 3.9 4.8 4.1 4.3 2.9 3.9 3.3 3.6 2.6 3.4 2.9 3.0 2.5
CLIP[14] ViT-B16 LAION 15.5 11.6 8.3 4.6 5.8 4.8 4.7 3.2 2.5 2.3 3.0 2.1 2.5 2.1 2.7 2.0
CLIP[14] CNXT-B LAION 26.8 20.8 13.3 6.6 30.3 21.7 12.1 5.3 47.1 38.1 22.3 8.9 37.1 28.5 16.6 8.0
CLIP + AugReg[14] CNXT-B LAION 24.2 18.9 12.4 6.3 37.7 27.3 14.5 6.0 32.3 22.9 13.0 5.4 31.6 22.8 13.1 7.1
SigLIP [46] ViT-B16 WebLI 17.0 12.5 9.2 5.9 16.6 12.0 8.9 5.5 15.8 11.3 8.6 5.4 14.2 10.4 8.1 5.3
SigLIP [46] ViT-L16 WebLI 15.4 11.1 8.1 4.9 14.4 10.2 7.3 4.6 13.4 9.3 6.7 4.2 11.7 8.5 6.4 4.2
Text-Conditioned Image Generation Models
StableDiffusion [32] UNet LAION 10.2 5.0 3.0 1.4 66.4 55.0 31.0 8.4 60.4 48.3 27.4 9.1 14.4 10.9 7.7 4.5
Densely-Supervised Models
SAM [16] ViT-B16 SA-1B 8.3 6.0 5.6 2.9 35.0 26.2 17.4 5.3 52.9 44.7 29.3 8.9 55.3 47.0 30.4 9.4
SAM [16] ViT-L16 SA-1B 14.5 9.9 7.5 3.5 37.2 29.7 19.7 6.2 47.6 40.4 27.3 8.7 52.6 43.9 28.7 9.6
MiDaS [31] ViT-L16 MIX 6 50.3 39.0 24.4 11.2 56.4 47.4 31.6 13.9 55.5 46.0 30.8 14.3 52.4 42.1 27.6 13.1
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Table 4. Correspondence Estimation Results for NAVI. We present the NAVI correspondence estimation results for all models. The
results are presented for features extracted at different layers with performance binned for different relative viewpoint changes between
image pairs. The highest performing set of results for each model are highlighted and bolded.

Block0 Block1 Block2 Block3

Model Architecture Dataset θ30
0 θ60

30 θ90
60 θ120

90 θ30
0 θ60

30 θ90
60 θ120

90 θ30
0 θ60

30 θ90
60 θ120

90 θ30
0 θ60

30 θ90
60 θ120

90

Self-Supervised Models
MAE [13] ViT-B16 IN-1k 73.1 40.9 19.2 10.7 75.8 42.3 19.8 10.8 76.9 43.1 20.3 11.1 76.3 43.0 20.2 11.1
MAE [13] ViT-L16 IN-1k 68.5 38.7 19.3 11.2 73.2 40.7 19.8 11.0 74.0 40.9 19.8 10.9 73.3 40.3 19.4 10.7
FCMAE [42] CNXTv2-B IN-22k 37.9 24.7 16.3 11.0 66.2 37.5 19.5 11.6 74.0 48.4 28.6 18.1 82.8 59.5 39.6 26.7
DINO [5] ViT-B16 IN-1k 85.7 50.2 22.7 11.9 89.3 58.1 30.1 18.3 87.2 57.4 31.7 20.6 86.0 56.0 31.3 20.3
iBOT [50] ViT-B16 IN-1k 85.3 49.3 22.2 11.7 90.3 57.1 27.9 16.1 89.4 59.1 31.6 20.2 89.0 58.3 32.5 22.2
iBOT [50] ViT-B16 IN-22k 84.3 47.6 21.5 11.3 90.3 55.4 25.7 15.1 89.9 59.6 31.8 20.0 88.7 57.7 31.2 20.8
iBOT [50] ViT-L16 IN-1k 90.2 56.2 26.3 14.4 92.2 63.0 32.7 20.4 91.4 63.3 34.6 22.8 90.3 63.6 36.7 25.4
iBOT [50] ViT-L16 IN-22k 89.3 54.1 24.1 12.6 93.1 65.5 34.0 20.9 92.2 66.2 36.7 23.9 89.5 64.5 39.0 27.0
DINOv2 [26] ViT-B14 LVD 79.4 46.1 22.2 12.3 93.6 63.7 29.4 14.9 94.4 68.8 36.8 20.5 90.6 69.3 45.9 32.0
DINOv2 [26] ViT-L14 LVD 66.2 37.2 19.6 11.5 92.1 57.9 25.6 12.8 95.3 70.0 35.4 18.5 92.2 72.3 48.9 35.0
DINOv2 + reg [7] ViT-B14 LVD 73.0 41.9 21.0 12.0 92.6 62.0 28.7 14.6 94.4 70.0 37.9 21.3 89.0 67.3 44.8 31.1
Classification-Supervised Models
DeiT III [38] ViT-B16 IN-22k 88.6 51.8 22.9 12.1 91.5 62.8 34.3 22.0 84.3 58.0 37.9 26.7 62.7 38.5 24.6 16.7
DeiT III [38] ViT-L16 IN-22k 88.7 54.2 24.5 13.3 92.3 65.5 36.9 24.1 86.1 60.6 39.2 27.4 76.8 50.8 32.9 22.5
ConvNeXt [22] CNXT-B IN-22k 39.1 24.3 15.6 10.2 49.2 25.8 14.8 9.4 75.8 46.1 26.6 16.6 80.3 52.2 31.5 20.3
Vision Language Models
CLIP[28] ViT-B16 WIT 42.3 26.2 16.2 10.7 34.8 22.8 14.6 10.0 25.7 17.9 12.9 8.9 22.1 15.6 11.4 7.9
CLIP[28] ViT-L14 WIT 36.3 22.6 14.8 10.1 28.1 18.9 13.6 9.4 21.3 15.7 12.1 8.6 17.9 13.6 10.9 7.7
CLIP[14] ViT-B16 LAION 41.8 25.2 15.8 10.5 36.5 22.6 14.5 9.7 26.0 17.1 12.2 8.6 21.6 15.3 11.0 7.9
CLIP[14] CNXT-B LAION 34.1 22.9 15.5 10.9 45.0 27.6 17.1 11.1 84.7 56.9 32.2 19.6 76.7 47.1 30.0 20.5
CLIP + AugReg[14] CNXT-B LAION 34.4 23.0 15.1 10.4 48.1 28.0 16.7 10.6 84.5 54.4 30.7 18.1 78.9 50.1 31.6 21.4
SigLIP [46] ViT-B16 WebLI 40.6 26.7 18.6 12.7 41.7 27.5 18.6 12.6 40.5 26.5 18.3 12.3 35.3 23.2 16.7 11.4
SigLIP [46] ViT-L16 WebLI 39.0 25.8 17.5 11.8 39.7 26.1 17.6 11.9 36.6 24.2 16.6 11.4 29.9 19.8 14.9 10.2
Text-Conditioned Image Generation Models
StableDiffusion [32] UNet LAION 77.4 36.4 14.8 7.4 91.2 58.9 25.7 11.1 70.8 41.1 20.3 11.5 33.9 21.9 14.7 9.7
Densely-Supervised Models
SAM [16] ViT-B16 SA-1B 77.8 42.7 19.9 11.4 83.0 48.4 22.0 11.9 88.6 56.2 25.0 12.9 88.2 56.5 25.3 12.7
SAM [16] ViT-L16 SA-1B 78.0 43.3 20.4 11.4 86.4 52.0 23.8 12.5 91.2 60.1 28.2 14.2 88.5 57.6 26.9 13.5
MiDaS [31] ViT-L16 MIX 6 79.0 49.1 25.0 14.5 83.2 56.0 32.1 21.6 82.2 56.3 33.1 22.9 79.6 53.0 31.4 21.6
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Table 5. Correspondence Estimation Results for SPair-71k. We present the SPair-71k correspondence estimation results for all models.
The results are presented for features extracted at different layers with performance binned based on the viewpoint variation for the image
pair. The highest performing set of results for each model are highlighted and bolded.

Block0 Block1 Block2 Block3

Model Architecture Dataset d=0 d=1 d=2 all d=0 d=1 d=2 all d=0 d=1 d=2 all d=0 d=1 d=2 all
Self-Supervised Models
MAE [13] ViT-B16 IN-1k 8.3 4.7 3.8 6.8 9.9 6.3 5.1 7.9 10.5 6.6 5.5 8.5 9.8 6.2 4.9 7.9
MAE [13] ViT-L16 IN-1k 8.3 5.5 4.6 6.9 9.1 6.5 5.1 7.6 9.3 6.4 5.2 7.7 8.3 5.8 4.5 7.2
FCMAE [42] CNXTv2-B IN-22k 5.3 4.7 4.9 5.0 8.3 6.7 6.0 7.3 26.4 24.3 25.4 24.8 28.9 27.1 28.2 27.5
DINO [5] ViT-B16 IN-1k 15.3 8.2 6.4 11.6 26.7 17.9 18.6 21.9 32.1 25.1 25.9 28.3 30.4 24.0 24.3 26.8
iBOT [50] ViT-B16 IN-1k 14.3 7.3 5.5 10.4 25.3 14.6 14.0 20.0 35.5 25.3 25.5 30.6 39.9 30.3 32.3 35.7
iBOT [50] ViT-B16 IN-22k 12.7 6.6 4.5 9.6 22.0 12.5 10.6 17.0 36.0 25.0 24.6 30.6 41.9 29.6 31.1 36.1
iBOT [50] ViT-L16 IN-1k 22.4 12.0 10.0 17.1 39.3 25.6 26.1 32.8 44.9 32.8 33.7 39.3 48.9 36.2 38.5 43.2
iBOT [50] ViT-L16 IN-22k 19.4 9.9 7.8 14.7 39.6 23.2 23.5 31.6 46.8 32.2 33.6 40.0 51.2 40.9 43.1 45.9
DINOv2 [26] ViT-B14 LVD 13.0 8.4 7.1 10.3 35.9 20.9 16.3 28.0 55.8 37.0 34.4 46.7 62.4 51.9 53.3 56.8
DINOv2 [26] ViT-L14 LVD 8.5 6.2 5.3 7.5 25.0 14.0 10.8 19.3 53.9 34.6 31.6 44.5 62.8 53.3 54.2 57.2
DINOv2 + reg [7] ViT-B14 LVD 12.0 8.3 7.3 10.1 33.2 19.6 15.4 26.1 57.4 39.4 38.1 48.8 58.3 51.4 53.4 53.7
Classification-Supervised Models
DeiT III [38] ViT-B16 IN-22k 21.8 12.4 9.4 16.9 41.8 31.7 34.6 36.8 37.7 33.1 35.4 35.0 17.1 15.6 16.0 16.1
DeiT III [38] ViT-L16 IN-22k 23.6 15.0 12.3 18.5 47.0 35.7 39.2 41.4 40.6 35.3 38.1 37.5 27.7 24.8 25.1 25.4
ConvNeXt [22] CNXT-B IN-22k 4.6 3.8 4.1 4.2 7.9 6.6 6.6 7.5 20.7 16.9 18.6 18.8 14.5 12.5 13.3 13.5
Vision Language Models
CLIP[28] ViT-B16 WIT 6.1 5.4 5.7 5.7 5.8 4.3 3.7 4.9 4.9 3.6 3.5 4.3 6.0 3.5 2.8 4.7
CLIP[28] ViT-L14 WIT 4.6 4.4 4.4 4.6 4.0 3.4 3.7 3.9 3.5 2.6 3.0 3.2 3.2 2.6 2.9 3.0
CLIP[14] ViT-B16 LAION 5.6 5.0 4.2 5.2 5.5 4.1 4.1 4.8 6.4 3.1 2.8 5.0 7.2 3.2 2.6 5.3
CLIP[14] CNXT-B LAION 6.0 5.3 5.4 5.5 5.3 4.1 4.1 4.8 24.8 19.9 20.4 21.9 21.5 18.6 21.1 19.1
CLIP + AugReg[14] CNXT-B LAION 5.4 4.8 4.2 5.1 6.8 5.6 5.7 6.1 27.4 22.9 22.4 24.4 27.9 24.3 27.8 25.7
SigLIP [46] ViT-B16 WebLI 8.4 7.4 8.1 8.1 8.7 7.2 7.6 8.2 7.7 6.7 6.4 7.1 5.9 5.2 4.9 5.6
SigLIP [46] ViT-L16 WebLI 7.1 5.7 5.8 6.5 7.3 6.0 6.2 6.7 6.7 5.3 5.5 6.3 4.4 3.9 4.0 4.3
Text-Conditioned Image Generation Models
StableDiffusion [32] UNet LAION 14.2 5.7 3.8 10.1 58.0 34.6 28.5 46.4 21.9 15.5 12.2 17.8 4.6 4.1 4.2 4.2
Densely-Supervised Models
SAM [16] ViT-B16 SA-1B 9.2 5.5 4.6 7.4 16.4 10.7 8.7 13.0 29.0 18.6 14.0 23.2 30.9 19.2 14.4 24.7
SAM [16] ViT-L16 SA-1B 9.9 6.1 5.4 8.0 22.6 15.8 12.5 18.3 34.8 23.1 17.0 28.2 30.2 18.1 13.0 24.1
MiDaS [31] ViT-L16 MIX 6 15.6 10.2 8.7 13.0 27.3 22.8 23.2 24.5 28.2 23.4 25.1 25.5 25.8 21.3 23.6 23.4
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