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A. Code and Data Resources for Reproducibility
All code and data resources needed to reproduce our analysis, including information on exact splits we used for each of the
4 datasets ( TissueMNIST, PathMNIST, TMED-2, AIROGS) can be found in our github repo:

https://github.com/tufts-ml/SSL-vs-SSL-benchmark

Primer on our codebase. Our codebase builds upon the open-source PyTorch repo by Suzuki [72]. Suzuki’s code was
originally intended as a reimplementation in PyTorch of Oliver et al. [62]’s benchmark of semi-supervised learning (while
Oliver et al’s original repo was in Tensorflow, we prefer PyTorch).

We added many additional algorithms (we added MixMatch, FixMatch, FlexMatch, and CoMatch, as well as all 7 self-
supervised methods) and customized the experiments, especially providing a runtime-budgeted hyperparameter tuning strat-
egy as outlined in App. D.

In a way, this makes our repo a “cousin” of the codebase of Su et al. [71]’s fine-grained classification benchmark, because
their github repo also credits Suzuki’s repo as an ancestor.

https://github.com/tufts-ml/SSL-vs-SSL-benchmark
https://github.com/cvl-umass/ssl-evaluation


B. Dataset Details

B.1. Example Images

Below we show a few examples for each dataset. For full details, please refer to the original papers.
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Figure B.1. Showing 5 random examples for each dataset.

B.2. Dataset Selection

We selected PathMNIST and TissueMNIST from 12 candidate datasets in the MedMNIST collections [79, 80] by matching
two criteria: (i) contains at least 5 imbalanced classes; (ii) can build a large unlabeled set (at least 50000 images). Prior
experiments from dataset creator Yang et al. [80] suggest 28x28 resolution is a reasonable choice. They report that a larger
resolution (224x224) does not yield much more accurate classifiers for these two datasets.

B.3. Classification Task Description

TissueMNIST contains 28x28 images of human kidney cortex cells. The dataset contains 8 classes. See [80] for details.



Class ID Abbreviation Description

0 CD/CT Collecting Duct, Connecting Tubule
1 DCT Distal Convoluted Tubule
2 GE Glomerular endothelial cells
3 IE Interstitial endothelial cells
4 LEU Leukocytes
5 POD Podocytes
6 PT Proximal Tubule Segments
7 TAL Thick Ascending Limb

PathMNIST contains 28x28 patches from colorectal cancer histology slides that comprise 9 tissue types. See [48, 80] for
details.

Class ID Abbreviation Description

0 ADI adipose
1 BACK background
2 DEB debris
3 LYM lymphocytes
4 MUC mucus
5 MUS smooth muscle
6 NORM normal colon mucosa
7 STR cancer-associated stroma
8 TUM colorectal adenocarcinoma epithelium

TMED-2 contains 112x112 2D grayscale images captured from routine echocardiogram scans (ultrasound images of the
heart). In this study, we adopt the view classification task from [39]. For more detail please see [39, 40]

Class ID Abbreviation Description

0 PLAX parasternal long axis
1 PSAX parasternal short axis
2 A2C apical 2-chamber
3 A4C apical 4-chamber

AIROGS is a dataset of color fundus photographs of the retina. The binary classification task is to detect evidence of referable
glaucoma [24]. We use 384x384 resolution, as suggested by several challenge participants.

Class ID Abbreviation Description

0 No Glauc. no referable glaucoma
1 Glaucoma referable glaucoma (signs associated with visual field defects on standard automated perimetry)



C. Additional Results
C.1. Impact of pretraining on accuracy-over-time profiles
To study the impact of pretraining, we compare the accuracy-over-time profiles of TissueMNIST and PathMNIST based on
the two different initialization strategy. Fig. C.1 shows balanced-accuracy-over-time profiles for initialization of neural net
parameters to values pretrained on ImageNet (left column) and random initialization (right column). Pretraining time on a
source dataset is NOT counted to the runtime reported in x-axis.

On TissueMNIST (top row), SimCLR (green) and BYOL (blue) are the top two methods for both initialization types.
Performance gains from pretraining are slight, BA for BYOL is around 42 with pretraining and 40 with random initialization.

On PathMNIST (bottom row), FixMatch and CoMatch are best in the pretraining case, with MixMatch and Flexmatch
only a few points of balanced accuracy lower. MixMatch and CoMatch are best in the random initialization case.

Across both datasets, pretraining does not seem to impact the top-performing methods’ ultimate accuracy by much,
usually just a slight increase in BA of 0.5-3 points. One exception is FixMatch on PathMNIST, which improves by about 5
percentage points. We do not see the 10+ point gains reported by Su et al. [71] in their Table 3.

Considering more limited time budgets (e.g. after only a few hours), we do see initialization from pretraining understand-
ably tends to improve some methods.
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(a) TissueMNIST : pretrained initial weights
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(b) TissueMNIST : random initial weights
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(c) PathMNIST : pretrained initial weights
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(d) PathMNIST: random initial weights

Figure C.1. Balanced accuracy on test set over time for semi- and self-supervised methods, with (left) and without (right) initial weight
pretraining on ImageNet. Curves represent mean of each method at each time over 5 trials of Alg. D.1.



C.2. Validation-set profiles of accuracy-over-time
Fig. C.2 shows profiles of accuracy over time on the validation set, in contrast to the test set performance shown in the main
paper’s Fig. 1.

All curves here by definition must be monotonically increasing, because our unified algorithm selects new checkpoints
only when they improve the validation-set balanced accuracy metric. The important insight our work reveals is that the same
model checkpoints selected here, based on validation-set accuracy, also tend to produce improved test-set accuracy over time
(in Fig. 1). This helps provide empirical confidence in using realistically-sized validation sets.
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(a) TissueMNIST
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(b) PathMNIST
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(c) TMED2
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(d) AIROGS

Figure C.2. Validation-set accuracy over time profiles of semi- and self-supervised methods on 4 datasets (panels a-d). All curves here
by definition must be monotonically increasing. The increasing profiles here on the validation set translate to similar trends in test set
performance in Fig. 1, indicating successful generalization.



C.3. Additional performance metrics: Profiles over time on AIROGS
In Fig. C.3, we report the test performance over time on the AIROGS dataset across all 4 metrics of interest, including the
partial AUROC and sensitivity at 95% specificity metrics recommended by the AIROGS data creators as being particularly
relevant for the glaucoma detection task.

Broadly, our takeaway is that our proposed hyperparameter tuning method is viable for all these metrics, not just the
BA metric covered in the main paper. Furthermore, this viability appears consistent across both ResNet-18 and ResNet-50
architectures.
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(d) Sensitivity
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(e) Balanced Acc
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(h) Sensitivity

Figure C.3. Profiles of several clinically-relevant performance metrics over time on the AIROGS test set. Top row: ResNet-18.
Bottom row: ResNet-50. Columns, left-to-right: Balanced Accuracy, AUROC, Partial AUROC focused on the 90% - 100% specificity
regime, and sensitivity at 95% specificity. At each time, we report mean of each method over 5 trials of Alg. D.1.

C.4. Variability in Performance Across Trials
In Fig. C.4 on the next page, we explicitly visualize the variability in performance of each method across the 5 separate trials
of Alg. D.1 (most other figures show the mean of these 5 trials for visual clarity).
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(a) TissueMNIST after 16h
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(b) TissueMNIST after 50h
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(c) PathMNIST after 8h
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(d) PathMNIST after 25h
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(e) TMED-2 after 32h
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(f) TMED-2 after 100h
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(g) AIROGS(res18) after 32h
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(h) AIROGS(res18) after 100h
Figure C.4. Balanced accuracy of different methods across 2 time budgets (columns) and four datasets (rows). For each method, the interval
indicates the low and high performance of 5 separate trials of Alg. D.1, while dot indicates the mean performance. Horizontal lines indicate
the best labeled-set-only baseline at that time. Abbreviation: CM, Fl, Fi, MM, MT, PL, DI, SC, BL, BT, SS, SV, MC denote CoMatch,
FlexMatch, FixMatch, MixMatch, Mean Teacher, Pseudo Label, DINO, SimCLR, BYOL, Barlow Twins, SimSiam, SwAV, MOCO (v2).



D. Method Details

D.1. Algorithm : Unified training and hyperparameter tuning via random search on a budget

Algorithm D.1 outlines the hyperparameter tuning procedures used across all algorithms under comparison. The algorithm
requires three sources of data: a labeled training set L = {X,Y }, an unlabeled set for training U = XU , and a separate
realistically-sized labeled validation set {Xval, Y val}. We further require some budget restrictions: a common computational
budget T (maximum number of hours), and a maximum training epoch per hyperparameter configuration E.

We proceed as follows: We begin by randomly sampling a hyperparameter configuration from a defined range (see Ap-
pendix F.1 for details). A model is then initialized and trained using the ADAM optimizer with the sampled hyperparameters.
Each configuration is trained for a maximum of E (200) epochs or stopped early if the validation performance does not
improve for 20 consecutive epochs. The model’s performance on the validation set is measured using balanced accuracy.
Upon completion of training for a given hyperparameter configuration (either after reaching maximum epoch E or after early
stopping), a new configuration is sampled and the process repeats until the total compute budget T is expended.

We track the best-so-far model performance every 30 minutes, and save the best-so-far model along with its validation and
test performance. Semi-supervised algorithms simultaneously train the representation layers v and classifier layer w, while
self-supervised algorithms train the representation layers v for each epoch and then fine-tune a linear classifier with weights
w anew at the end of each epoch using an sklearn logistic regression model [64] with representation parameters v frozen.

Algorithm D.1 Unified Procedure for Training + Hyperparameter selection via random search

Input:
• Train set of features X paired with labels Y, with extra unlabeled features U
• Validation set of features Xval and labels Yval

• Runtime budget T , Max Epoch E
Output: Trained weights {v, w}, where v is the representation module, w is the classifier layer

1: while time elapsed < T do
2: � ⇠ DRAWHYPERS . Sample hyperparameters from pre-defined range (App. F.1)
3: ⇠  CREATEOPTIM(�) . Initialize stateful optimizer e.g., ADAM
4: {v, w} ⇠ INITWEIGHTS . Initialize model weights
5: for epoch e in 1, 2, . . . , E do
6: if self-supervised then
7: v  TRAINONEEPOCH(U, v,�, ⇠) . Optimize Eq. (1) with �L = 0
8: w  TRAINCLASSIFIER(Y, fv(X))
9: else if semi-supervised then

10: v, w  TRAINONEEPOCH(X,Y,U, v, w,�, ⇠) . Optimize Eq. (1)
11: else
12: v, w  TRAINONEEPOCH(X,Y, v, w,�, ⇠) . Optimize Eq. (1) with �U = 0
13: end if
14: me  CALCPERF(Xval,Yval, v, w) . Record performance metric on val.
15: if first try or me > m⇤ then
16: v⇤, w⇤  v, w
17: �⇤  �
18: m⇤  me . Update best config found so far
19: end if
20: if EARLYSTOP(m1,m2, . . . ,me) or time elapsed > T then
21: break
22: end if
23: end for
24: end while
25: return v⇤, w⇤,�⇤,m⇤



D.2. Semi-supervised method details
Semi-supervised learning trains on the labeled and unlabeled data simultaneously, usually with the total loss being a weighted
sum of a labeled loss term and an unlabeled loss term. Different methods mainly differs in how unlabeled data is used to
form training signals. Many approaches have been proposed and refined over the past decades. These include co-training,
which involves training multiple classifiers on various views of the input data [7, 61]; graph-structure-based models [46, 89];
generative models [52, 53]; consistency regularization-based models that enforce consistent model outputs [5, 57, 73]; pseudo
label-based models that impute labels for unlabeled data [12, 58]; and hybrid models that combines several methods [69].
Comprehensive reviews can be found in Chapelle et al. [14], Van Engelen and Hoos [74], Zhu [88].

Among the deep classifier methods following Eq. (1), below we describe each method we selected and how its specific
unlabeled loss is constructed.

Pseudo-Labeling uses the current model to assign class probabilities to each sample in the unlabeled batch. If, for
an unlabeled sample, the maximum class probability P (yi) exceeds a certain threshold ⌧ , this sample contributes to the
calculation of the unlabeled loss for the current batch. The cross-entropy loss is computed as if the true label of this sample
is class i.

Mean-Teacher constructs the unlabeled loss by enforcing consistency between the model’s output for a given sample and
the output of the same sample from the Exponential Moving Average (EMA) model.

MixMatch uses the MixUp [85] technique on both labeled data (features and labels) and unlabeled data (features and
guessed labels) within each batch to produce transformed labeled and unlabeled data. The labeled and unlabeled losses are
then calculated using these transformed samples. Specifically, the unlabeled loss is derived from the mean squared error
between the model’s output for the transformed unlabeled samples and their corresponding transformed guessed labels.

FixMatch generates two augmentation of an unlabeled sample, one with weak augmentation and the other using strong
augmentations (e.g., RandAug [22]). The unlabeled loss is then formulated by enforcing the model’s output for the strongly
augmented sample to closely resemble that of the weakly augmented sample using cross-entropy loss.

FlexMatch builds directly upon FixMatch by incorporating a class-specific threshold on the unlabeled samples during
training.

CoMatch marks the first introduction of contrastive learning into semi-supervised learning. The model is equipped with
two distinct heads: a classification head, which outputs class probabilities for a given sample, and a projection head, which
maps the sample into a low-dimensional embedding. These two components interact in a unique manner. The projection
head-derived embeddings inform the similarities between different samples, which are then used to refine the pseudo-labels
against which the classification head is trained. Subsequently, these pseudo-labels constitute a pseudo-label graph that trains
the embedding graph produced by the projection head.

D.3. Self-supervised method details
In recent years, self-supervised learning algorithms have emerged rapidly and are known as one of the most popular field
of machine learning. These include contrastive learning, which involves learning representations by maximizing agreement
between differently augmented views of the same data [17, 37]; predictive models that forecast future instances in the data
sequence [63]; generative models that learn to generate new data similar to the input [16]; clustering-based approaches that
learn representations by grouping similar instances [9, 10]; context-based models that predict a specific part of the data from
other parts [8, 25]; and hybrid models that combine various methods for more robust learning [18]. A more comprehensive
review can be found in [47, 90].

Below, we provide for each selected self-supervised method a summary of its internal workings.
SimCLR generates two augmented versions of each image. Then feed these pairs of images into a base encoder network

to generate image embeddings. This encoder is followed by a projection head, which is a multilayer neural network, to map
these embeddings to a space where contrastive loss can be applied. Next, calculate the contrastive loss. The idea is to make
the embeddings of augmented versions of the same image (positive pairs) as similar as possible and to push apart embeddings
from different images (negative pairs). The loss function used is NCE loss.

MOCO V2 creates two augmented versions of each image. These pairs are processed by two encoder networks: a query
encoder, and a key encoder updated by a moving average of the query encoder. The contrastive loss is computed by comparing
a positive pair (the query and corresponding key) against numerous negative pairs drawn from a large queue of keys.

Note on runtime: We notice that the performance on MoCo can be increased when Shuffling BN across multiple GPUs.
However, to ensure a fair comparison given our single-GPU setup, we refrained from employing any techniques to simulate
multiple GPUs on one, as this would change the encoder’s structure.



SwAV begins by creating multiple augmented versions of each image. Then, these versions are input into a deep neural
network to generate embeddings. Uses a clustering approach, called online stratified sampling, to predict assignments of each
view’s prototypes (or cluster centers) to others, encouraging the model to match the representations of different augmentations
of the same image.

Note on runtime: We’ve observed that applying multiple augmentations can enhance the effectiveness of various methods.
To prevent the results from being influenced by these augmentations, we’ve standardized the number of augmentations to two
in SwAV, in line with the approach taken by other methods.

BYOL starts by creating two differently augmented versions of each image. These versions are processed through two
identical neural networks, known as the target and online networks, which include a backbone and a projection head. The
online network is updated through backpropagation, while the target network’s weights are updated as a moving average
of the online network’s weights. The unique aspect of BYOL is that it learns representations without the need for negative
samples.

SimSiam creates two differently augmented versions of each image. These versions are passed through two identical
networks: one predictor network and one encoder network. The encoder network contains a backbone and a projection head.

DINO utilizes two differently augmented images, processed by a student and a teacher network. The teacher’s weights
evolve as a moving average of the student’s. The key idea is self-distillation, where the student’s outputs match the teacher’s
for one view but differ for the other, without traditional negative samples.

Barlow Twins processes two augmented views of an image through identical networks. The aim is to have similar repre-
sentations between these networks while minimizing redundancy in their components, sidestepping the need for contrasting
positive and negative pairs.

E. Additional Analysis and Discussion

E.1. Effectiveness of Hyperparameter Tuning

While Oliver et al. [62] caution that extensive hyperparameter search may be futile with realistic validation set. Our experi-
ments on the 4 dataset show that the validation set performance for each examined algorithm rise substantially over the course
of hyperparameter tuning. This increase in validation set performance further translates to increased test set performance.

Given the trends we observed across 4 datasets, we think that for a chosen algorithm on a new dataset, following our
hyperparameter tuning protocol (even with limited labeling budget and computation budget), we can likely expect better
generalization (measured by test set performance) compared to not tuning hyperparameters at all.

E.2. Differentiating Between Methods

Oliver et al. [62] offer both empirical and theoretical analysis of how well one can distinguish if one method is truly better
than another on a limited labeled dataset. Below, we revisit each analysis for our specific experiments.

E.2.1 Empirical Analysis of Differentiation

Oliver et al. [62] in their Fig 5 and 6 show that on SVHN, between 10 random samples of the validation set across several
level of validation set size (1000, 500, 250, 100), the validation accuracy of the trained Pi-model, VAT, Pseudo-labeling and
Mean Teacher model has substantial variability and overlap with each other. Thus, they caution that differentiating between
models might be infeasible with realistic validation set size.

In our present study, we employ a relaxed notion of “realistic validation set”, by letting the validation set to be at most as
large as the training set. Our experiments cover validation set size 235 (TMED), 400 (Tissue), 450 (Path), 600 (AIROGS); test
set size 2019 (TMED2), 47280 (Tissue), 7180 (Path), 6000 (AIROGS). Our experiment shows that within the wide range of
methods considered, differentiating between some models are possible. For example, in Fig. C.4 we can see that MixMatch
is clearly better than Mean Teacher in TissueMNIST and PathMNIST, in both the validation set and test set, without overlap
in the intervals. The field of semi-supervised learning has made significant advancements in recent years. It is crucial to
reevaluate previous conclusions in light of the new developments.



E.2.2 Theoretical Analysis of Differentiation

Here, we show that the performance gain we observe on the test set are real. We perform the same theoretical analysis using
the Hoeffding’s inequality [38] as in Oliver et al. [62].

P(|V̄ � E[V ]| < p) > 1� 2 exp(�2np2) (3)

where V̄ is the empirical estimate of some model performance metric, E[V ] is its hypothetical true value, p is the desired
maximum deviation between our estimate and the true value, and n is the number of examples used.

On TissueMNIST, we have 47280 test samples, we will be more than 99.98% confident that the test accuracy is within 1%
of its true value. On Path, we have 7180 test samples, we will be more than 99% confident that the test accuracy is within 2%
its true value.

In Fig 1, we see that after hyperparameter tuning, the final test accuracy of each algorithms improves much more than 1%
on TissueMNIST and 2% on PathMNIST showing the efficacy of hyperparameter tuning.

Similarly, we can see that the difference between top-performing algorithms (e.g., MixMatch) and worst-performaning
alogrithm (e.g., Mean Teacher) is clearly larger then 1% on TissueMNIST, 2% on PathMNIST. Thus we can argue that
differentiation between certain methods are viable. The same analysis can also be applied to TMED-2 and AIROGS.

E.3. Answers to Common Questions from Reviewers
Here we answer a few questions that were common to several reviewers of our paper.

E.3.1 For a medical image application, would a larger labeled dataset be more important than than developing
semi-supervised or self-supervised methods?

Yes, in general, is is preferable to collect as large of a labeled dataset as possible, at least up to the point of performance
saturation. Investing in data collection likely has a larger payoff than investing in SSL. However, extensive collection of
labeled examples is not practical for many real-world clinical tasks due to reasons like financial cost, logistics, privacy and
legal issues (see Oliver et al. [62],Berthelot et al. [5], Shekoofeh et al. [68]).

For this reason, methods for overcoming limited labeled data, such as semi-SL and self-SL, are important topics in
medical imaging applications. The clinical use case of SSL motivates several recent methodological works, such Zhang
et al. [86], Azizi et al. [3], and Shekoofeh et al. [68].

E.3.2 Isn’t it already well-known that hyperparameter tuning with a realistic-sized validation set is viable?

When labeled data is abundant, as in common supervised learning settings, hyperparameter tuning is widely known as
effective. However, our work focuses on the semi/self-SL setting, where labels are limited. We carefully reviewed semi/self-
SL literature and argue that the viability of tuning on realistic-sized validation sets is not well-known in this setting. As our
paper’s Table 1 shows, existing SSL benchmarks often use validation sets larger than the training set! Seminal work by Oliver
et al. [62] cautions that “Extensive hyperparameter tuning may be somewhat futile due to an excessively small collection of
held-out data ...”. Su et al. [71] use a similar claim to justify not doing any tuning on their Semi-Fungi dataset experiments.

E.3.3 Does MixMatch outperform Flex/Fix/CoMatch because RandAug not suitable for medical imaging?

In general, RandAug-type augmentation can be successful for medical imaging tasks [15, 86], though we agree that it might
not be “optimal”. Instead, we hypothesize that MixMatch’s primary advantage is lower runtime cost per iteration com-
pared to FixMatch and successors. In our AIROGS ResNet-18 experiments (Fig. 1), MixMatch explores at least 80% more
hyperparameter combinations than its counterparts (111 vs. 59 for FixMatch).



F. Hyperparameter Details
F.1. Hyperparameter Tuning Strategy: Random Search Details
Below, in a specific table for each of the 16 methods (supervised, semi-, or self-), we provide a method-specific table showing
the random sampling distribution used for each hyperparameter for the random search of Alg. D.1.

.
Settings Common to All Methods
Optimizer Adam
Learning rate schedule Cosine

F.1.1 Supervised Baselines

Labeled only
Batch size 64
Learning rate 3⇥ 10x, X ⇠ Unif(�5,�2)
Weight decay 4⇥ 10x, X ⇠ Unif(�6,�3)

MixUp
Batch size 64
Learning rate 3⇥ 10x, X ⇠ Unif(�5,�2)
Weight decay 4⇥ 10x, X ⇠ Unif(�6,�3)
Beta shape ↵ x,X ⇠ Unif(0.1, 10)

Sup Contrast
Batch size 256
Learning rate 3⇥ 10x, X ⇠ Unif(�5.5,�1.5)
Weight decay 4⇥ 10x, X ⇠ Unif(�7.5,�3.5)
Temperature x,X ⇠ Unif(0.05, 0.15)

F.1.2 Semi-Supervised Methods

FlexMatch
Labeled batch size 64
Unlabeled batch size 448
Learning rate 3⇥ 10x, X ⇠ Unif(�5,�2)
Weight decay 4⇥ 10x, X ⇠ Unif(�6,�3)
Unlabeled loss coefficient 10x, X ⇠ Unif(�1, 1)
Unlabeled loss warmup schedule No warmup
Pseudo-label threshold 0.95
Sharpening temperature 1.0

FixMatch
Labeled batch size 64
Unlabeled batch size 448
Learning rate 3⇥ 10x, X ⇠ Unif(�5,�2)
Weight decay 4⇥ 10x, X ⇠ Unif(�6,�3)
Unlabeled loss coefficient 10x, X ⇠ Unif(�1, 1)
Unlabeled loss warmup schedule No warmup
Pseudo-label threshold 0.95
Sharpening temperature 1.0

CoMatch
Labeled batch size 64
Unlabeled batch size 448
Learning rate 3⇥ 10x, X ⇠ Unif(�5,�2)
Weight decay 4⇥ 10x, X ⇠ Unif(�6,�3)
Unlabeled loss coefficient 10x, X ⇠ Unif(�1, 1)
Unlabeled loss warmup schedule No warmup
Contrastive loss coefficient 5⇥ 10x, X ⇠ Unif(�1, 1)
Pseudo-label threshold 0.95
Sharpening temperature 0.2

MixMatch
Labeled batch size 64
Unlabeled batch size 64
Learning rate 3⇥ 10x, X ⇠ Unif(�5,�2)
Weight decay 4⇥ 10x, X ⇠ Unif(�6,�3)
Beta shape ↵ x,X ⇠ Unif(0.1, 1)
Unlabeled loss coefficient 7.5⇥ 10x, X ⇠ Unif(0, 2)
Unlabeled loss warmup schedule linear
Sharpening temperature 0.5

Mean Teacher
Labeled batch size 64
Unlabeled batch size 64
Learning rate 3⇥ 10x, X ⇠ Unif(�5,�2)
Weight decay 4⇥ 10x, X ⇠ Unif(�6,�3)
Unlabeled loss coefficient 8⇥ 10x, X ⇠ Unif(�1, 1)
Unlabeled loss warmup schedule linear

Pseudo-label
Labeled batch size 64
Unlabeled batch size 64
Learning rate 3⇥ 10x, X ⇠ Unif(�5,�2)
Weight decay 4⇥ 10x, X ⇠ Unif(�6,�3)
Unlabeled loss coefficient 10x, X ⇠ Unif(�1, 1)
Unlabeled loss warmup schedule Linear
Pseudo-label threshold 0.95



F.1.3 Self-supervised Methods

SwAV
Batch size 256
Learning rate 1⇥ 10x, X ⇠ Unif(�4.5,�1.5)
Weight decay 1⇥ 10x, X ⇠ Unif(�6.5,�3.5)
Temperature x,X ⇠ Unif(0.07, 0.12)
Num. prototypes 1⇥ 10x, X ⇠ Unif(1, 3)

MoCo
Batch size 256
Learning rate 1⇥ 10x, X ⇠ Unif(�4.5,�1.5)
Weight decay 1⇥ 10x, X ⇠ Unif(�6.5,�3.5)
Temperature x,X ⇠ Unif(0.07, 0.12)
Momentum x,X ⇠ Unif(0.99, 0.9999)

SimCLR
Batch size 256
Learning rate 1⇥ 10x, X ⇠ Unif(�4.5,�1.5)
Weight decay 1⇥ 10x, X ⇠ Unif(�6.5,�3.5)
Temperature x,X ⇠ Unif(0.07, 0.12)

SimSiam
Batch size 256
Learning rate 1⇥ 10x, X ⇠ Unif(�4.5,�1.5)
Weight decay 1⇥ 10x, X ⇠ Unif(�6.5,�3.5)

BYOL
Batch size 256
Learning rate 1⇥ 10x, X ⇠ Unif(�4.5,�1.5)
Weight decay 1⇥ 10x, X ⇠ Unif(�6.5,�3.5)
Temperature x,X ⇠ Unif(0.07, 0.12)
Momentum x,X ⇠ Unif(0.99, 0.9999)

DINO
Batch size 256
Learning rate 1⇥ 10x, X ⇠ Unif(�4.5,�1.5)
Weight decay 1⇥ 10x, X ⇠ Unif(�6.5,�3.5)
Temperature x,X ⇠ Unif(0.07, 0.12)
Momentum x,X ⇠ Unif(0.99, 0.9999)

Barlow Twins
Batch size 256
Learning rate 1⇥ 10x, X ⇠ Unif(�4.5,�1.5)
Weight decay 1⇥ 10x, X ⇠ Unif(�6.5,�3.5)
Temperature x,X ⇠ Unif(0.07, 0.12)
Momentum x,X ⇠ Unif(0.99, 0.9999)

F.2. Hyperparameter transfer strategy
To make the most of limited labeled data, one potential strategy recommended by Su et al. [71] is to use the entire labeled set
for training, reserving no validation set at all. This relies on pre-established hyperparameters from other dataset/experiments.
In this study, we experiment with two scenarios: using pre-determined hyperparameters tuned for CIFAR-10, or using hyper-
parameters tuned for TissueMNIST.

The CIFAR-10 hyperparameters are sourced from repositories published by each method’s original authors, as this is a
common benchmark in the SSL literature. We ensure that each hyperparameter choice, when applied using the re-implented
code for each method in our codebase, matches previously reported results on CIFAR-10.

The TissueMNIST hyperparameters originate from our experiments as depicted in Figure C.2 (a). For exact values, see
App. F.2.1.

For each method using the transfer strategy, we perform training on the combined train+validation set, setting the max-
imum number of epochs to 100 for PathMNIST and AIROGS (80 epochs for TMED2). Training is terminated early if the
train loss does not improve over 20 consecutive epochs. Empirically, we observe that all models which did not trigger early
stopping reached a plateau in training loss.

F.2.1 Best Hyperparameters on TissueMNIST for Semi-Supervised Methods

Below we report the chosen hyperparameters on TissueMNIST for each semi-supervised method, as used in the hyperparam-
eter transfer experiments.

FlexMatch
seed0 seed1 seed2 seed3 seed4

Learning rate 0.00036 0.00016 0.00016 0.00068 0.00006
Weight decay 0.00259 0.00001 0.00371 0.00023 0.002103
Unlabeled loss coefficient 2.22 0.82 5.00 1.94 6.09

FixMatch
seed0 seed1 seed2 seed3 seed4

Learning rate 0.00074 0.00034 0.00392 0.00102 0.00037
Weight decay 0.00045 0.00315 0.00001 0.00005 0.00058
Unlabeled loss coefficient 3.08 6.70 1.85 1.46 0.47



CoMatch
seed0 seed1 seed2 seed3 seed4

Learning rate 0.00124 0.00145 0.00061 0.00026 0.00113
Weight decay 0.00042 0.00009 0.00005 0.00009 0.00017
Unlabeled loss coefficient 0.30 1.71 1.26 2.74 0.46
Contrastive loss coefficient 1.26 2.21 3.71 0.56 1.37

MixMatch
seed0 seed1 seed2 seed3 seed4

Learning rate 0.00028 0.00003 0.00018 0.00009 0.00005
Weight decay 0.000005 0.00195 0.00005 0.00085 0.00082
Beta shape ↵ 0.2 0.9 0.9 0.8 0.7
Unlabeled loss coefficient 9.13 37.96 8.06 25.16 11.17

Mean Teacher
seed0 seed1 seed2 seed3 seed4

Learning rate 0.00062 0.00022 0.00005 0.00128 0.00125
Weight decay 0.00189 0.00001 0.00008 0.00001 0.00001
Unlabeled loss coefficient 67.67 0.87 1.25 7.60 13.56

Pseudo-label
seed0 seed1 seed2 seed3 seed4

Learning rate 0.00007 0.00021 0.00005 0.00063 0.00060
Weight decay 0.00033 0.00093 0.00383 0.00005 0.00087
Unlabeled loss coefficient 0.19 0.16 8.73 0.82 0.25

F.2.2 Best Hyperparameters on TissueMNIST for Self-Supervised Methods

Below we report the chosen hyperparameters on TissueMNIST for each self-supervised method, as used in the hyperparam-
eter transfer experiments.

SwAV
seed0 seed1 seed2 seed3 seed4

Learning rate 0.00065 0.00325 0.00012 0.00086 0.00196
Weight decay 0.0001497 0.0000056 0.0000006 0.0000021 0.0000003
Num. prototypes 845 131 36 201 59

MoCo
seed0 seed1 seed2 seed3 seed4

Learning rate 0.00288 0.00023 0.00043 0.00005 0.02629
Weight decay 0.000002 0.0000008 0.0000003 0.0000005 0.0000004
temperature 0.09331 0.07097 0.10987 0.07414 0.07080
Momentum 0.99242 0.99672 0.99267 0.99950 0.99538

SimCLR
seed0 seed1 seed2 seed3 seed4

Learning rate 0.00217 0.00131 0.000640 0.00380 0.00136
Weight decay 0.00002 0.00001 0.00001 0.00001 0.00001
temperature 0.11719 0.10426 0.08652 0.07784 0.11478

SimSiam
seed0 seed1 seed2 seed3 seed4

Learning rate 0.0002 0.00056 0.00013 0.00338 0.00098
Weight decay 0.000066 0.000046 0.000023 0.000001 0.000001

BYOL
seed0 seed1 seed2 seed3 seed4

Learning rate 0.000245 0.001308 0.000371 0.001653 0.001959
Weight decay 0.0000007 0.0000057 0.0000004 0.000003 0.000001
Momentum 0.9928618 0.996167 0.9988484 0.9940063 0.9934791

DINO
seed0 seed1 seed2 seed3 seed4

Learning rate 0.000245 0.001308 0.000371 0.001653 0.001959
Weight decay 0.0000007 0.0000057 0.0000004 0.000003 0.000001
Momentum 0.9928618 0.996167 0.9988484 0.9940063 0.9934791

Barlow Twins
seed0 seed1 seed2 seed3 seed4

Learning rate 0.000245 0.001308 0.000371 0.001653 0.001959
Weight decay 0.0000007 0.0000057 0.0000004 0.000003 0.000001
Momentum 0.9928618 0.996167 0.9988484 0.9940063 0.9934791
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