
Benchmarking Audio Visual Segmentation for Long-Untrimmed Videos

Supplementary Material

#Frame1

SAM

Segment Results

Stage1：Mask Generation for the First Frame

Remaining Frames

XMem

Stage2: Tracking

prompt

Stage3: Bad Results Correction

Prototype to Points # Frame t

SAM

…

#Frame m #Frame n#Frame 2 #Frame T

… …
Stage 1&2

Figure 8. The flowchart of mask annotation tool. In the first stage,
we manually annotate points to acquire the masks of audible ob-
jects in the first frame of audible segments. In stage two, these
masks serve as prompts for XMem, which identifies the closest
prototype for each subsequent frame. These prototypes are then
transformed into points and combined with their frames in SAM
to create high-quality masks. In the third stage, we identify and
re-annotate low-quality segments in the video.

7. Mask Annotation Tool

Meticulous polygon-based mask annotation is a time-
intensive and laborious process. Inspired by [49], we de-
velop a semi-automatic annotation tool based on SAM [25]
and the tacking method XMem [9]. This tool simplifies the
annotation process, depicted in Figure 8.

In the first stage, we leverage SAM to segment the audi-
ble regions with the designated prompts, i.e. positive points
and negative points. We develop a user interface to facili-
tate easy mask annotations through minimal interaction, as
shown in Figure 9 (a). Here, masks for only the initial frame
of each sound segment are produced to serve as preliminary
references for the auditory objects. Subsequently, we em-
ploy XMem to extend these initial masks to the remaining
frames. However, given that XMem is a semi-supervised
method, the resultant tracking masks often suffer from poor
quality. To counter this, we transform the XMem’s pro-
totype outputs into points, which we then use as image
prompts to enhance the mask quality with SAM. In some
cases, the annotated objects feature significant deformation,
leading to tracking difficulties and substandard mask qual-
ity, as indicated in Figure 5. When such tracking failures
occur, our correction interface (shown in Figure 9 (b)) en-
ables annotators to pinpoint and re-annotate the failed clips.

8. More Details about the Strong Baseline
8.1. Architecture Details

Visual Branch. To obtain the masks and bounding boxes
of potential sounding objects, we employ MaskFormer [7]
and DETR [3] as the visual branches. Unlike typical visual
datasets where all objects are labeled, in AVS datasets, only
those objects that emit sound are given annotations. This
dataset bias weakens the ability of visual models to identify
all potential sounding objects [31, 37]. To better equip the
visual networks for the AVS task, we incorporate a silent
object-aware loss [31] into the training process. Addition-
ally, we set all hyer parameters to the default settings of
MaskFormer (Swin-base) and DETR (DETR-DC5 R101),
including the backbone and the Transformer-based module.
Both models are initially pre-trained on COCO. For further
refinement, we fine-tune MaskFormer over five epochs and
DETR over six epochs, both using the AdamW optimizer
[34] at learning rates of 0.00006 and 0.0001, respectively.
Audio Branch. We employ VGGish accompanied by two
subsequent multi-layer perceptrons (MLPs) as the audio
branch. The training objective of the audio branch is Binary
Cross Entropy Loss. The hyperparameters for VGGish are
maintained at their standard settings, and we fine-tuned the
module based on the version pre-trained on the VGGSound
dataset. This whole branch is trained over 60 epochs using
the AdamW optimizer, with a set learning rate of 0.001.

8.2. Modality Contribution Analysis

Table 3. Analyzing the distinct contributions of Strong Baseline’s
audio (A) and visual (V) branches: notably, the audio branch lacks
spatial aspects, focusing evaluation metrics solely on temporal per-
formance. For instance, m tIoU measures label accuracy within
the ground-truth temporal range. Conversely, the visual branch
identifies vocalization periods by localizing the audible object’s
first and last frame appearances as its start and end times.

Modality A V A&V

Ours (Mask based)

m tIoU 53.26 5.86 18.79

m vIoU 62.34 5.34 17.32

m tF 61.89 5.91 17.33

m vF 60.16 5.74 16.25

Ours (BBox based)

m tIoU 53.26 4.76 15.53

m vIoU 62.34 4.51 15.89

m tF 61.89

m vF 60.16

We further examine the impact of each modality based



(a) The UI Interface for the First Frame Annotation.

(b) The UI Interface for the Checking and Re-annotation.

Figure 9. The UI interface of our mask annotator tool.

on the strong baseline presented in Table 3. Notably, spa-
tial localization is not involved when we solely employ the
audio branch. Thus, evaluation metrics are exclusively fo-
cused on assessing model performance in the temporal di-
mension.

As suggested in Table 3, when only using audio modality
as input, our model obtains competitive performance on all
evaluation metrics relative to the AVE methods listed in Ta-
ble 2. This implies that the prevalence of silent segments in
the LU-AVS dataset limits the effectiveness of audio-visual
interactions in current AVE methods. When we rely solely
on the visual branch, we identify temporal localization by
the frames where the target object first and last appears. As
indicated in Table 2, the performance significantly declines
across all metrics when solely using this branch. This is be-
cause the visual branch indiscriminately segments objects
across all frames without considering sound emission, re-
sulting in a significant reduction in both temporal and spa-
tial accuracy.

Our findings emphasize the importance of audio guid-
ance in the AVS task. Moreover, the results further demon-
strate the intricacies of LU-AVS, including the high propor-
tion of silent objects, multiple audible segments in a video,
various sounding positions, and different duration lengths
of audible segments, posing new challenges for AVS. This
data complexity better reflects whether the method has truly
achieved audio-visual localization, rather than fitting to
prominent objects in the image, which would artificially in-
flate the model performance.


