
PixelLM: Pixel Reasoning with Large Multimodal Model

Supplementary Material

In this supplementary material, we first detail the train-
ing configuration, decoder structure, flops calculation, and
MUSE evaluation process in Sec.A. We then present an ad-
ditional experimental analysis of our segmentation code-
book and decoder in Sec.B. Furthermore, we offer a more
comprehensive analysis of MUSE and the multi-referring
segmentation dataset in Sec. C.

A. Implementation Details
Training details. We give the detailed training configura-
tion in Tab. A.1, and we do not use color jittering, drop path
or gradient clip. The gradient accumulation step is set to 10.
Structure of pixel decoder. The decoder can be divided
into three parts based on their functions: i) the attention
block for each scale; ii) using the output mask from one
scale to modulate the features in the next scale; iii) the fu-
sion of masks from all scales to obtain the final results. We
present the PyTorch-style pseudocodes for the overall de-
coder and each part in Alg. 1.
Calculation of TFLOPs. We compare models’ TFlops
(trillion floating-point operations per second) in Tab. 1. The
calculation follows the formula in [7] and the script inDeep-
Speed [23]. Since the flops for LMMs vary with the gen-
erated token length, we standardize it at 512. This length
aligns with the common default used by [17, 30] and suf-
fices to accommodate dozens of target objects.
Details of the evaluation metric. Sec. 4.3 provides a con-
cise overview of the MUSE evaluation pipeline. In this sec-
tion, we delve into a more formal and detailed explanation
of its design. Let us denote by M = {Mg}Gg=1 the ground
truth set of G objects, and M̂ = {M̂k}Kk=1 the set of K pre-
dictions. Motivated by [4], assuming K is not equal to G,
we use ? (no objects) to pad the smaller set and both sets
finally have size P = max(G,K).
(1) We find a bipartite matching between these two sets by
searching for a permutation of P elements, � 2 SP , with
the lowest cost:

�̂ = argmin
�2SP

PX

i

Lmatch(Mi, M̂�(i))

where Lmatch(Mi, M̂�(i)) is a pairwise matching cost be-
tween ground truth Mi and a prediction with index �(i).
We compute this optimal assignment efficiently with the
Hungarian algorithm. We define Lmatch(Mi, M̂�(i)) as
Lbce(Mi, M̂�(i)) + Ldice(Mi, M̂�(i)).
(2) Based on the matching results, we modify the generated
response yres to y

0
res

: since each M̂i originates from a seg-

config value
optimizer AdamW
base learning rate 3.0e-4
weight decay 0
optimizer monmentum �1, �2=0.9,0.95
batch size 16
learning rate schedule WarmipDecayLR
warmup iterations 100
augmentations None
↵ 2.0
�ref 2.0
�dice 0.5

Table A.1. Training settings.

Codebook
design

MUSE Val refCOCO+ refCOCOg
gIoU cIoU val testA testB val(U) test(U)

N 41.0 48.3 64.0 69.8 57.5 67.9 68.4
N ⇥ L 42.6 50.7 66.3 71.7 58.3 69.3 70.5

Table A.2. Sharing tokens across L scales. The first row corre-
sponds to results of sharing tokens across all feature scales.

Selected layers MUSE Val refCOCO+ refCOCOg
gIoU cIoU val testA testB val(U) test(U)

baseline 40.1 47.2 61.1 65.4 54.7 64.3 65.6
20, 17, 14 42.0 51.5 66.0 71.4 58.5 68.8 70.6
20, 17 41.2 49.1 65.9 71.2 58.0 68.0 66.4
23, 14, 10 41.8 48.0 65.1 68.3 57.9 67.5 68.0
23, 14, 20 42.3 51.4 66.0 71.5 58.5 69.8 70.4
23, 14 42.6 50.7 66.3 71.7 58.3 69.3 70.5

Table A.3. Multi-scale layer selection. CLIP-ViT consists of 24
layers. “Baseline” only uses the penultimate (i.e., the 23rd) layer.

mentation token sequence in yres, we replace each sequence
with the GPT-generated description of Mi.
(3) We use a carefully designed prompt for GPT-3.5 to as-
sign a score si to each M̂i in the answer in a single step. An
example of this methodology is depicted in Fig. A.1. The
empty predictions are directly scored with 0.

The above three steps assess the model’s capability to
generate outputs where masks are intertwined with text de-
scriptions and evaluate how accurately these masks corre-
spond to their respective text descriptions. Then we evalu-
ate the quality of the masks.
(4) The final IoU of each prediction is:

Intersectioni =

⇢
Intersectioni si > 0.5
0 si  0.5

IoUi = Intersectioni/Unioni

And the final IoUimg of each image is:

IoUimg =
X

i

IoUi/P

Algorithm 1: Pseudo codes of our pixel decoder.
Inputs: f img:image features from L scales [L,C,H,W];

h seg:segmentation tokens for L scales [L, C];

Variables: lev token: Learnable embeddings for L scales

[L,C]; out token:Learnable embeddings [N, C];

image pe:position embedding of image features; gamma:mask

weighting factors [L]

Functions: SelfAttention();CrossAttention();MLP();

up scale(); down scale();

1 def feature update(f, mask):
f:image feature of one scale.[CxHxW]

mask:output from the attention block above f.[Cx4Hx4W]

2 mask = down scale(mask, size=(HxW)); # mask: [H,W]

3 f = f * (sigmoid(mask) + 1) # update feature

4 return f

5 def attention block(h, f, l):
h, f:segmentation token and image feature of one

scale.[C], [CxHxW]

l:scale index

6 token = cat([out token, h], dim=0) + lev token[l];
token:[N+1,C]

7 attn out = SelfAttention(q=k=v=token);# self attention

output:[N+1,C]

8 token = norm(token + attn out)

9 key = f + image pe; # key:[C,H,W]

10 attn out = CrossAttention(q=token, k=key, v=f);# cross

attention output:[N+1,C]

11 token = norm(token + attn out + MLP(token)) ;# update

token:[N+1,C]

12 attn out = CrossAttention(q=key, k=token,

v=token);# cross attention output:[C,H,W]

13 f = norm(f + attn out); # update feature:[C,H,W]

14 f up = up scale(f) # f up:Cx4Hx4W

15 token = MLP(token) # token:[N+1,C]

16 mask = token @ f # mask:[N+1,4H,4W]

17 mask = mean(mask, dim=0) # mask:[4H,4W]

18 return mask

19 def mask fusion(mask list):
masks:a list of masks from each scale

20 final mask = zeros(4Hx4W); # initialize empty mask

21 for l, m in enumerate(mask list):
22 final mask = final mask + gamma[l] * m

23 return final mask

Main Function

24 def pixel decoder(f img, h seg):
masks:a list of mask from each scale

25 mask list = []

26 for l, (f, h) in enumerate(zip(f img, h seg)):
27 if l < L-1:
28 f = feature update(f, mask)

29 ; # update features after the scale L

30 mask = attention block(h, f, l)

31 mask list.append(mask)

32 final mask = mask fusion(mask list)

33 return final mask

Based on the IoU scores, we can calculate gIoU and cIoU
metrics by referring segmentation dataset.

B. More Ablative Experiments.
Multi-scale tokens sharing. To clearly demonstrate the ne-
cessity of our multi-scale segmentation tokens in the code-
book Cseg, we continue using L multi-scale features, but re-
duce the original codebook shape from N ⇥ L to N (recall
that N is the number of tokens in each scale group). This
reduction resulted in the remaining N tokens being identi-

cal (i.e., shared) across all L scales. As Tab. A.2 shows,
using a dedicated segmentation token for each scale yields
better performance.
Multi-scale layer selection. We experiment with different
layer selections as presented in Tab. A.3. The CLIP-ViT-L
used in PixelLM consists of 24 layers. To reduce the com-
putational cost of the decoder, we avoid selecting features
from all layers of ViT. Instead, we follow the multi-scale
feature selection ratio from prior work [11, 18] and consider
other selection options. Our experiments reveal that select-
ing features from layers before the middle does not yield
benefits for our task (the fourth row in Tab. A.3). There-
fore, we mainly focus on selections from the middle and
rear layers. The results show that using features from layers
14 and 23 leads to the best outcomes.

C. More Details about MUSE
C.1. Data Filtering
GPT-4V filtering. Although GPT-4V can efficiently un-
derstand image content, there are still failure cases in the
generated data, which can be summarized in the following
two points:
• Questions are vague and open to multiple interpretations.

For example, the question “What should I take with me
on my outing?” is extremely vague because “outing” can
mean a wide array of activities.

• Answers that omit semantically equivalent instances. For
instance, a question might ask about “choosing a fruit for
a snack”, but the answer may only suggest “an apple”,
ignoring other fruit visible in the image.

Therefore, it is necessary to employ a stringent sample fil-
tering process to guarantee the quality of the data. To-
ward this goal, we develop a GPT-4V assisted data filter-
ing pipeline. This pipeline operates by prompting GPT-4V
to evaluate all initial question-answer pairs, based on iden-
tified common failure modes. Pairs classified by GPT-4V
as falling within these failure categories are removed. This
procedure effectively excludes approximately 20% of the
preliminary data. The specific prompts used in this process
are detailed in Fig. A.1.
Human verification. To ensure high quality in the gener-
ated question-answer pairs during the evaluation stage, we
further engage experienced human annotators to double-
check our evaluation set. Our approach is driven by two
primary objectives:
• The questions should follow an intuitive and logical se-

quence that a person would typically think of when view-
ing the image.

• The answers should correspond closely to the way a hu-
man would naturally respond to the question

The above filtering process effectively ensures that the ques-
tions in the MUSE dataset are sufficiently challenging for

Figure A.1. Evaluation example. The left panel illustrates the prompt employed in our GPT evaluation pipeline. The right panel showcases
an example of a predicted answer alongside its corresponding modified version, as input to GPT.

(a) The number of instances per category (b) Distribution of token count in instance descrip-
tions.

(c) Distribution of target count in questions.

Figure A.2. Dataset statistics. Best viewed digitally.

reasoning, while the answers remain detailed and accurate.

C.2. Dataset Statistics

In this section, we systematically analyze our dataset. First,
our question-answer pairs are based on over 1000 cate-
gories, encompassing a wide spectrum of objects found in
daily scenes. Additionally, the descriptions of objects in
the answers go beyond mere category names limited to a
few tokens. Instead, they offer context-specific descriptions
extending to over 100 tokens. This demonstrates that our
dataset is rich in perception information, crucial for real-
world applications. Finally, we present the statistics regard-
ing the number of objects involved in a data sample.
Category statistics. There are over 1000 categories in
MUSE from the original LVIS dataset, and 0.9 million in-
stances with unique descriptions that vary based on the con-
text of the question-answer pairs. Fig. A.2a shows the num-
ber of instances per category on all question-answer pairs.
The distribution inherits the low-shot nature of LVIS.
Token count. Fig. A.2b presents the distribution of in-
stances by token count in their descriptions, highlighting

a wide range that exceeds 100 tokens in the most extensive
cases. These descriptions are not limited to simple category
names; rather, they are substantially enriched with detailed
information about each instance, encompassing aspects like
appearance, attributes, and relationships with other objects,
thanks to our GPT-4V-based data generation pipeline. The
depth and variety of information in the dataset bolster the
trained model’s generalization capabilities, enabling it to ef-
fectively address open-set questions.
Target count. Fig. A.2c presents statistics on the number of
targets in each question-answer pair. The average number
of targets is 3.7, with the maximum number of targets in a
single pair reaching up to 34. This number can cover most
scenarios of target reasoning for a single image.

C.3. Multi-referring Segmentation

As mentioned in Sec. 5.1, we transform conventional re-
ferring segmentation datasets into a multi-referring format
for model training. In this subsection, we detail this pro-
cess. The transformation involves selecting one to three
distinct target objects from the annotations of each image.

Figure C.3. Example of GPT-4 data generation. The corresponding image is the same as in Fig. A.1.

These objects are used to construct questions in the format:
Please segment the <objects> in the image, where
<objects> represents a list of comma-separated object de-
scriptors. The response format is a list of comma-separated
<object> is <SEG>, with <object> being the descrip-
tion of each object. We require that the order of predictions
in the answer matches the order of object names in the ques-
tion and calculate gIoU and cIoU for each prediction based
on this.

C.4. More Details about GPT-4 Generated Data.
In Sec. 5.5, we create 30,000 additional multi-target
question-answer pairs to compare GPT-4 and GPT-4V. The
prompts for GPT-4 adhere to similar generation principles
but incorporate detailed image captions to offset the ab-
sence of visual content. Fig. C.3 demonstrates an example
of our GPT-4 data generation process and its typical fail-
ures. Given that image content is not directly perceivable,
conveying as detailed an image description as possible into
GPT-4 is crucial to compensate for this information gap.
However, this method often leads to a lack of diversity in
the generated question-answer pairs (refer to the question-
answer pair at the bottom of Fig. C.3), characterized by: i)
Numerous questions are composed of simple referring style
sub-questions; ii) The question and answer content is lim-
ited to what the image caption describes; iii) Challenges in
generating detailed object descriptions. To address these
issues, it might be necessary to introduce more complex
annotation details like object relationships, which signifi-
cantly increases the complexity and burden of data genera-
tion.

	. Introduction
	. Related Work
	. Large Multimodal Models
	. Fine-Grained LMMs

	. Method
	. Model Design
	. Traning Objectives

	. Multi-target Reasoning Segmentation
	. MUSE Dataset
	. Dataset Generation Pipeline
	. Evaluation

	. Experiment
	. Implementation Details
	. Benchmarks and Baselines
	. Results on MUSE
	. Results on Referring Segmentation
	. Ablation Study

	. Conclusion
	. Implementation Details
	. More Ablative Experiments.
	. More Details about MUSE
	. Data Filtering
	. Dataset Statistics
	. Multi-referring Segmentation
	. More Details about GPT-4 Generated Data.

