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Table 1. Details of the data split for PASCAL-5i. Each row con-
sists of 5 classes designated for testing, with the remaining 15
classes utilized for training.

Fold Test classes

0 Aeroplane, Bicycle, Bird, Boat, Bottle

1 Bus, Car, Cat, Chair, Cow

2 Dining table, Dog, Horse, Motorbike, Person

3 Potted plant, Sheep, Sofa, Train, TV/monitor

Table 2. Details of the data split for COCO-20i. Each row consists
of 20 classes designated for testing, with the remaining 60 classes
utilized for training.

Fold Test classes

0
Person, Airplane, Boat, Parking meter, Dog, Elephant, Backpack,

Suitcase, Sports ball, Skateboard, Wine glass, Spoon, Sandwich,

Hot dog, Chair, Dining table, Mouse, Microwave, Sink, Scissors

1
Bicycle, Bus, Traffic light, Bench, Horse, Bear, Umbrella, Frisbee,

Kite, Surfboard, Cup, Bowl, Spoon, Orange, Pizza, Couch, Toilet,

Remote, Oven, Book, Teddy bear

2
Car, Train, Fire hydrant, Bird, Sheep, Zebra, Handbag, Skis,

Baseball bat, Tennis racket, Fork, Banana, Broccoli, Donut, Potted

plant, TV, Keyboard, Toaster, Clock, Hair drier

3
Motorcycle, Truck, Stop sign, Cat, Cow, Giraffe, Tie, Snowboard,

Baseball glove, Bottle, Knife, Apple, Carrot, Cake, Bed, Laptop,

Cell phone, Sink, Vase, Toothbrush

Appendix

A. Additional Implementation Details

Training:To capture semantic correlations between refer-
ence and target images, we introduced a semantic rele-
vance model in the Visual Prompt Encoder. Specifically,
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Table 3. Details of the data split for PASCAL-5i in domain shift
scenario. Each line represents non-overlapping classes in the train-
ing set corresponding to the respective fold of COCO.

Fold Test classes

0 Aeroplane, Boat, Chair, Dining table, Dog, Person

1 Horse, Sofa, Bicycle, Bus

2 Bird, Car, Potted plant, Sheep, Train, TV/monitor

3 Bottle, Cow, Cat, Motorbike

we validated the effectiveness of VRP-SAM on VGG-
16 [1], ResNet-50 [2], and DINOv2 [6]. Following prior
work [10, 11], we utilized mid-level features from the im-
age encoder to retain finer details, with high-level features
used to generate a pseudo mask for the target image. For
instance, in the case of ResNet-50, mid-level features corre-
sponded to the 3th and 4th blocks, while high-level features
were extracted from the 5th block.

Within the feature augmenter of the Visual Reference
Encoder, the pseudo mask for the target was computed
by evaluating the pixel-wise similarity map through the
comparison of high-level features of reference and target
images. We retained the maximum similarity at each pixel
and normalized the similarity map to the [0, 1] range
using min-max normalization. This similarity map serves
as the pseudo mask for the target image. We followed
the SEEM [17] approach, where point reference prompts
involve randomly sampling (1, 20) points from the ground
truth (GT), scribble reference prompts are generated
randomly using a free-form training mask generation
algorithm proposed in [14], resulting in (1, 20) scribbles,
and box reference prompts are obtained by extracting
object bounding boxes from the GT.

Evaluation: For quantitative evaluation on the em-
ployed benchmark, we employed the same approach as our
training strategy to obtain visual reference prompts about
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Table 4. Compare with the State-of-the-arts. Results of one-shot semantic segmentation on COCO-20i.Gray indicates the model is trained
by in-domain datasets. The red colors respectively represent the optimal results.

Method Venue Image encoder F-0 F-1 F-2 F-3 Mean
few-shot method.

BAM+SVF [10] NeurIPS’22
ResNet-50

46.9 53.8 48.4 44.8 48.5

VAT [3] ECCV’23 39.0 43.8 42.6 39.7 41.3

HDMNet [7] CVPR’23 43.8 55.3 51.6 49.4 50.0

FPTrans [15] NeurIPS’22 Deit-B/16 44.4 48.9 50.6 44.0 47.0

DCAMA [9] ECCV’23 Swin-B 49.5 52.7 52.8 48.7 50.9

based foundation methods.

Painter [12] CVPR’23 Painter 31.2 35.3 33.5 32.4 33.1

PerSAM [16] arXiv’23 - 23.1 23.6 22.0 23.4 23.0

Matcher [4] arXiv’23 DINOv2-L 52.7 53.5 52.6 52.1 52.7

SegGPT [13] ICCV’23 Painter 56.3 57.4 58.9 51.7 56.1

VRP-SAM This work
VGG-16 43.6 51.7 50.0 46.5 48.0

ResNet-50 48.1 55.8 60.0 51.6 53.9

DINOv2-B 56.8 61.0 64.2 59.7 60.4

Table 5. Ablation study based different label types on COCO-20i. The red and blue colors respectively represent the optimal and suboptimal
results.

Method Image encoder Label Type F-0 F-1 F-2 F-3 Mean

VRP-SAM

VGG-16

point. 24.6 34.4 35.1 36.7 32.7
scribble. 32.7 49.6 46.8 39.5 42.2

box. 36.5 49.7 49.7 43.2 44.8
mask. 43.6 51.7 50.0 46.5 48.0

ResNet-50

point. 32.0 39.2 43.0 39.3 38.4
scribble. 40.2 52.0 52.4 44.4 47.3

box. 44.5 49.3 55.7 49.1 49.7
mask. 48.1 55.8 60.0 51.6 53.9

point, scribble, and box. For points and scribbles, we ran-
domly selected (1, 20) as prompts. In visual experiments,
we showcased the performance of VRP-SAM using only
one point or scribble. When inferring with N visual ref-
erence prompts, we utilize the visual reference prompt en-
coder to generate N sets of queries. Subsequently, these
N sets of queries are concatenated and fed into the mask
decoder.

B. Datasets Setting
To quantify the generalization of VRP-SAM to unseen ob-
jects, we adopt the data setup of few-shot segmentation, or-
ganizing all classes from the COCO and PASCAL datasets
into four folds. For each fold, PASCAL-5i [8] comprises
15 base classes for training and 5 novel classes for test-
ing, while COCO-20i [5] includes 60 training base classes
and 20 testing novel classes. Table 1 and Table 2 provide
a detailed breakdown of the testing classes for PASCAL-
5i and COCO-20i in each fold, where the training classes

are composed of combinations of testing classes from other
folds. Additionally, to assess the performance of VRP-SAM
on domain shift, we trained on COCO-20i and tested on
PASCAL-5i. To ensure that there is no overlap between
training and testing classes, we performed a new partition
of the PASCAL dataset, and Table 3 provides a detailed de-
scription of the newly segmented folds for PASCAL.

C. More experiments

C.1. Comparison with the State-of-the-art

To demonstrate the superior performance of VRP-SAM, we
conducted experiments on the COCO-20i dataset, compar-
ing it with state-of-the-art methods. As shown in Table 4,
we observed outstanding results when employing DINOv2-
B [6] as the image encoder in VRP-SAM, particularly sur-
passing SegGPT [13] for the first time — a method utiliz-
ing an image encoder trained on in-domain datasets. Fur-
thermore, utilizing ResNet-50 as the image encoder still
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Table 6. Ablation study on COCO-20i base set. The red and blue colors respectively represent the optimal and suboptimal results.

Methods Image encoder Label type
Base set Novel set

F-0 F-1 F-2 F-3 Means Means

VRP-SAM
ResNet-50

point. 30.1 36.8 44.5 42.4 38.5 38.2

scribble. 44.7 50.7 49.8 53.1 49.6 47.2

box. 46.4 50.4 49.8 57.3 51.0 49.7

mask. 52.4 56.4 58.8 61.3 57.2 53.9

DINOv2-B mask. 66.1 69.0 70.0 65.2 67.6 60.4

achieved a noteworthy Mean IoU of 53.9, outperforming the
majority of current approaches. These findings substantiate
the versatility and robustness of VRP-SAM across differ-
ent encoders, solidifying its superiority in visual reference
segmentation tasks.

C.2. Different label type

We conducted ablation study on label types of reference
image, exploring their impact on VRP-SAM results using
both VGG-16 and ResNet-50. Table 5 presents the findings,
demonstrating a gradual performance improvement with in-
creasing annotation precision, particularly from points to
masks. Specifically, transitioning from point to mask an-
notations significantly boosted VRP-SAM performance by
approximately 15 miou. This underscores the crucial influ-
ence of annotation granularity on VRP-SAM performance.

C.3. Comparison on base set

To assess the performance of VRP-SAM on trained cate-
gories, we randomly selected 1000 reference-target pairs
from the training set of COCO-20i. This subset was used
to test VRP-SAM’s performance on categories it had been
trained on. We refer to the test set composed of categories
used for training in each fold as the base set. The experi-
mental results, as shown in Table 6, demonstrate that VRP-
SAM performs better on the base set than on the novel
set. This improvement is attributed to VRP-SAM acquir-
ing specific knowledge about the base classes during train-
ing, contributing to enhanced performance on those classes.
Moreover, employing DINOv2 as the image encoder signif-
icantly enhances VRP-SAM’s performance on the base set.
This improvement is attributed to DINOv2’s feature repre-
sentation being more adept at capturing intricate semantic
relationships, thereby boosting the model’s performance on
known classes.

C.4. Compare with text-guided SAM

The text-guided SAM can also segment target objects based
on category names, thus achieving a functionality similar
to VRP-SAM. To verify this, we conducted a comparison
with existing text-guided SAM in the PASCAL-5i setting.
The experimental results, as shown in Table 7. indicate that

Table 7. Compare with text-guided SAM on PASCAL-5i novel
set. The red colors respectively represent the optimal results.

model F-0 F-1 F-2 F-3 means
text-guided SAM:

FastSAM(ViT-B + YOLOv8x) 18.9 29.1 24.4 32.0 26.1

CLIP-SAM(ViT-B + SAM-H) 25.9 51.8 33.5 51.3 40.6

visual-guided SAM:

VRP-SAM(RN50 + SAM-H) 73.9 78.3 70.6 65.1 71.9

the performance of text-guided SAM is poor. This not only
demonstrates that SAM is a semantically agnostic segmen-
tation model, but also underscores the superiority of VRP-
SAM.

C.5. Results on more application scenarios

In the aforementioned experiments focusing on typical ob-
ject segmentation tasks, we conducted a comprehensive
evaluation of VRP-SAM. Next, we validate the effective-
ness of VRP-SAM in atypical object segmentation tasks.
Specifically, we conducted experiments on both part seg-
mentation and video object segmentation tasks. The results
are shown in Table 8 and 9. The results affirm VRP-SAM’s
promising performance in the domain of Part Segmentation
and Video Object Segmentation. We believe these findings
further support the versatility of VRP-SAM across diverse
applications.

Table 8. Result of part segmentation on PASCAL-PART. The red
colors respectively represent the optimal results.

model animals indoor person vehicles means

Painter [12] 20.2 49.5 17.6 34.4 30.4

SegGPT [13] 22.8 50.9 31.3 38.0 35.8

PerSAM [16] 19.9 51.8 18.6 32.0 30.1

VRP-SAM(RN50) 23.4 56.6 25.8 35.6 35.4

VRP-SAM(DINOv2-B) 30.3 52.1 25.8 36.7 36.2

D. Limitation and future works
Currently, we only demonstrate the effectiveness of VRP-
SAM in few-shot semantic segmentation. Extending VRP-
SAM to more vision tasks, such as video object segmenta-
tion and object tracking, needs more investigation. We leave
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Table 9. Result of video object segmentation on DAVIS 2017
dataset. The red colors respectively represent the optimal results.

model J&F J F

Painter [12] 34.6 28.5 40.8

PerSAM [16] 60.3 56.6 63.9

VRP-SAM 64.8 62.1 67.4

it for future work.
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