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Supplementary Material

7. Supplementary A
7.1. Derivation of Rényi’s a-order entropy

In this section, we further explain the derivation of a-order
version from Rényi’s 2-order entropy . According to its def-
inition, the Rényi’s a-order entropy can be formulated by an
expectation as follows
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where a € (0,1) U (1,00), p(x) is the probability density
function of the random variable X.

Next, we can calculate the expectation with sample mean
as is commonly done in density estimation [17]. Then, the
Rényi’s a-order entropy in Eq. 16 can be rewritten as fol-
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Similarity, we use the Parzen density estimator with a
Gaussian kernel g,(z,y) = exp (—52 ||z — y||?) to cal-
culate the probability density function p(z;), which can be

plugged into the Eq. 17, yields
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Now, we can construct the Gram matrix G with elements
Gij = go(x;,x;). Forall > 0 and a # 1, Rényi’s a-
order entropy is a general-purpose measurement which can
be calculated directly by the eigenvalues of a Gram matrix
G.

7.2. Estimation of Underlying Data Distribution

The estimation of mutual information is a notorious hard
problem in high-dimensional space since the complicated
underlying joint distribution of two high-dimensional vari-
ables is often criticized to be hard or impossible, which
leads to a gap between the information-theoretic principle
and its deep learning applications.

To bridge the gap, there exists two common strate-
gies, i.e., varitional approximation [1, 27] and neural es-
timation [3]. As shown in Figure 6, varitional approxi-
mation [I, 27] aims to introduce an auxiliary neural net-
work to estimate the mean and variance of the posterior
distribution so as to fit the posterior distribution (since
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Figure 6. Mutual information measurement. Existing IB-based
MVC methods utilize neural estimators to explicitly approximate
the posterior distribution of representation or to fit the optimal
function that can potentially estimate the data distribution. Dif-
ferently, DIB is capable of fitting the mutual information by the
eigenvalues of the Gram matrix Ax and A, (where A = %)
without the need of variational approximation.

Dt (p(2,2)|Ip () p () = Dir(p(zl2) |lp(2))) in
an explicit distribution estimation manner. Neural
estimation[3] resorts an neural estimator Ty to fit the mu-
tual information, which only requires to consider the ex-
pectations of original data and feature representation, and
does not need to know the specific situation of joint and
marginal distribution. The aforementioned methods trans-
fer the challenging task of computing mutual information
to the optimization process of neural network, which en-
ables us to parameterize mutual information and employ
it as an objective for optimization. However, the opaque
function of neural networks significantly amplifies the un-
certainty of the mutual information estimation process, as
aforementioned methods rely heavily on these networks. In
contrast, DIB fits the mutual information from the original
data and feature representation directly through the Gram
matrix as in Proposition 1. Inspired by this, we design a
MI measurement without variational approximation, which
has analytical gradients that allows us to parameterize the
mutual information and optimize it as an objective.
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Figure 7. Significant test of DIB compared with several represen-
tative baselines on MNIST-USPS and BDGP datasets.

7.3. Formulation of Cluster Consistency

Similar to the feature consistency, we adopt contrastive
learning to achieve cluster consistency.  Specifically,
each cluster labels SY can form (VK — 1) label pairs
{84, s o L. K w1th all labels except itself, where
{8y, 87 }m;ﬁv denotes (V — 1) positive labels pairs and

{sY, Zl}k: K —{s¥, 87"}y denotes V(K — 1) nega-
tive labels palrs And then, the cluster consistency objective
L .1, between cluster labels {S” —1 can be formulated as

\%
> 1(sv;s™)

v=1m#v

max Lqj, =

RO (19)

\4
Z Z E |log K d(s}’,séc)

v= e
L mzv d(s}’,sév)ENeg

+V(V —1)log N

where d(-, -) is the similarity measurement between two la-
bels, and Neg represents negative label pairs.

8. Supplementary B
8.1. Significant Test

We conduct a significance test [33] to evaluate whether
DIB’s clustering performance is statistically better than the
baseline methods. We use — log (p) values at a significance
level of 0.05. A higher —log (p) value indicates a greater
confidence in DIB’s superiority. We select several promis-
ing baselines based on ACC for comparison. From Figure 7,
DIB yields a higher — log (p) value than the baselines, sig-
nifying its statistical significance.

8.2. Comparison with variational approximation

In this study, we propose a novel mutual information mea-
surement without variational approximation, which can fit
the mutual information of high-dimensional spaces directly
by eigenvalues of the normalized kernel Gram matrix. To
further verify the effectiveness of the proposed MI mea-
surement without variational approximation, we replace it
in DIB with the variation approximation (with VA).

Table 3. Comparison of DIB on the proposed mutual information
measurement and variational approximation on MNIST-USPS,
BDGP and ESP datasets.

Metric with VA DIB
ACC 97.70 99.86
MNIST-USPS NMI 97.10 99.56
PUR 97.70 99.86
ACC 96.92 99.00
BDGP NMI 94.38 96.65
PUR 96.92 99.00
ACC 52.46 59.06
ESP NMI 36.06 37.77
PUR 55.15 59.06

Dataset

From Table 3, we can observe DIB has higher ACC, NMI
and PUR than with variational approximation on MNIST-
USPS, BDGP and ESP datasets in this section, which
demonstrates that fitting the mutual information directly
from data can learn a better feature representation compared
with variational approximation.



