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1. Proof
Calculating the probability distribution q(Xt−1|Xt) for the
reverse process is hard. However, given X0, the posterior
of the forward diffusion process can be calculated using the
following equation:

q(Xt−1|Xt, X0)=N(Xt−1; µ̃t(X
t, X0), β̃tI), (1)

µ̃t(X
t, X0)=

1√
αt

(Xt− βt√
1− ᾱt

ϵ), β̃t=
βt(1− ᾱt−1)

1− ᾱt
. (2)

According to Eq. (6) in the main text, the variational
lower bound can be divided into three parts:

Eq[−logpθ(X
0|X1, c)︸ ︷︷ ︸

L0

+DKL(q(X
T |X0)||p(XT ))]︸ ︷︷ ︸
LT

+

T∑
t=2

DKL(q(X
t−1|Xt, X0)||pθ(Xt−1|Xt, c))︸ ︷︷ ︸

Lt−1

.

(3)

LT is a constant without parameters that can be ignored. To
compute the parameterization of Lt−1, following [4], we set
the mean µθ(X

t, t, c) of pθ(Xt−1|Xt, c) to:

µθ(X
t, c, t)=

1√
αt

(Xt− βt√
1− ᾱt

ϵθ(X
t, c, t)). (4)

We can calculate Lt−1:

Lt−1 = Eq

[
1

2σ2
t

||µ̃t(X
t, X0)− µθ(X

t, c, t)||2
]
+ C, (5)

where C is a parameter-free constant that can be disre-
garded. By substituting Eq. (2) and Eq. (4) into Lt−1:

Lt−1 = Et,Xt,c,ϵ

[
1

2σ2
t

|| 1√
αt

(Xt− βt√
1− ᾱt

ϵ)

− 1√
αt

(Xt− βt√
1− ᾱt

ϵθ(X
t, c, t))||2

]
= Et,Xt,c,ϵ

[
β2
t

2σ2
tαt(1− ᾱt)

||ϵ− ϵθ(X
t, c, t)||2

]
= Et,X0,c,ϵ

[
β2
t

2σ2
tαt(1− ᾱt)

||ϵ− ϵθ(
√
ᾱtX

0 +
√
1− ᾱtϵ, c, t)||2

]
,

(6)

where β2
t

2σ2
tαt(1−ᾱt)

is a constant that is unrelated to the loss,
and following [4], we can further simplify the training loss:

L(θ) = Et,X0,c,ϵ

[
∥ϵ− ϵθ(

√
ᾱtX

0 +
√
1− ᾱtϵ, c, t)∥2

]
. (7)

2. Implementation Details
All experiments are conducted on the RTX 3090 GPU. We
describe the details of pre-training and fine-tuning on vari-
ous tasks.
Pre-training. During pre-training, we adopt the AdamW
optimizer with a weight decay of 0.05 and a learning rate
of 0.001. We apply the cosine decay schedule to adjust the
learning rate. Random scaling and translation are used for
data augmentation. Our model is pre-trained for 300 epochs
with a batchsize of 128. The T for the diffusion process is
set to 2000, and βt linearly increases from 1e-4 to 1e-2.
Object classification. We use a three-layer MLP with
dropout as the classification head. During the fine-tuning
process, we sample 2048 points for each point cloud, di-
vide them into 128 point patches. We set the learning rate
to 5e-4, and fine-tune for 300 epochs.
Object detection. Unlike MaskPoint [5], which is pre-
trained on ScanNet-Medium and loads the weights of both
the SA layer and the encoder during fine-tuning. We only
load the weights of the transformer encoder pre-trained on
ShapeNet [2] during fine-tuning. Following Maskpoint, we
set the learning rate to 5e-4 and use the AdamW optimizer
with a weight decay of 0.1. The batch size is set to 8.
Indoor semantic segmentation. For a fair comparison,
we put all pre-trained transformer encoders within the same
codebase and freeze them while fine-tuning the decoder and
semantic segmentation head. Due to limited computing re-
sources, we set the batch size to 4 during fine-tuning. The
remaining settings followed those used for training Point-
NeXt [6] from scratch in the original paper.
Outdoor semantic segmentation. During fine-tuning, we
load the backbone MinkUNet pre-trained on ShapeNet.
And fine-tune the entire network while following the same
settings used for training MinkowskiNet [3] from scratch.
Object detection of CAGroup3D with pre-training. We
load the weights of the backbone BiResNet, which is pre-
trained on ShapeNet using our method. Then, we fine-tune
the entire CAGroup3D [8] model using the same settings as
those used for training CAGroup3D from scratch. Note that,
we utilize the official codebase of CAGroup3D and consider
the best-reproduced results as the baseline for comparison.

3. Additional results
Outdoor semantic segmentation results. As shown in
Tab. 1, We report the mean IoU(%) and the IoU(%) on Se-
manticKITTI [1] for all semantic classes for different meth-
ods. Our method improves mean IoU and IoU for multi-
ple categories compared to the variant trained from scratch.



Table 1. Semantic segmentation results on SemanticKITTI val set. We report the mean IoU(%) and the IoU(%) for all semantic classes.
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Cylinder3D [10] 66.1 96.9 54.4 75.9 81.0 67.0 79.3 92.4 0.1 94.6 47.9 82.2 0.1 90.3 57.0 85.9 66.9 69.2 63.6 50.6
SPVCNN [7] 68.5 97.9 59.8 81.1 79.8 80.8 80.0 92.0 0.6 94.2 50.4 81.7 0.6 90.9 63.5 88.0 69.7 74.1 65.8 51.5
RPVNet [9] 68.9 97.9 42.8 87.6 91.2 83.5 78.3 90.2 0.7 95.2 57.1 83.1 0.2 91.0 63.2 87.3 71.4 72.0 64.9 51.5

MinkowskiNet [3] 70.2 97.4 56.1 84.9 84.0 79.1 81.9 91.4 24.0 94.0 52.2 81.3 0.2 92.0 67.2 88.4 68.6 74.8 65.5 50.6
MinkowskiNet+PointDif 71.3 97.5 58.8 84.6 92.8 80.6 81.4 92.3 30.3 94.1 56.0 81.7 0.2 91.4 65.4 88.5 69.1 75.2 65.0 50.5

Table 2. Object detection results of CAGroup3D with and without pre-training. We report the Overall and different category results at
AP25(%) and AP50(%).
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CAGroup3D [8] AP25 73.20 54.39 85.78 95.70 91.95 69.67 67.87 60.84 63.71 38.70 73.62 82.12 66.96 58.32 75.80 99.97 77.85 87.74 66.61
CAGroup3D+PointDif AP25 74.14 53.71 87.85 95.46 89.73 73.01 69.36 59.72 65.22 41.65 75.07 82.66 67.10 56.27 79.22 99.91 82.27 89.55 66.69

CAGroup3D [8] AP50 60.84 39.01 81.51 90.24 82.75 65.89 53.47 36.39 55.82 25.13 42.01 66.19 49.33 53.16 57.73 96.52 53.80 86.75 59.35
CAGroup3D+PointDif AP50 61.31 38.47 82.46 91.03 82.23 67.09 53.88 34.72 56.80 31.34 40.02 65.49 48.19 51.40 70.57 96.37 52.60 82.33 58.53

Table 3. Recurrent uniform sampling. ‘#Point Clouds’ repre-
sents the number of unique point clouds in a batch, and ‘#t’ repre-
sents the number of time steps t sampled for each point cloud. We
report the mean IoU(%) and mean Accuracy(%) on S3DIS.

#Point Clouds #t Intervals Effective Batchsize mIoU mAcc

128 2 2 256 69.52 75.46
128 4 4 512 70.02 77.05
128 8 8 1024 69.49 76.50

The experimental results also demonstrate that our method
performs well on outdoor datasets.
Object detection results of CAGroup3D with and with-
out pre-training. We report the Overall and different cate-
gory results at AP25(%) and AP50(%). From Tab. 2, we ob-
serve that pre-training with our method leads to better per-
formance than training CAGroup3D from scratch. There-
fore, our pre-training framework can be flexibly applied to
various backbones to improve performance.
Recurrent uniform sampling. Keeping the number of
unique point clouds in a batch constant, we conduct ex-
periments with 2 and 8 intervals divisions. The results are
shown in Tab. 3, our strategy of dividing the 4 intervals and
uniform sampling time step t is optimal.
Masking strategy. We report the experimental results for
downstream classification and semantic segmentation tasks
with different masking strategies. The strategy of block
masking involves masking adjacent point patches. From
Tab. 4, we observe that random masking performs better
than block masking under the same masking ratio (0.8).

Table 4. Masking strategy. ”Random” refers to Random masking
and ”Block” refers to Block masking, We report the Overall Accu-
racy(%) on ScanObjectNN OBJ-BG subset and the mean IoU(%)
on S3DIS.

Masking Strategy Mask Ratio OBJ-BG mIoU

Block 0.8 91.91 69.47
Random 0.8 93.29 70.02

4. Additional Visualization.

S3DIS semantic segmentation visualizations. We pro-
vide a qualitative comparison of results for S3DIS semantic
segmentation. As shown in Fig. 1, the predictions of our
method are closer to the ground truth and less incorrectly
segmented than training PointNeXt from scratch and Point-
MAE.

5. limitation

Our pre-training method has demonstrated outstanding per-
formance on various 3D real datasets, but its performance
is slightly worse on synthetic datasets. We suspect that this
is due to the inability of synthetic datasets to fully simulate
the complexity of real-world objects, such as the presence
of more noise and occlusion in real datasets. Furthermore,
the synthetic datasets are relatively simple, and the perfor-
mance on the synthetic datasets is currently saturated, with
only slight improvements from other pre-training methods.
Therefore, it is insufficient to demonstrate the performance
advantage of the algorithm on the synthetic datasets. In



Input PointNeXt Point-MAE Ours Ground Truth

Figure 1. Qualitative comparison on S3DIS semantic segmentation. The first column shows the original point cloud input, followed by
columns 2-4, which display the segmentation results of PointNeXt, Point-MAE, and our method. The fifth column shows the ground truth.

the future, we will continue exploring and fully exploit-
ing diffusion models’ beneficial impact on point cloud pre-
training. We also hope that our work will inspire more re-
search on pre-training with diffusion models, contributing
to the advancement of the field.
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