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Abstract

Single image dehazing is an ill-posed problem that has

recently drawn important attention. It is a challenging

image process task, especially in nonhomogeneous scene.

However, the existing dehazing methods are commonly de-

signed to handle homogeneous haze which is easily vio-

lated in practice, due to the unknown haze distribution of

real world. In this paper, we propose a knowledge trans-

fer method that utilizes abundant clear images to train a

teacher network to provide strong and robust image prior.

The derived architecture is referred to as the Knowledge

Transform Dehaze Network (KTDN), which consists of the

teacher network and the dehazing network with identical

architecture. Through the supervision between intermediate

features, the dehazing network is encouraged to imitate the

teacher network. In addition, we use attention mechanism

to combine channel attention with pixel attention to cap-

ture effective information, and employ an enhancing mod-

ule to refine detail textures. Extensive experimental results

on synthetic and real scene datasets demonstrates that the

proposed method outperforms the state-of-the-arts in both

quantitative and qualitative evaluations. The KTDN ranks

2nd2nd2nd in NTIRE-2020 NonHomogeneous Dehazing Challenge

[4, 5].

1. Introduction

Single image dehazing is an ill-posed problem that has

recently drawn important attention. The digital image will

be degraded in hazy scenes that typically characterised by

color and texture distortion.

Many dehazing methods [12, 9, 14, 22, 10, 19, 10] have

been proposed to solve this problem and improve visibility

of the hazy image. Some successful dehazing methods are

based on the physical scattering model [17] which formu-
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late as

I(x) = J(x)t(x) +A(x)(1− t(x)), (1)

where I is the input hazy images, J is the restored images,

t and A represent the transmission map and the global at-

mospheric light respectively. However, as the transmission

map and the global atmospheric light are difficult to esti-

mate, the visibility of results is unpleasing, and the inac-

curate estimation of the transmission map and the global

atmospheric light may cause a cumulative error. Although

some end-to-end methods [19, 10, 18] have been proposed,

most of previous works hypothesis the haze is homogeneous

while easily violated in practice due to the complex haze

distribution of real world. What’s more, a lot of informa-

tion lost when training model, which exacerbates degrada-

tion of the dehazing results. The hazy image and haze-free

corresponding scenes contain the same visual content, most

methods make full use of input information (hazy images).

However, the pair training images are difficult to collect.

Fortunately, it is more easily to collect the clear images.

Could the clear images information be mined as the prior

knowledge to help train the dehazing model? To solve the

problems, we propose a knowledge transfer method that uti-

lizes abundant clear images to train a teacher network which

can learn strong and robust prior. We supervise the interme-

diate features and use the feature similarity to encourage the

dehazing network imitates the teacher network. The prior

knowledge transfered to the dehaizng network by interme-

diate feature map.

Inspired by knowledge distillation [13], which transfer-

ring knowledge from the teacher network to the student

network, we designed a dual network that consists of the

teacher network and the dehazing network. We train the

teacher network for image to assist in training the dehazing

network via providing the prior knowledge. In detail, we

use haze-free images to train the teacher network, and then

transfer the teacher network’s knowledge to dehazing net-

work in intermediate feature map by feature level loss. The

architectures of networks are identical and both based on



encoder-decoder structure. In addition, we use pre-trained

Res2Net [11] as encoder to extract detail information of

hazy images, and add skip connection to preserve infor-

mation. Moreover, in order to process nonhomogeneous

dehazing task, we use attention mechanism that combine

channel attention with pixel attention to let network pay

more attention to effective information such as textures, col-

ors and thick haze regions. Finally, we employ an enhanc-

ing module to refine the results. Based on fidelity (PSNR,

SSIM) and perceptual (LPIPS [23], PI [7], MOS) quality

results, the KTDN ranks 2nd2nd2nd in NTIRE-2020 NonHomoge-

neous Dehazing Challenge [4, 5].

In summary, the contributions of our work are as follows:

1. We propose a knowledge transfer method for image

dehazing with a dual network. The teacher network

learned the distributions of clear images via image re-

construction task, and has ability to provide favorable

prior knowledge that can be utilized to assist the dehaz-

ing network to retore clear images from hazy images.

2. We employ the feature attention module (FAM). The

feature weights are adaptively learned from the FAM,

thus the important features were given more weight. It

provides additional flexibility in dealing with nonho-

mogeneous haze.

3. We employ a multi-scale enhancing module to fuse

global context information to refine the result and ex-

pand the representational ability of network.

2. Related work

In this section, we briefly review the related methods of

the single image dehazing task and introduce the knowledge

distillation.

Prior-based dehazing. Prior-based methods solve de-

haizng problem based on statistical prior, which need design

hand-crafted features of natural images. There are some

simple but powerful priors such as dark channel prior [12],

color attenuation prior [26] and non-local prior [6]. The

dark channel prior [12] proposed for the estimation of the

transmission map. The color attenuation prior [26] models

the scene depth of the hazy images via a linear model to

estimate depth. The non-local prior [6] hypothesis the col-

ors of a haze-free image are well approximated by a few

hundred distinct colors, which forms tight clusters in RGB

space. Although these priors used widely, priors may vio-

lated in practice because the haze distribution of real world

is always complex and affected by other factors.

Learning-based dehazing. In view of the success of

deep learning, there are more and more learning-based

methods proposed. DehazeNet [9] is a dehazing model

based on CNN. Input hazy images, and then output trans-

mission map, which is subsequently used to recover a haze-

free image via atmospheric scattering model. AOD-Net

[14] jointly estimates the transmittance and atmospheric

light, then directly generates a clean image. GFN [20]

adopts a fusion-based strategy which derives three inputs

from an original hazy image, and uses a multi-scale struc-

ture to refine the result. DCPDN [22] is a edge-preserving

densely connected encoder-decoder structure with multi-

level pyramid pooling module for estimating the transmis-

sion map. EPDN [19] views dehaing task as image-to-

image translation task, and embedded by a generative adver-

sarial network, which is followed by a enhancer. GCANet

[10] adopts the latest smoothed dilation technique to help

remove the grid artifacts caused by the widely used dilated

convolution. These methods have made a series of success,

but highly dependent on datasets and can’t handle all cases.

What’s more, most of previous works hypothesis the haze

is homogeneous while easily violated in practice due to the

complex haze distribution of real world, thus the perfor-

mance drop largely in dense haze scene and nonhomoge-

neous scene.

Knowledge distillation. Knowledge distillation [13]

transfers knowledge from one deep learning model (the

teacher) to another (the student). It has been applied

to image classification, image segmentation, object detec-

tion and other tasks. [13] introduced the idea of knowl-

edge distillation between large, cumbersome models into

smaller, faster models without losing too much generaliza-

tion power. While now knowledge distillation is imple-

mented to knowledge transfer between two deep models,

our work inspired by it but applys it in different way that

we let the teacher and the student handle different tasks.

3. Method

3.1. Architecture

In this section, we outline the architecture and elabo-

rate the three key components: knowledge transfer, atten-

tion module, and enhacing module.

Knowledge Transfer. We propose a dual network,

which contains a teacher network and a dehazing network

as shown in Figure 1. The teacher network trained by clear

images for image reconstruction to help train the dehaz-

ing network. If the teacher network can restore images

precisely, we consider it learned the distributions of clear

images, and has ability to provide favorable prior knowl-

edge that can be utilized to assist the dehazing network

to retore clear images from hazy images. The architec-

tures of networks are identical, which based on encoder-

decoder structure, but handle different tasks. The teacher

network’s inputs are clear images (ground truth), while the

dehazing network’s inputs are hazy images. In order to en-

hance the encoder’s performance, we use Res2Net [11] as

encoder, which is originally trained for image classification.



Figure 1. The architecture of the proposed KTDN.

Figure 2. The feature attention module.

Note that the Res2Net we used is removed the full connec-

tion layer, only 16x downsampled and initialized with pre-

trained parameters from [11]. The encoder’s output is a fea-

Figure 3. The enhancing module.

ture map, which obtains representative features, we transfer

the teacher network’s knowledge to dehazing network in in-

termediate feature map by L1 loss. The decoder consists of

upsample module, attention module, and enhancing mod-

ule. The upsample module is PixelShuffle [21] layer, which

can mitigate the grid artifacts. While the attention module

and enhancing module’s specific details can be seen in the

following. What’s more, in order to preserve more details

infomation, we also add skip connections between encoder

and decoder in 8x, 4x layers.



Attention module. In nonhomogeneous haze scene,

haze distribution is uneven on the different image pixels. In-

spired by [18], we add the feature attention module (FAM),

which contains two attention blocks with skip connection

to conduct residual learning. As shown in Figure 2, FAM

consists of the channel attention block (CA) and the pixel

attention block (PA). The feature map first passes through

CA, then fed to PA. The channel attention block consists of

an average pooling layer, two convolutions, a ReLU activa-

tion, and a sigmoid function subsequently, which achieves

a linear transformation to output weights respectively for

each channel. The weights will be used to feature maps by

element-wise product. Similarly, the pixel attention block

has two convolutions, a ReLU activation, and a sigmoid

function but without average pooling layer. Finally, we

add skip connection to preserve more details information

and pass it into deep layers. The feature weights are adap-

tively learned from the FAM, thus the important features

were given more weight, we let network pay more atten-

tion to effective information such as textures, colors and

thick haze regions, it provides additional flexibility in deal-

ing with nonhomogeneous haze.

Enhancing module. In order to expand the representa-

tional ability of network, we introduce an enhancing module

(EM) before the last convolution layer. As shown in Figure

3, we use two convolutions extract feature map firstly, then

the pyramid pooling [25] was used to integrate the details of

features from multi-scale layers, which obtains global con-

text information by learning on different recepive fields. In

detail, there are two 3x3 convolution layers, and an aver-

age pooling layer to downsample the output of convolution

layers by factors of 4x, 8x, 16x, 32x to build a four-scale

pyramid. The 1x1 convolution followed each scale layer,

and then we upsample four outputs. After that, we con-

catenate feature maps before and after the pyramid pooling.

Finally, we add a 3x3 convolution subsequently to align fea-

ture map. Different from [19], we only use one EM, then a

convolution and a Tanh activation followed. Our network

can learn more context information based on different re-

ceptive fileds, so that it can refine the results.

3.2. Loss function

We utilize three loss functions, there are the reconstruc-

tion loss Lrec, the laplace loss Llap, and the knowledge

transfer loss Lkt, as Eq. (2).

Ltotal = αLrec + βLlap + λLkt, (2)

Reconstruction loss. We use L1 loss to train net-

work, which demonstrated by [24] that training with L1

loss achieved a better performance than L2 loss in terms of

PSNR and SSIM metrics in many image restoration tasks.

Lrec = |Igt −D(Ihaze)|1, (3)

Igt denotes ground truth, Ihaze is input, and D(·) stands for

dehazing network.

Laplace loss. In order to preserve low-frequency content

such as color information, we use Laplacian pyramid Lap1

loss [8]:

Llap(x, x
′) =

2
2j∑

j

|Lj(x)− Lj(x′)|
1
, (4)

Where Lj(x) is j-th level of the Laplacian pyramid repre-

sentation of x [16]. The Llap weights the details at fine

scales more heavily, thus it can avoid blurry reconstructions

of natural images.

Knowledge transfer loss. The teacher network can

extract intermediate features of the clear image (ground

truth) by training with clear images, which contain abun-

dant knowleage for reconstruction. Hence, transfering this

knowledge may be assist in training the dehazing network.

We define the following feature matching objective function

for the knowledge transfer loss:

Lkt = |T (Igt)−D(Ihaze)|1, (5)

Where T (·) is the teacher network, D(·) is dehazing net-

work. Note that Lkt is feature level loss, while Lrec is im-

age level loss. In detail, we constrain the feature maps of

the 1th FAM’s output of the teacher network and the cor-

responding feature maps of the dehazing network. In other

words, T (Igt) denotes the feature maps of the 1th FAM’s

output of the teacher network, T (Igt) denotes the feature

maps of the 1th FAM’s output of the dehazing network.

4. Experiments

In this section, we describe the datasets we used for

training and testing along with some training details firstly.

Then, we evaluate the dehazing results of our proposed

method qualitatively and quantitatively, and compare with

some other state-of-the-art methods. In NTIRE-2020 Non-

Homogeneous Dehazing Challenge [4, 5], our method ranks

2nd2nd2nd based on fidelity (PSNR, SSIM) and perceptual (LPIPS

[23], PI [7], MOS) quality results.

4.1. Datasets

RESIDE. RESIDE [15] is a large-scale hazy image

dataset that widely used as a benchmark. It consists of

both indoor and outdoor hazy images. There are five sub-

sets totally: Indoor Training Set (ITS), Outdoor Training

Set (OTS), Synthetic Objec- tive Testing Set (SOTS), Real

World task-driven Testing Tet (RTTS), and Hybrid Subjec-

tive Testing Set (HSTS). Among the five subsets, ITS, OTS,

SOTS are synthetic datasets, RTTS is the real-world dataset,

both synthetic datas and real-word hazy datas are involved

in HSTS. We use ITS as training set, which consists of



Figure 4. Quantitative comparisons of the state-of-the-art dehazing methods and our method on SOTS indoor.

Table 1. Quantitative comparisons of the state-of-the-art dehazing methods and our method on SOTS indoor.

Methods DCP [12] DehazeNet [9] AOD-Net [14] DCPDN [22] GCANet [10] Ours

PSNR 15.09 20.64 19.82 28.13 30.23 30.59

SSIM 0.7649 0.7995 0.8178 0.9551 0.9800 0.9531

Table 2. Quantitative comparisons of the state-of-the-art dehazing methods and our method on Dense HAZE.

Methods DCP [12] DehazeNet [9] AOD-Net [14] DCPDN [22] GCANet [10] Ours

PSNR 10.06 13.84 13.14 14.48 10.51 15.25

SSIM 0.3856 0.4252 0.4144 0.4870 0.3612 0.5206

Table 3. Quantitative comparisons of the state-of-the-art dehazing methods and our method on NH-HAZE.

Methods DCP [12] DehazeNet [9] AOD-Net [14] DCPDN [22] GCANet [10] Ours

PSNR 10.57 16.99 15.4 22.73 14.27 21.44

SSIM 0.5196 0.5471 0.5693 0.7351 0.5850 0.7354

13990 synthetic images. The testing set we use is SOTS,

which includes 500 indoor and 500 outdoor images.

NH-HAZE. NH-HAZE [2, 3] is the NTIRE2020 chal-

lenge dataset on single image dehazing task. It contains 45

training data, 5 validation data and 5 test data. The res-

olution of all images is 1600x1200. Different from other

datasets, the hazy images are uneven with nonhomogeneous

haze. In our work, we use 40 images of training data as

training set and use the remaining 5 images as testing set.

Dense HAZE. Dense HAZE [1] is the NTIRE2019 chal-

lenge dataset on single image dehazing task, which charac-

terized by dense and homogeneous hazy scenes. It contains

45 training data, 5 validation data and 5 test data. The hazy

scenes have been recorded by introducing real haze, gen-

erated by professional haze machines. The hazy and haze-

free corresponding scenes contain the same visual content

captured under the same illumination parameters. The res-

olution of all images is 1600x1200. In our work, we use

45 training data as training set, and use 5 validation data as

testing set.

4.2. Experimental setting

Training details. During the training, we augment the

training dataset with randomly rotated by 90, 180, 270

degrees and horizontal flip. In particular, we use Dense

HAZE [1] as extra data for training NH-HAZE [2, 3] (the



Figure 5. Quantitative comparisons of the state-of-the-art dehazing methods and our method on Dense HAZE.

Table 4. Ablation study settings and comparison of variants with different components on NH-HAZE [2, 3].

Methods l1 llap lkt PSNR ↑ SSIM ↑ LPIPS ↓
base

√
- - 20.89 0.7243 0.4123

base + FAM
√

- - 21.03 0.7241 0.3656

base + FAM + EM
√

- - 21.31 0.7033 0.3487

base + FAM + EM
√ √

- 21.29 0.7247 0.3364

base + FAM + EM (Ours)
√ √ √

21.44 0.7354 0.3394

NTIRE2020 challenge images) to improve performance in

challenge, note that we do not adopt any extra data in this

paper. We extracted the patches (256x256) from original

images as input images. Besides, we adopt Adam opti-

mizer, where β1 and β2 take the default values of 0.9 and

0.999, respectively. The initial learning rate is 0.0001. The

hyper-parameter of loss function is set as α = 1, β = 0.3,

λ = 1. We implement our model with PyTorch and 1 RTX

2080ti GPU.

Quality measures. To evaluate the performance of our

method, we adopt three metrics: the Peak Signal to Noise

Ratio (PSNR), the Structural Similarity index (SSIM), and

LPIPS [23], which are often used as criteria for evaluating

image quality in dehazing task.

4.3. Comparisons with state­of­the­art methods

We compare the proposed method with one represen-

tative prior-based method: DCP [12] , and four advanced

learning-based methods: DehazeNet [9], AOD-Net [14]

DCPDN [22] and GCANet [10].

Results on synthesis dataset. The result of our method

and other comparison methods on synthesis dataset shown

in Table 1 and Figure 4. As shown in Table 1, our method

achieves the best performance on PSNR, which surpasses

the second place 0.36 dB in indoor testing. As shown in Fig-

ure 4, our network can magically remove the haze without

lose important information such as color, high-frequency

textures and edges. We can observe that other representative

dehazing methods both have drawback. DCP [12] loses im-

port information with serious color distortion. DehazeNet

[9] generates the blurry edges and remains noise. AOD-

Net [14] remains some hazy regions evidently and also has

noise. The color information cannot be estimated correctly

by DCPDN [22]. GCANet [10] generate pleasing results.

Results on a real-world dataset. We also evaluate the

proposed model on a real-world dataset, which the hazy



Figure 6. Quantitative comparisons of the state-of-the-art dehazing methods and our method on NTIRE-2020 Challenge: NH-HAZE [2, 3].

scenes have been recorded by real haze, generated by pro-

fessional haze machines. As shown in Table 2, our method

achieves the best performance on both PSNR and SSIM,

which surpasses the second place 0.77 dB and 0.0336 dB re-

spectively. From Figure 5, it is observed that the dense haze

of input images severe destroyed details, textures, edges and

colors. DCP [12] suffers color distortion where the colors of

results are bluer than real sense and priors violated in some

scenes. DehazeNet [9] can not estimate the color informa-

tion, and always with noise. The results of AOD-Net [14] is

darker than ground truth, which remains the dense haze and

loses details. GCANet [10] can remove more dense haze

in areas with large color differences, but distorts the color,

especially in areas with similar colors. It has no ability to

estimate correct details in areas with similar colors, and the

results are darker. Moreover, We can see that DCPDN [22]

can remove the dense haze in some regions, regretfully, it

generated severe artifacts that poor visual impressions. Our

method remains some haze in dehazing images, but obtains

a relatively pleasing visual effect.

NTIRE-2020 NonHomogeneous Dehazing Challenge.

Different from other datasets, the hazy images of NTIRE-

2020 NonHomogeneous Dehazing Challenge (NH-HAZE

[2, 3]) characterized by nonhomogeneous hazy scenes. As

shown in Table 3, most state-of-the-art methods’ perfor-

mances drop largely due to the nonhomogeneous haze,

since most previous methods assume the haze is homoge-

neous. Our method can restore more accurate information

from the nonhomogeneous haze images, and generate more

pleasing results. From Figure 6, it can be obviously seen

that our method generates better results. DCP [12] suf-

fers from severe color distortion because of their underly-

ing prior assumptions, and loses details. DehazeNet [9] not

only distorts the color, but also introduces the noise. AOD-

Net [14] and GCANet [10] can’t remove haze in dense haze

regions. Although DCPDN [22] remove haze successful in

some regions, it generated severe artifacts. Our method alle-

viates the problem of nonhomogeneous haze to some extent,

by paying more attention to thick haze regions.

4.4. Ablation study

In order to intentionally analyse and demonstrate the ef-

fectiveness of the different components of the architecture,

we conduct an ablation study by considering the combina-

tion of four factors: attention module, enhancing module,

laplace loss and knowledge transfer loss. The ablation ex-

periments as following: 1) base: only use Res2Net as en-

coder, and the decoder only has upsample blocks; 2) base

+ FAM: the decoder add three feature attention modules

(FAM), which followed 16x layer, 8x layer and 4x layer; 3)

base + FAM + EM: the decoder add three feature attention

modules (FAM) and one enhancing module. In detail, we



use NH-HAZE [2, 3] as training set and testing set, contains

1-40 images and 41-45 images respectively.

As shown in Table 4, every factor we consider plays an

important role in the network performance. The knowledge

transfer significantly improve performance both on PSNR

and SSIM, since the knowledge transfer loss makes the de-

hazing network imitates the teacher network to reconstruct

clear images. We can see that the prior knowledge provided

from the teacher network is significant. In addition, we can

observe FAM and EM help network extract more detail in-

formation that both raise score of PSNR. Comparing three

loss, it can be obviously seen that llap and lkt are efficient.

5. Conclusion

In this paper, we propose a knowledge transfer method

that utilizes abundant clear images to train the teacher net-

work which can learn strong and robust prior. We supervise

the intermediate features and use the feature similarity to

encourage the dehazing network imitates the teacher net-

work. Besides, we introduce an attention mechanism that

combine channel attention with pixel attention to let net-

work pay more attention to effective information, an en-

hancing module to refine results, and the powerful loss

which consists of L1 loss, laplace loss and knowledge trans-

fer loss. Comparing with other dehazing methods, our re-

sults achieve satisfactory PSNR and SSIM values as well as

visual effect. Finally, we conduct ablation experiments to

demonstrate the effectiveness of the various compositions

of the network.
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