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Abstract

This paper reviews the NTIRE 2020 challenge on percep-

tual extreme super-resolution with focus on proposed solu-

tions and results. The challenge task was to super-resolve

an input image with a magnification factor ×16 based on a

set of prior examples of low and corresponding high resolu-

tion images. The goal is to obtain a network design capable

to produce high resolution results with the best perceptual

quality and similar to the ground truth. The track had 280

registered participants, and 19 teams submitted the final re-

sults. They gauge the state-of-the-art in single image super-

resolution.

1. Introduction

Recent years have witnessed tremendous success of us-

ing deep neural networks (DNNs) to generate a high-

resolution (HR) image from a low-dimensional input [5, 8,

12, 31, 42, 51]. On the one hand, DNNs-based single im-

age super-resolution (SR) for bicubic degradation is contin-

uously showing improvements in terms of PSNR and per-

ceptual quality [5, 9, 12, 16, 25, 40, 41, 42]. In particu-

lar, several fundamental conclusions have been drawn: (i)

DNNs based SR with pixel-wise loss (such as L1 loss and
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L2 loss) tends to produce oversmoothed output for a large

scale factor due to the pixel-wise average problem [22];

(ii) The perceptual quality of super-resolved image could

be improved by using VGG perceptual loss and genera-

tive adversarial (GAN) loss [11, 22, 45]; (iii) There is a

trade-off between reconstruction accuracy and perceptual

quality, which means no DNNs-based method can achieve

its best PSNR and best perceptual quality at the same

time [5]. While perceptual SR for bicubic degradation at

a moderate scale factor (e.g., ×4) has achieved significant

progress [22, 45, 53, 54, 57], the case with an extremely

large scale factor has received little attention [7, 12]. On the

other hand, realistic HR image synthesis from a latent low-

dimensional vector based on GAN has shown great success

for natural image [6] and face image [21]. However, how to

effectively generate a perceptually pleasant HR image from

a low-resolution (LR) image with a very large scale factor

remains an open problem.

Jointly with NTIRE 2020 workshop we have an NTIRE

challenge on perceptual extreme super-resolution, that is,

the task of super-resolving an LR image to a perceptually

pleasant HR image with a magnification factor ×16. Al-

though AIM 2019 extreme SR challenge [12] has consid-

ered the fidelity track and perceptual track, it has been con-

cluded that: (i) the PSNR-orientated methods consistently

give rise to oversmoothed results; (ii) there still remains a

large room for perceptual quality improvement. As a re-

sult, this challenge only has one track which aims to seek

effective solutions for perceptual extreme SR.



2. NTIRE 2020 Challenge

This challenge is one of the NTIRE 2020 associated

challenges on: deblurring [33], nonhomogeneous dehaz-

ing [3], perceptual extreme super-resolution [52], video

quality mapping [10], real image denoising [1], real-world

super-resolution [30], spectral reconstruction from RGB

image [4] and demoireing [49].

The objectives of the NTIRE 2020 challenge on percep-

tual extreme super-resolution challenge are: (i) to advance

researches on perceptual SR at an extremely large scale fac-

tor; (ii) to compare the effectiveness of different methods

and (iii) to offer an opportunity for academic and industrial

attendees to interact and explore collaborations.

2.1. DIV8K Dataset [13]

Following [13], the DIV8K dataset which contains 1,700

DIVerse 8K resolution RGB images is employed in this

challenge. The HR DIV8K is divided into 1,500 training

images, 100 validation images and 100 testing images. The

corresponding LR images in this challenge is obtained via

default setting (bicubic interpolation) of Matlab function

imresizewith scale factor 16. The testing HR images are

completely hidden from the participants during the whole

challenge. In order to get access to the data and submit

the testing HR results, registration on Codalab (https:

//competitions.codalab.org/) is required.

2.2. Track and Competition

Track This challenge has only one track. The aim is to

obtain a network design capable to produce high resolution

results with the best perceptual quality and similar to the

ground truth.

Challenge phases (1) Development phase: the participants

got the 1,500 HR training images and 100 LR validation

images of the DIV8K dataset; the participants got the LR

training images via Matlab’s imresize function. Due to

the storage constraints, the participants uploaded the center

1,000×1,000 HR validation results to an online validation

server to get immediate feedback. During this phase, the

provided feedback consisted from Peak Signal-to-Noise Ra-

tio (PSNR) and Structural Similarity Index (SSIM) [46] re-

sults. However, since both PSNR and SSIM are not suitable

for perceptual ranking, the validation results are only used

to test whether the cropped images are correctly uploaded.

(2) Testing phase: the participants got 100 LR testing im-

ages; the participants submitted their center 1,000×1,000

results of the super-resolved HR images to Codalab and

emailed the code and factsheet to the organizers; the par-

ticipants got the final results after the end of the challenge.

Evaluation protocol Apart from PSNR and SSIM, the

quantitative measures also includes LPIPS (Learned Per-

ceptual Image Patch Similarity) [55] and no-reference PI

(Perceptual Index) [5, 32] which have been acknowledged

as useful perceptual metrics. The evaluation is performed

on the center 1,000×1,000 HR results for convenience

and consistency with the reported results on the challenge

servers. The final ranking employed also a user study. In

order to have a thorough evaluation, the self-reported num-

ber of parameters and running time per testing image are

also reported.

3. Challenge Results

From 280 registered participants, 19 teams entered in the

final phase and submitted results, codes, and factsheets. Ta-

ble 1 reports the final test results and rankings of the chal-

lenge. Note that the methods trained with GAN loss are

grouped together, and only the best six methods are ranked

by user study. The results of winner teams in AIM 2019 ex-

treme SR challenge are also reported for comparison. Fig-

ures 1 and 2 show the visual results and associated PSNR,

SSIM, LPIPS and PI values of different methods.

From Table 1 and Figures 1 and 2, we can have the fol-

lowing observations. First, the OPPO-Research team is the

first place winner of this challenge, while CIPLAB and Hi-

ImageTeam win the second place and third place, respec-

tively. Second, among the top-6 methods, ECNU achieves a

good trade-off between reconstruction accuracy and percep-

tual quality, while HiImageTeam shows the best trade-off

between number of parameters and inference time. Third,

DeepBlueAI achieves the best PSNR performance, how-

ever, it fails to generate results with competitive perceptual

quality. Fourth, LPIPS and PI are relatively reliable per-

ceptual measures in comparison with PSNR and SSIM for

perceptual extreme SR. Fifth, it is easy to distinguish the

ground-truth HR images from the super-resolved HR im-

ages.

Architectures, losses and main ideas All the proposed

methods utilize deep neural networks for perceptual ex-

treme SR. Overall, there are two import factors to improve

the perceptual quality of super-resolved images, i.e., net-

work architecture and loss function. For the network ar-

chitecture, several teams, such as CIPLAB, APTX4869

and MSMers, proposed to extend existing state-of-the-art

SR methods with a progressive upscaling strategy. Sev-

eral other teams, such as OPPO-Research, SIA and Deep-

BlueAI, achieved a scale factor of 16 by directly modifying

the upscaling layer. For the loss function, most of the teams

adopted either L1 loss or the same loss (i.e., a combination

of L1 loss, VGG perceptual loss [19, 39] and relativistic

GAN loss [20]) proposed in ESRGAN [45] as their final

loss. In particular, CIPLAB replaced the VGG perceptual

loss with LPIPS loss, and both CIPLAB and TTI adopted

an U-Net [35]-like discriminator [36] for better local and

global perceptual quality enhancement.



PSNR/SSIM/LPIPS 20.42/0.3270/0.426 20.31/0.3544/0.441 20.90/0.3980/0.561 22.14/0.4904/0.657

(a) HR (b) OPPO-Research (c) CIPLAB (d) HiImageTeam (e) ECNU

20.92/0.4562/0.602 17.98/0.2875/0.505 22.26/0.5965/0.714 22.20/0.4947/0.712 21.88/0.4826/0.740

(f) SIA (g) TTI (h) DeepBlueAI (i) APTX4869 (j) CNDP-Lab

Figure 1. SR results (600×600 crop) by different methods.

PSNR/SSIM/FPIPS 19.98/0.4441/0.367 19.43/0.4273/0.370 20.30/0.4990/0.410 22.14/0.5753/0.547

(a) HR (b) OPPO-Research (c) CIPLAB (d) HiImageTeam (e) ECNU

20.04/0.5328/0.486 15.56/0.3910/0.421 22.27/0.5812/0.616 22.27/0.5796/0.626 22.15/0.5769/0.621

(f) SIA (g) TTI (h) DeepBlueAI (i) APTX4869 (j) CNDP-Lab

Figure 2. SR results (500×500 crop) by different methods.

Ensembles Most of the teams adopted commonly-used

model-ensemble or self-ensemble [43] to enhance the per-

formance.

Train data Most of the teams only used the provided

DIV8K dataset [13] for training. OPPO-Research further

adopted DIV2K [2], Flickr2K [40] and OST [44] datasets,

while APTX4869 and SuperT used DIV2K [2] as additional

training data.

Conclusions From the above analysis of different so-

lutions, we can have several conclusions. (i) The pro-

posed methods improve the state-of-the-art for extreme

SR. On one hand, compared to the best method proposed

by NUAA-404 in AIM 2019 fidelity extreme SR chal-

lenge [12], DeepBlueAI achieved an average PSNR gain

of 0.07dB. On the other hand, compared to the best method

proposed by BOE-IOT-AIBD in AIM 2019 perceptual ex-

treme SR challenge [12], OPPO-Research, CIPLAB and

HiImageTeam produced perceptually better results and an



Table 1. Results of NTIRE 2020 perceptual extreme SR challenge. The PSNR, SSIM [46], LPIPS [55] and PI [5] are calculated on the

center 1,000×1,000 subimages of the DIV8K test images.

Team Author PSNR ↑ SSIM ↑ LPIPS ↓ PI ↓
#Params Time

Platf. Ens. GPU
Extra

Loss
[M] [s] data

Methods optimized with GAN losses
OPPO-Research sss 23.38(12) 0.5504(15) 0.348(1) 3.97(2) 20.5 8.1 PyTorch Model V100 DF2K, OST L1, VGG-P, GAN

CIPLAB heyday097 22.77(15) 0.5251(16) 0.352(2) 3.76(1) 33.0 3.0 PyTorch None Xp None Huber, LPIPS, FM, GAN

HiImageTeam HiImageTeam 23.53(11) 0.5624(13) 0.368(3) 4.38(4) 4.0 1.0 PyTorch None RTX None L1, VGG-P, GAN

Winner AIM19 [12] BOE-IOT-AIBD 24.52 0.5800 0.418 6.28 - 47.1 PyTorch None Titan X None L1, VGG-P, GAN

ECNU lj1995 25.56(4) 0.6336(6) 0.497(6) 8.10(8) 57.9 26.0 PyTorch Self 1080Ti None L1, VGG-P, GAN

SIA yoon28 22.86(14) 0.5896(11) 0.434(5) 5.81(6) 16.0 360.0 PyTorch Self CPU None L1, VGG-P, GAN

TTI iim-nike 19.16(17) 0.4993(17) 0.377(4) 3.99(3) 26.5 19.5 PyTorch None V100 None L1, VGG-P, GAN

sysu-AIR Zhi Jin SYSU 23.94(10) 0.5545(14) 0.510(7) 4.99(5) 2.1 4.3 PyTorch None 2080Ti None L1, TV, FS, VGG-P, GAN

CET CVLab hrishikeshps 19.68(16) 0.4290(18) 0.705(19) 7.46(7) 223.8 440.0 TensorFlow None CPU None L1, VGG-P, GAN

From here down are mostly L1/L2 optimized methods
DeepBlueAI DeepBlueAI 25.70(1) 0.6390(2) 0.555(9) 9.15(9) 63.5 0.8 PyTorch Model V100 None L1; L2

Winner AIM19 [12] NUAA-404 25.63 0.6394 0.554 9.21 - 30.0 PyTorch Self 2080Ti - L1

APTX4869 APTX4869 25.62(2) 0.6393(1) 0.558(11) 9.25(11) 20.8 40.0 PyTorch Self V100 DIV2K L2, VGG-P, Style, GAN; L1

CNDP-Lab albertron 25.58(3) 0.6367(3) 0.556(10) 9.36(14) 322.8 350.0 PyTorch Self RTX None L1

MSMers huayan 25.56(4) 0.6366(4) 0.564(12) 9.40(16) 16.0 16.0 PyTorch Self V100 None L1

kaws egyptdj 25.43(5) 0.6339(5) 0.568(13) 9.37(15) 126.2 9.76 TensorFlow Self V100 None L1

UIUC-IFP fyc0624 25.28(7) 0.6339(5) 0.553(8) 9.28(12) 100.6 38.0 PyTorch Self 1080Ti None L1

KU ISPLB givenjiang 25.33(6) 0.6299(7) 0.582(14) 9.44(17) 1.9 70.0 Pytorch Self RTX None L1

MsSrModel nickolay 25.23(8) 0.6259(8) 0.586(15) 9.29(13) 9.0 1.3 TensorFlow Self V100 None L2, VGG-P

MoonCloud pigfather315 25.17(9) 0.6250(9) 0.587(16) 9.23(10) 4.9 3.2 PyTorch None V100 None L1

SuperT tongtong 23.94(10) 0.6060(10) 0.630(17) 9.40(16) 0.4 0.6 Tensorflow Self V100 DIV2K L1

KU ISPL A jkm ispl 23.05(13) 0.5787(12) 0.667(18) 11.4(18) 0.3 30.0 PyTorch None 2080Ti None L1

Baseline Bicubic 24.22 0.6017 0.683 11.1

improved LPIPS value. (ii) The perceptual extreme SR is

far from being solved. Advanced training strategies, net-

work architectures and perceptual losses for a good trade-

off between reconstruction accuracy and perceptual quality

require further study. (iii) Due to the high ill-poseness of

×16 SR, DIV8K might not be sufficient to capture the di-

versity of natural images.

4. Challenge Methods and Teams

OPPO­Research

OPPO-Research proposed a novel Super-Resolution

GAN [37], namely RFB-SRGAN, based on ESRGAN [45].

As shown in Figure 3, RFB-SRGAN consists of 5 parts, in-

cluding the feature extraction module, the Trunk-a module,

the Trunk-RFB module, the features up-sampling module,

and the final convolution reconstruction module. Specifi-

cally, the feature extraction module is composed of a convo-

lution layer. The Trunk-a module consists of 16 Residual in

Residual Dense Blocks (RRDBs). The Trunk-RFB module

is stacked of 8 Residual of Receptive Field Dense Blocks

(RRFDBs), and each RRFDB contains 5 Receptive Fields

Blocks (RFBs) [28]. The feature up-sampling module uses

sub-pixel convolution [38] and nearest neighborhood inter-

polation which can greatly reduce the time cost while main-

taining satisfactory performance. The final convolution re-

construction module consists of two layers of convolutions.

The training process is divided into two stages. In the

first stage, a PSNR-oriented model was trained with L1 loss.

The learning rate is initialized as 2× 10
−4 and decayed by

a factor of 2 every 2 × 10
5 steps. In the second stage, the

generator was initialized by the pre-trained PSNR-oriented

model and further trained with the loss function in ESR-

GAN [45]. The training mini-batch size is set to 16. The

resolution of the cropped HR images is 512×512. The per-

formance of models at different iteration stages are scored,

then the top-scored models are fused to obtain the final

model.

(a) The network architecture of RFB-SRGAN.

(b) RRDB block. (c) RRFDB block.

Figure 3. OPPO-Research’s network architecture.

CIPLAB

CIPLAB proposed to use GAN [11] with LPIPS [55] loss

for perceptual extreme SR [18] instead of using GAN with

VGG perceptual loss [19]. Generally, the loss functions for

perceptual SR is the adversarial loss [11] with the VGG per-

ceptual loss [19]. Such a loss combination has worked well

for ×4 SR, however, it is found that it is not work well for



×16 SR due to highly hallucinated noise and less precise

details. Because VGG network is trained for image classi-

fication, it may not the best choice for the SR task. On the

other hand, the learned perceptual similarity (LPIPS) [55] is

trained with a dataset of human perceptual similarity judg-

ments, thus it is expected to be a more proper choice for

perceptual SR. For this reason, LPIPS is adopted instead

of the VGG perceptual loss. In addition, the discrimina-

tor’s feature matching loss helps to increase the quality of

the results, and Huber loss prevents color permutation. The

proposed generator, as shown in Figure 4, consists of two

ESRGAN generators for ×16 SR. For the discriminator, an

U-Net network as in [36] is adopted to judge real and fake

for the compressed space from the encoder head and every

pixel from the decoder head. Such a discriminator allows to

provide detailed per-pixel feedback to the generator while

maintaining the global context. It is empirically found that

the discriminator can recover more details than normal en-

coder structure discriminator.

In the training, the HR patch size is set to 384×384, and

the corresponding LR patch size is 24×24. For both gener-

ator and discriminator, Adam optimizer with learning rate

1 × 10
−5 is adopted. The generator is first trained with

L2 loss and mini-batch size 3 for 50K iterations. Then the

model is trained with the proposed new combination of dif-

ferent loss functions and mini-batch size 2 for about 60K

iterations.

Figure 4. CIPLAB’s generator network.

Figure 5. CIPLAB’s discriminator network.

HiImageTeam

HiImageTeam proposed Cascade SR-GAN (CSRGAN)

for perceptual extreme SR. As shown in Figure 6, CSRGAN

achieves an upscaling of ×16 via four successive ×2 sub-

networks (CSRB). In order to improve the performance, a

novel residual dense channel attention block (see Figure 7)

is proposed. Final CSRGAN uses VGG perceptual loss

and GAN loss to enhance the perceptual quality of super-

resolved images.

ECNU

ECNU proposed a Two Stages Super Resolution Gen-

erative Adversarial Network (TS-SRGAN). The network,

Figure 6. HiImageTeam’s network architecture.

Figure 7. HiImageTeam’s Residual Dense Channel Attention

Block.
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Figure 8. ECNU’s network architecture.

as shown in Figure 8, consists of the pre-Super-Resolution

(pre-SR) sub-net for the first stage and a main net for the

second stage. Pretrained ADCSR16× [47] is used for the

pre-SR sub-net to super-resolve the LR image to pre-SR im-

age with the same resolution as ground truth. The pre-SR

sub-net is frozen during the training phase of TS-SRGAN.

The main sub-net is composed of a head 3×3 convolutional

layer, a de-sub-pixel convolutional layer, a non-linear fea-

ture mapping module, an upsampling skip connection, a

sub-pixel convolutional layer, a global skip connection and

a tail 3×3 convolutional layer. The Adaptive WDSR-A-



Block is modified from WDSR-A-Block [48] by adding

learnable weight for body scaling and learnable weight for

residual scaling. The loss function and the training pro-

cesses are the same as ESRGAN [45].

SIA

SIA adopted ESRGAN [45] to extremely super-resolve

an input image with a magnification factor of 16. The ar-

chitecture of the generator is almost identical to that of ES-

RGAN except that the upscaling block of the generator con-

sists of four upsampling layers, each of which doubles the

feature size. The discriminator has seven downsampling

blocks, each of which consists of two convolutional lay-

ers and batch-normalization (BN) layers [17] between them,

while the first downsampling block has one BN layer. At

the tail of the discriminator, two fully connected (FC) layers

with size 256 and 1 is applied. See Figure 9 for the details.

The hyper-parameters, such as optimizer, learning rate and

coefficients for loss terms, are the same as ESRGAN.

(a) Upsampling block of generator

(b) Discriminator

Figure 9. SIA’s network architecture.

TTI

Inspired by deep back-projection network [14] which in-

troduces iterative up-down projection units for mutual rela-

tion between LR and HR feature maps, TTI proposed re-

current progressive perceptual DBPN where each up- and

down-projection unit has one ×4 and × 1
4 scaling layers and

performs twice to expand LR images by a scale factor of

×16 (see Figure 10). Such a network design not only re-

duces the number of model parameters but eases the train-

ing. For the discriminator, an UNet-like adversarial network

(see Figure 11) inspired by [36] was used as it can capture

both global features (e.g., geometric or structural patterns)

and local features (e.g., texture patterns).

DeepBlueAI

DeepBlueAI proposed bag of tricks for perceptual ex-

treme SR. Based on RCAN [57], various experiments were
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Figure 10. TTI’s network architecture.
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Figure 11. TTI’s UNet-like discriminator.

conducted to explore how to improve PSNR and SSIM. Ac-

cording to the experiments, solutions based RCAN yielded

best performance. In the final model, the number of resid-

ual groups is 10 and the number of channel in each layer

is 128, the number of residual channel attention blocks in

each residual group is 20. To obtain the ×16 model, a ×4

model is first trained from scratch as a pre-trained network

after its convergence.

In the training, 1,500 training images with random hori-

zontal flip and rotation are used. In each training batch, 16

LR patches with the size of 48×48 are extracted as inputs.

The model is trained by ADAM optimizer with an initial

leaning rate 1.0 × 10
−4. The learning rate utilize a cosine

annealing schedule [29] with total 4.0 × 10
5 iterations and

restarts every 1.0 × 10
5 iterations. Following [34], a ×16

model with L1 loss is first trained and then is fine-tuned

with L2 loss. To enhance the PSNR and SSIM, both self-

ensemble and model-ensemble are utilized.

APTX4869

APTX4869 proposed progressive super-resolving and

refining to tackle the perceptual extreme SR problem. The

proposed network, as shown in Figure 12, is decomposed

into two cascaded 4× super-resolution ones with three train-

ing stages. In the first stage, the ×4 DBPN [14] upsam-

pling sub-module is trained to reconstruct an intermediate

artifacts-free result. In the second stage, another ×4 up-



sampling sub-module is then trained with generative adver-

sarial settings to better recover details. In the third stage,

the overall architecture is end-to-end refined with L1 loss to

eliminate annoying artifacts.

Figure 12. APTX4869’s network architecture.

CNDP­Lab

CNDP-Lab proposed a cascaded U-Net with channel at-

tention for extreme SR. The network, as shown in Figure 13,

is developed from the traditional U-Net [35] by embedding

channel attention [57] into the up-sampling process. Before

concatenating the two feature maps of x1 and x2, the fea-

tures are optimized by channel attention blocks, as shown in

Figure 13(b). The down-sampling process is implemented

by a convolutional layer with a stride of two, and the up-

sampling process adopts the pixel shuffle method. After

each down-sampling or up-sampling layer, a set of resid-

ual channel attention blocks are added to learn features at

each scale. To up-scale the input low-resolution image with

a factor of 16, two U-Net models are trained and each of the

model up-scales the input image with a factor of 4. Because

the input and output image of the U-Net have the same res-

olution, the input image is first up-scaled with a factor of 4

by bicubic interpolation.

Figure 13. CNDP-Lab’s U-Net with channel attention network ar-

chitecture.

MSMers

The MSMers team proposed PURCAN which adopts

progressive upsampling architecture and progressive train-

ing strategy for extreme SR. PURCAN takes RCAN [57]

without the final upsampler as the backbone. The feature

maps are progressively upsampled (×1 to ×4 to ×16) using

pixel shuffle. The RCAN backbone is applied into 1× scale

while four residual channel attention blocks are applied into

the ×4 scale to enhance the performance. During training,

the backbone part is first trained using ×4 dataset which is

constructed from DIV8K HR training images. Then the re-

maining part of the model is added to train on ×16 DIV8K

training images.

kaws

The kaws team proposed wavelet pyramid generation

based high-frequency recovery for extreme SR. In the first

stage, wavelet pyramid is generated from low-resolution

(LR) image to upscale the image with explicitly recovered

high-frequency details. The upscaled image is then re-

fined from upscaled image to follow the ground-truth HR

image in the second stage (see Figure 14(A)). To gener-

ate the wavelet detail coefficients from the LR image, they

first concatenate outputs from convolving the LR image and

sobel edge filters of four directions (vertical, horizontal,

two-way diagonal). The concatenated data is input to the

wavelet detail generator to output the LH, HL, HH wavelet

detail coefficients (see Figure 14(B)). The proposed method

is expected to have two advantages respect to image qual-

ity and generalizability. In terms of image quality, sharp

edges can be recovered by upscaling the image with explic-

itly generated wavelet detail coefficients, which represent

the local high-frequency information of each pixels. For

generalizability, refining the upscaled image can be done

with any state-of-the-art super-resolution (SR) model and

is expected to improve its performance. The wavelet detail

generator and the refine module are based on the modified

U-Net [35] and the EDSR [27], respectively.

Figure 14. The network architecture of kaws team.

UIUC­IFP

Inspired by progressive multi-scale modelling, UIUC-

IFP extended WDSR [48] from single-scale to multi-scale.

The proposed progressive WDSR consists of 4 stages for

×16 image SR. Starting from original feature spatial size,

features are enlarge 2 times spatially and width are reduced

2 times at the end of each stage.

KU ISPLB

KU ISPLB proposed feedback recurrent neural network

(FBRNN) for extreme SR [23]. As shown in Figure 15,



the LR image is combined with improved LR every step.

Inspired by GMFN [24] and DPBN [14], improved LR

is given by upsampling network and down-projection net-

work. The the image back projection network is performed

4 times after the each super resolution network. After yield-

ing better LR image from the HR images in the process, the

improved LR is combined with the original LR to prevent

bias or over-fitting problems.

Figure 15. KU ISPLB’s network architecture.

MsSrModel

MsSrModel proposed multi-scale SR model (MsSr-

Model) (see Fig. 16) for extreme SR. The main idea is to

have 5 different optimizations simultaneously for 5 differ-

ent resolutions. The model operates on an LR image with

pixel shuffle operation [38] at the end of each optimization.

L2 loss and VGG perceptual loss are used to optimize the

model.

Figure 16. MsSrModel’s network architecture.

MoonCloud

MoonCloud proposed Multi-scale ResNet for perceptual

extreme SR. The network uses 16 residual blocks for feature

extraction, then adopts a sub-pixel layer to construct the HR

features, and finally incorporates a convolution layer with

size of 8×3×3×3 to produce the final output. Based on

SRResNet [22], a multi-scale strategy is used to learn rich

feature for image restoration. In particular, multiple upsam-

pling layers are used to implement multi-scale image SR.

SuperT

SuperT proposed fast and balanced Laplacian pyramid

networks for progressive image super-resolution. The net-

work, as shown in Figure 17, takes LR images as input and

gradually predicts sub-band residuals from coarse to fine.

At each level, the feature maps are first extracted to recon-

struct a higher level image by using a lightweight upsam-

pling module (LUM) with relatively sparse connections. Fi-

nally, convolutional layers are adopted to predict subband

residuals. The prediction residuals at each level are used to

efficiently reconstruct HR images through upsampling and

addition operations.

Figure 17. SuperT’s network architecture.

sysu­AIR

The sysu-AIR team proposed a fast feedback network for

large scale image super-resolution. Inspired by SRFBN [26]

and IMDN [15], the proposed Fast-SRFBN is still reserved

the RNN structure but with a information multi-distillation

module (IMDM), which can benefit image SR tasks and ac-

celerate inference speed. As shown in Figure 18, the IMDM

recurrently refines the LR image in a “coarse to fine” man-

ner, and it consists of a 1×1 convolutional layer and sev-

eral stacked information multi-distillation blocks (IMDB).

Benefit from the RNN structure, the proposed network is

lightweight but efficient. The final model was trained with

L1 loss, VGG perceptual loss, GAN loss, total variation

loss, and the novel Fourier spectrum loss [56].

KU ISPL A

Inspired by SRFBN [26] and GMFN [24], KU ISPL A

proposed a recurrent transmission network (see Figure 19)

which gradually grows the resolution for each step in

the recurrent structure and uses the RDB structure of the

RDN [58] model to extract features for each resolution.

Each step produces ×2, ×4, ×8 and ×16 resolution results.

CET CVLab

CET CVLab proposed a V-Stacked relativistic GAN for

extreme SR. In the generator part of the network, there are 3

stacks of deep CNN based structure which is inspired from



Figure 18. sysu-AIR’s network architecture.

Figure 19. KU ISPL A’s network architecture.

[50]. Within each stack there is a pyramidical arrangement

of layers that forms the V-shape as shown in Figure 20.

Each level of the structure is an encoder-decoder block.

There are 5 levels in the pyramid and the initial level takes

the whole image as a single patch followed by layers with

patches up to 4 and then back to a single patch. All these im-

age patches are passed through a feature extraction network

followed by ×16 upsampling layer. The generator network

is first trained with L1 loss, and then refined with relativistic

average GAN loss and VGG perceptual loss.
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