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Abstract

Delicate feature representation about object parts plays

a critical role in fine-grained recognition. For example, ex-

perts can even distinguish fine-grained objects relying only

on object parts according to professional knowledge. In this

paper, we propose a novel “Destruction and Construction

Learning” (DCL) method to enhance the difficulty of fine-

grained recognition and exercise the classification model to

acquire expert knowledge. Besides the standard classifica-

tion backbone network, another “destruction and construc-

tion” stream is introduced to carefully “destruct” and then

“reconstruct” the input image, for learning discriminative

regions and features. More specifically, for “destruction”,

we first partition the input image into local regions and then

shuffle them by a Region Confusion Mechanism (RCM). To

correctly recognize these destructed images, the classifi-

cation network has to pay more attention to discrimina-

tive regions for spotting the differences. To compensate the

noises introduced by RCM, an adversarial loss, which dis-

tinguishes original images from destructed ones, is applied

to reject noisy patterns introduced by RCM. For “construc-

tion”, a region alignment network, which tries to restore the

original spatial layout of local regions, is followed to model

the semantic correlation among local regions. By jointly

training with parameter sharing, our proposed DCL injects

more discriminative local details to the classification net-

work. Experimental results show that our proposed frame-

work achieves state-of-the-art performance on three stan-

dard benchmarks. Moreover, our proposed method does not

need any external knowledge during training, and there is

no computation overhead at inference time except the stan-

dard classification network feed-forwarding. Source code:

https://github.com/JDAI-CV/DCL.

1. Introduction

In the past decade, generic object recognition has

achieved steady progress with efforts from both large-scale

∗Equal contribution.

annotated dataset and sophisticated model design. How-

ever, recognizing fine-grained object categories (e.g., bird

species [3], car models [14] and aircraft [18]) is still a

challenging task, which attracts extensive research atten-

tion. Although fine-grained objects are visually similar by a

rough glimpse, they can be correctly recognized by details

in discriminative local regions.

Learning discriminative feature representations from

discriminative parts plays the key role in fine-grained image

recognition. Existing fine-grained recognition methods can

be roughly grouped into two categories, as illustrated in Fig-

ure 1. One group (a) first locates the discriminative object

parts and then classifies based on the discriminative regions.

These two-steps methods [21, 11, 1] mostly need additional

bounding box annotations on objects or parts, which are ex-

pensive to collect. The other group (b) tries to automatically

localize discriminative regions by attention mechanism in

an unsupervised manner, and thus does not needs extra an-

notations. However, these methods [7, 42, 41, 22] usually

need additional network structure (e.g., attention mecha-

nism), and thus introduce extra computation overhead for

both training and inference stages.

In this paper, we propose a novel fine-grained image

recognition framework named “Destruction and Construc-

tion Learning” (DCL), as shown in Figure 1 (c). Besides

the standard classification backbone network, we introduce

a DCL stream to learn from discriminative regions automat-

ically. An input image is first carefully destructed to em-

phasize discriminative local details, and then reconstructed

to model the semantic correlation among local regions. On

one hand, DCL automatically localizes discriminative re-

gions, and thus does not need any extra knowledge while

training. On the other hand, the DCL structure is only

adopted at the training stage, and thus introduces no com-

putational overhead at inference time.

For “Destruction”, we propose a Region Confusion

Mechanism (RCM) to deliberately “confuse” the global

structure, which partitions the input image into local

patches and then shuffles them randomly (Figure 3). For

fine-grained recognition, local details play a more important

role than global structures, since images from different fine-

43215157



(c)(a) (b)

Detection

Attention Construction

Destruction

Figure 1. Illustrations of two previous general frameworks (a,b) and our proposed framework (c) for fine-grained classification. (a) Two-

stage part detection based framework. (b) Attention based framework. (c) Our proposed destruction and construction learning framework.

The network structures in dashed lines are disabled during inference.

grained categories usually share the same global structure

or shape, but only differ in local details. Discarding global

structure and keeping local details could force the network

to identify and focus on the discriminative local regions for

recognition. After all, the devil is in the details. Shuffling

is also adopted in natural language processing [15] to let

the neural network focus on discriminative words. Simi-

larly, if local regions in an image are “shuffled”, irrelevant

regions that are non-critical to fine-grained recognition will

be neglected, and the network will be forced to classify im-

ages based on the discriminative local details. With RCM,

the visual appearance of the image has been substantially

changed. As shown in the bottom row of Figure 3, though it

becomes more difficult for recognition, bird experts can still

spot the difference easily. Car enthusiasts can distinguish

car models by only examining parts of car [34]. Similarly,

the neural network also needs to learn expert knowledge to

classify the destructed images.

It is worth noting that “destruction” is not always benefi-

cial. As a side effect, RCM introduces several noisy visual

patterns as in Figure 3. To offset the negative impact, we ap-

ply an adversarial loss to distinguish original images from

destructed ones. As a result, the effect of noisy patterns can

be minimized, keeping only beneficial local details. Con-

ceptually, the adversarial and classification losses work in

an adversarial manner to carefully learn from “destruction”.

For “Construction”, a region alignment network is intro-

duced to restore the original region arrangement, which acts

in the opposite way of RCM. By learning to restore the orig-

inal layout as in [19, 6], the network needs to understand

the semantics of each region, including those discrimina-

tive ones. Through “construction”, the correlation between

different local regions can be modeled.

The main contributions are summarized as follows:

• A novel “Destruction and Construction Learning

(DCL)” framework is proposed for fine-grained recog-

nition. For destruction, the region confusion mecha-

nism (RCM) forces the classification network to learn

from discriminative regions, and the adversarial loss

prevents over-fitting the RCM-induced noisy patterns.

For construction, the region alignment network re-

stores the original region layout by modeling the se-

mantic correlation among regions.

• State-of-the-art performances are reported on three

standard benchmark datasets, where our DCL consis-

tently outperforms existing methods.

• Compared to existing methods, our proposed DCL

does not need extra part/object annotation and intro-

duces no computational overhead at inference time.

2. Related works

Researches for fine-grained image recognition task

mainly proceed along two dimensions. One is learning

better visual representations from the original image di-

rectly [26, 25, 28] and the other is using part/attention based

methods [41, 42, 7, 13] to obtain discriminative regions in

images and learn region-based feature representations.

Due to the success of deep learning, fine-grained recog-

nition methods have shifted from multistage frameworks

based on hand-crafted features [39, 36, 23, 10] to multi-

stage frameworks with CNN features [13, 31, 29]. Sec-

ond order bilinear feature interactions were shown to have

a significant improvement for visual representations learn-

ing [16, 30]. This method was later extended to a series of

related works with further improvements [12, 4, 8]. Deep

metric learning is also used to capture subtle visual differ-

ences. Zhang et al. [40] introduced label structures and a

generalization of triplet loss to learn fine-grained feature

representations. Chen et al. [27] investigate simultaneously

predicting categories of different levels in the hierarchy and

integrating this structured correlation information into the

network by an embedding method. However, these pair-

wise neural network models often bring complex network

computing.

There is also a large amount of part localization based

methods proposed regarding the theory that the object parts

are essential to learning discriminative features for fine-

grained classification [32]. Fu et al. [7] proposed a re-

inforced attention proposal network to obtain discriminat-

ing attention regions and region-based feature representa-

tion of multiple scales. Sun et al. [20] proposed a one-

squeeze multi-excitation module to learns multiple atten-

tion region features of each input image, and then apply a

multi-attention multi-class constraint in a metric learning

framework. Zheng et al. [42] adopted a channel grouping

network to generate multiple parts by clustering, then classi-
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Figure 2. The framework of the proposed DCL method which consists of four parts. (1) Region Confusion Mechanism: a module to

shuffle the local regions of the input image. (2) Classification Network: the backbone classification network that classifies images into

fine-grained categories. (3) Adversarial Learning Network: an adversarial loss is applied to distinguish original images from destructed

ones. (4) Region Alignment Network: appended after the classification network to recover the spatial layout of local regions.

fied these parts features to predict the categories of input im-

ages. Compared with earlier part/attention based methods,

some of the recent methods tend to be weak supervised and

do not require the annotations of parts or key areas [21, 35].

In particular, Peng et al. [21] proposed a part spatial con-

straint to make sure that the model could select discrimina-

tive regions, and a specialized clustering algorithm is used

to integrate the features of these regions. Yang et al. [35]

introduced a method to detect informative regions and then

scrutinizes them to make final predictions. However, the

correlation among regions is helpful to build deep under-

standing about the objects, it is usually ignored by previous

works. The research [19] also shows that utilizing the loca-

tion information of regions can enhance the visual represen-

tation ability of the neural network and result in improving

performance on classification and detection tasks.

Our proposed method differs previous works in three as-

pects: First, by training classifier with our proposed RCM,

the discriminative regions can be automatically detected

without using any prior knowledge except object labels.

Second, our formulation considers not only the fine-grained

local region feature representations but also the semantic

correlation among different regions in the whole image.

Third, our proposed method is highly efficient, that there

is no additional overhead except backbone network feed-

forward in prediction time.

3. Proposed Method

In this section, we present our proposed Destruction and

Construction Learning (DCL) method. As shown in Fig-

ure 2, the whole framework is composed of four parts.

Please note that only the “classification network” is needed

during inference time.

3.1. Destruction Learning

The devil is in the details. For fine-grained image recog-

nition, local details are much more important than the global

structure. In most cases, different fine-grained categories

usually share a similar global structure and only differ in

certain local details. In this work, we propose to carefully

destruct the global structure by shuffling the local regions

for better identifying discriminative regions and learning

discriminative features (Section 3.1.1). To prevent the net-

work learning from noisy patterns introduced by destruc-

tion, an adversarial counterpart (Section 3.1.2) is proposed

to reject RCM-induced patterns that are irrelevant to fine-

grained classification.

3.1.1 Region Confusion Mechanism

As an analogy [15] to natural language processing, shuffling

words in a sentence would force the neural network to focus

on discriminative words and neglect irrelevant ones. Simi-

larly, if local regions in an image are “shuffled”, the neural

network would be forced to learn from discriminative re-

gion details for classification.

As shown in Figure 3, our proposed Region Confusion

Mechanism (RCM) is designed to disrupt the spatial layout

of local image regions. Given an input image I , we first

uniformly partition the image into N × N sub-regions de-

noted by Ri,j , where i and j are the horizontal and vertical

indices respectively and 1 ≤ i, j ≤ N . Inspired by [15],

our proposed RCM shuffles these partitioned local regions
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in their 2D neighbourhood. For the jth row of R, a ran-

dom vector qj of size N is generated, where the ith element

qj,i = i+ r, where r ∼ U(−k, k) is a random variable fol-

lowing a uniform distribution in the range of [−k, k]. Here,

k is a tunable parameter (1 ≤ k < N ) defining the neigh-

bourhood range. Then we can get a new permutation σrow
j

of regions in jth row by sorting the array qj , verifying the

condition:

∀i ∈ {1, ..., N} ,
∣

∣σrow
j (i)− i

∣

∣ < 2k. (1)

Similarly, we apply the permutation σcol
i to the regions

column-wisely, verifying the condition:

∀j ∈ {1, ..., N} ,
∣

∣σcol
i (j)− j

∣

∣ < 2k. (2)

Therefore, the region at (i, j) in original region location is

placed to a new coordinate:

σ(i, j) = (σrow
j (i), σcol

i (j)). (3)

This shuffling method destructs the global structure and en-

sures that the local region jitters inside its neighbourhood

with a tunable size.

The original image I , its destructed version φ(I) and its

ground truth one-vs-all label l indicating the fine-grained

categories are coupled as 〈I, φ(I), l〉 for training. The clas-

sification network maps input image into a probability dis-

tribution vector C(I, θcls), where θcls is all learnable pa-

rameters in the classification network. The loss function of

the classification network Lcls can be written as:

Lcls = −
∑

I∈I

l · log [C (I)C (φ(I))] , (4)

where I is the image set for training.

Since the global structure has been destructed, to rec-

ognize these randomly shuffled images, the classification

network has to find the discriminative regions and learn the

delicate differences among categories.

3.1.2 Adversarial Learning

Destructing images with RCM does not always bring ben-

eficial information for fine-grained classification. For ex-

ample in Figure 3, RCM also introduces noisy visual pat-

terns as we shuffle the local regions. Features learned from

these noise visual patterns are harmful to the classification

task. To this end, we propose another adversarial loss LAdv

to prevent overfitting the RCM-induced noise patterns from

creeping into the feature space.

Considering the original images and the destructed ones

as two domains, the adversarial loss and classification loss

work in an adversarial manner to 1) keep domain-invariant

patterns, and 2) reject domain-specific patterns between I

and φ(I).
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Figure 3. Example images for fine-grained recognition (top) and

the corresponding “destructed” images by our proposed RCM

(bottom).

We label each image as a one-hot vector d ∈ {0, 1}2

indicating whether the image is destructed or not. A dis-

criminator can be added as a new branch in the framework

to judge whether an image I is destructed or not by:

D(I, θadv) = softmax(θadvC(I, θ
[1,m]
cls )), (5)

where C(I, θ
[1,m]
cls ) is the feature vector extract from the out-

puts of the mth layer in backbone classification network,

θ
[1,m]
cls is the learnable parameters from the 1st layer to mth

layer in the classification network, and θadv ∈ R
d×2 is a

linear mapping. The loss of the discriminator network Ladv

can be computed as:

Ladv = −
∑

I∈I

d · log [D(I)]+(1−d) · log [D(φ(I))] . (6)

Justification. To better understand how the adversarial

loss tunes feature learning, we further visualize the features

of backbone network ResNet-50 with and without the ad-

versarial loss. Given an input image I , we denote the kth

feature map in mth layer by F k
m(I). For ResNet-50, we ex-

tract feature from the outputs of the convolutional layer with

average pooling next to the last fully-connect layer for ad-

versarial learning. Thus, the response of kth filter in the last

convolutional layer for ground truth label c can be measured

by rk(I, c) = F̄ k
m(I) × θ

[m+1]
cls [k, c], where θ

[m+1]
cls [k, c] is

the weight between the kth feature map and the cth output

label.

We compare the responses of different filters for origi-

nal image and its destructed version in scatter plot shown

as Figure 4, where every filter with positive response is

mapped to the data point (r(I, c), r(φ(I), c)) in the scat-

ter plot. We can find that the distributions of feature maps

trained by Lcls is more compact than those trained by

Lcls+Ladv . It means that the filters have large responses on

the noise patterns introduced by RCM may also have large

responses on the original image (as the visual patterns vi-

sualized in A, B and C, there are lots of filters responding
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to edge-style visual patterns or irrelevant patterns that are

introduced by RCM). These filters may mislead the predic-

tions on the original image.

We also colored the points in scatter plot about backbone

network trained by Lcls + Ladv , according to the value of

δk = F̄ k
m(I)× θadv[k, 1]− F̄ k

m(φ(I))× θadv[k, 2], (7)

where θadv[k, 1] is the weight connecting feature map

F k
m(·) and the label representing orignal image, and

θadv[k, 2] is the weight connecting F k
m(·) and the label rep-

resenting destructed image. δk evaluates whether the kth fil-

ter tends to be visual patterns in original image or not. It can

be observed that the filter respond to noisy visual pattern

can be distinguished (D VS. F ) by using adversarial loss.

The points in figures can be divides into three parts. D:

filters that tend to respond to noisy patters (RCM-induced

image features); F : filters that tend to respond to global

context description (orignal image specific image features);

E: the vast majority of filters are related to the detailed local

region descriptions that enhanced by Lcls (common image

feature maps between orignal image and destructed image).

Lcls and Ladv together contribute to the “destruction”

learning, where only discriminative local details are en-

hanced and irrelevant features are filtered out.

3.2. Construction Learning

Considering it is the combination of correlative regions

in images constitute the complex and diverse visual pat-

terns, we propose another learning method to model the

correlation among local regions. Specifically, we propose

a region alignment network with region construction loss

Lloc, that measures the location precision of different re-

gions in images, to induce backbone network to model the

semantic correlative among regions by end-to-end training.

Given an image I and its corresponding destructed ver-

sion φ(I), the region Ri,j located at (i, j) in I is consistent

with the region Rσ(i,j) in φ(I). Region alignment network

works on the output features of one convolution layer of the

classification network C(·, θ
[1,n]
cls ), where the nth layer is a

convolutional layer. The features are processed by a 1 × 1
convolution to obtain outputs with two channels. Then the

outputs are handled by an ReLU and an average pooling to

get a map with the size of 2×N×N . The outputs of region

alignment network can be written as:

M (I) = h
(

C(I, θ
[1,n]
cls ), θloc

)

, (8)

where the two channels in M (I) correspond to the loca-

tion coordinates of rows and columns, respectively, h is our

proposed region alignment network, and θloc is the param-

eters in region alignment network. We denote the predicted

location of Rσ(i,j) in I as Mσ(i,j) (φ(I)), predicted loca-

tion of Ri,j in I as Mi,j (I, i, j). Both ground truth of
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Figure 4. Visualization of filters learned by using Lcls and Lcls +

Ladv respectively. The 1st row shows the original image I and its

destructed version φ(I). The left side of 2nd and 3rd rows show

the scatter plots about the filters’ responses to I and φ(I). The

right side of 2nd and 3rd rows show the visualization of feature

maps belongs to filters that have various responses on I and φ(I).
A,D: filters with larger response to φ(I). C,F : filters with larger

response to I . B,E: filters with large responses on both of I and

φ(I). (The figure is best viewed in color.)

Mσ(i,j) (φ(I)) and Mi,j (I) should be (i, j). The region

alignment loss Lloc is defined as the L1 distance between

the predicted coordinates and original coordinates, which

can be expressed as:

Lloc =
∑

I∈I

N
∑

i=1

N
∑

j=1

∣

∣

∣

∣

Mσ(i,j) (φ(I))−

[

i

j

]∣

∣

∣

∣

1

+

∣

∣

∣

∣

Mi,j (I)−

[

i

j

]∣

∣

∣

∣

1

(9)

The region construction loss is helpful to locate the main

objects in images and tends to find the correlation among

sub-regions. By end-to-end training, the region construc-

tion loss can help the classification backbone network to

build deep understanding about objects and model the struc-

ture information, such as the shape of objects and semantic

correlation among parts of object.
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3.3. Destruction and Construction Learning

In our framework, the classification, adversarial and re-

gion alignment losses are trained in an end-to-end man-

ner, in which the network can leverage both enhanced local

details and well-modeled object parts correlation for fine-

grained recognition. Specifically, we want to minimize the

following objective:

L = αLcls + βLadv + γLloc. (10)

Figure 2 shows the architecture of the DCL framework.

The destruction learning mainly helps to learn from dis-

criminative regions, while the construction learning helps

to re-arrange the learned local details according to seman-

tic correlation among regions. Hence, DCL yields to a set

of complex and diverse visual representations based on the

well-structured detail features from discriminative regions.

Note that only f(·, θ
[1,l]
cls ) is used for predicting the cate-

gory label of given images. Thus, there is no external com-

putational overhead except the backbone classification net-

work for inference.

4. Experiments

We evaluate the performance of our proposed DCL

on three standard fine-grained object recognition datasets:

CUB-200-2011 (CUB) [3], Stanford Cars (CAR) [14] and

FGVC-Aircraft (AIR) [18]. We do not use any bounding

box/part annotations in all our experiments.

4.1. Implementation Details

Backbone network: We evaluate our proposed method

on two classification widely used backbone networks:

ResNet-50 [9] and VGG-16 [25]. These two networks are

pre-trained on ImageNet dataset. The category label of the

image is the only annotation used for training. The input

images are resized to a fixed size of 512 × 512 and ran-

domly cropped into 448 × 448. Random rotation and ran-

dom horizontal flip are applied for data augmentation. All

above settings are standard in the literature. To recognize

high-resolution images on VGG-16 without sub-sampling,

the first two fully connected layers in VGG-16 are trans-

formed into two convolution layers respectively. For all the

experiments in this paper, the feature maps of the last convo-

lutional layer of backbone network are feed into the region

alignment network, and the feature vector formed by the

output of average pooling following the last convolutional

layer is feed into the adversarial learning network.

The number of regions N in RCM is based on the back-

bone network and the size of the input image. The width w

and length h of the region should be divisible by the stride

of the last convolutional layer, which is 32 for VGG-16 and

ResNet-50. Meanwhile, to ensure the feasibility of region

alignment, the width and height of the input image should

also be divisible by N . Without special mention, the default

value of division number N for RCM is set to 7 in this paper.

The influence of choice of N is discussed in Section 4.4.

All models in experiments were trained for 180 epochs,

and learning rates decay by a factor of 10 for every 60

epochs. At test time, RCM is disabled, and the networks

structures for adversarial loss and region construction are

removed. The input images are center cropped and then

feed into the backbone classification network for final pre-

dictions.

4.2. Performance Comparison

The results on CUB-200-2011, Stanford Cars, and

FGVC-Aircraft are presented in Table 1. Considering that

some of the compared methods use image-level labels or

bounding box annotations, the information of extra anno-

tations is also presented in parentheses for direct compar-

isons. The single model and single crop performance of our

proposed DCL achieved state-of-the-art with no extra anno-

tation on all of the three datasets.

We set α = β = 1 for all experiments reported in this pa-

per. For non-rigid objects recognition tasks like CUB-200-

2011, the correlation among different regions is important

for building deep understanding about objects. Thus we set

γ = 1. While for rigid objects recognition tasks like Stan-

ford Cars and FGVC-Aircraft, parts of objects are discrim-

inative and complementary. Thus object and part location

may play a significant role [34]. We set γ = 0.01 for rigid

objects recognition tasks to highlight the role of destruction

learning in learning detail visual representations from dis-

criminative regions. Different from other fine-grained cate-

gories like bird and car, the structure of aircraft can change

with their design significantly [18]. For example, the num-

ber of wings, undercarriages, wheels per undercarriage, en-

gines, etc. varies. Thus we set N as 2 for DCL on FGVC-

Aircraft in Table 1 to retain the structure information to a

certain extent.

Tables 1, 2 show that our ResNet-50 baseline is already

very competitive. Luckily, our proposed DCL can still out-

perform the strong baseline with a large margin (e.g., 2.3%

absolute improvement on average) on all of the three tasks.

4.3. Ablation Studies

We conduct ablation studies to understand different com-

ponents in our proposed DCL. We design different runs in

three datasets using ResNet-50 as the backbone network

and report the results in Table 2. The results show that the

proposed DCL boosts the performance significantly. The

performance improvement caused by destruction learning

(DL) proves that a well-structured visual feature space that

distinguishing the noisy visual pattern, detail visual pattern

and the global visual pattern are beneficial to fine-grained

recognition task. Likewise, the shape and constitution in-
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Method Base Model
Accuracy (%)

CUB-200-2011 Stanford Cars FGVC-Aircraft

CoSeq(+BBox) [13] VGG-19 82.8 92.8 -

FCAN(+BBox) [17] ResNet-50 84.7 93.1 -

B-CNN [16] VGGnet 84.1 91.3 84.1

HIHCA [2] VGG-16 85.3 91.7 88.3

RA-CNN [7] VGG-19 85.3 92.5 88.2

OPAM [21] VGG-16 85.8 92.2 -

Kernel-Pooling [5] VGG-16 86.2 92.4 86.9

Kernel-Pooling [5] ResNet-50 84.7 91.1 85.7

MA-CNN [42] VGG-19 86.5 92.8 89.9

DFL-CNN [33] ResNet-50 87.4 93.1 91.7

DCL VGG-16 86.9 94.1 91.2

DCL ResNet-50 87.8 94.5 93.0

Table 1. Comparison results on three different standard datasets. Base Model means the backbone network used in the method.

Method
Accuracy (%)

CUB CAR AIR

ResNet-50 85.5 92.7 90.3

+ RCM 86.2 93.4 89.9

DL 87.2 94.4 91.6

CL 86.7 94.1 90.7

DCL 87.8 94.5 92.2

Table 2. Ablation studies of the proposed method regarding recog-

nition accuracy on three different datasets. ResNet-50: ResNet-

50 finetuned on fine-grained tasks. + RCM: Model trained by

Lcls. DL: Model trained by Lcls + Ladv . CL: Model trained

by Lcls + Lloc. DCL: Model trained by L.

N=Divisor( 448
32

) CUB CAR AIR

1 85.5% 92.7% 90.3%

2 86.5% 93.5% 93.0%

7 87.8% 94.5% 92.2%

14 85.7% 93.0% 92.1%

Table 3. The recognition accuracy on three datasets of the pro-

posed method by using different N .

formation of objects modeled by construction learning (CL)

can further improve the performance of fine-grained classi-

fication model. Moreover, the adversarial learning and re-

gion construction are highly complementary.

4.4. Discussions

Partition Granularity (N ): The number of partitions

N for RCM is an important parameter for the proposed

method. Table 3 shows the recognition accuracy on three

datasets with all feasible N with the size of input images

448× 448.

It can be observed that the recognition accuracy in-

creases first and then decreases while N increases. The best

performance is achieved at N = 7 on CUB-200-2011 and

Stanford Cars. For experiments on FGVA-Aircraft, our pro-

posed method can still get better performance than the state-

of-the-art method with 0.5% absolute improvement even if

we set N = 7. In general, if we set N as a small num-

ber, the advantage of our proposed method would likely to

be restricted. On the other hand, if we set N bigger, the

visual patterns can be learned from regions would be more

limited, and the region construction network would be more

difficult to converge. In particular, the performance of our

proposed DCL is equivalent to ResNet-50 baseline when

setting N = 1.

Ratio of Destructed Images in a Min-batch: The de-

fault ratio of original images and destructed images in a

min-batch is set as 1 : 1. Table 4 shows the recognition ac-

curacy on CUB-200-2011 with this ratio ranging from 1 : 0
to 0 : 1. As shown, the performance decreases by a large

margin when we set the ratio as 0 : 1, since there is no

global context information in the training data.

Ratio 1:0 1:1 1:2 1:3 0:1

Accuracy(%) 85.5 87.8 86.8 86.5 84.1

Table 4. The recognition accuracy on CUB-200-2011 of the model

trained with different composition of training samples. The ratio

represents the proportion of original images and images with RCM

in one batch.

Feature Visualization: We visualize the feature maps of

the last convolution layer in Figure 5. Comparing the fea-

ture maps from baseline model and proposed method, we

can find that the feature map responses of DCL are more

concentrated in discriminative regions. With different shuf-

fling, the discriminative regions can be consistently high-

lighted by DCL based model, which demonstrating the ro-

bustness of our DCL method.

Object Localization: We also tested DCL on weakly

supervised object localization task on VOC2007 dataset us-

ing SPN [43]. We choose Pointing Localization Accu-

racy (PLAcc) as the evaluation criterion, which measures
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Images Baseline DCL

Figure 5. Visualization of the feature maps from the last con-

volution layer of ResNet-50. For each dataset, the first column

shows the orignal image and two destructed versions; the 2nd and

3rd columns show the feature maps of two filters from baseline

ResNet-50; the 4th and 5th columns show the feature maps of two

different filters from the ResNet-50 guided by DCL. This figure is

best viewed in color.

whether the network can locate the correct regions of the

target. The experimental results is shown in Table 5. We can

find that, after applying DCL, PLAcc was improved from

87.5% to 88.7%, which serves another numerical evidence

that DCL is helpful to learn correct regions.

Destruction Hyperparameter (k): Since RCM in our

proposed method requires the selection of a hyperparameter

k, we conduct experiments to study the sensitivity of clas-

sification performance to the choice of k in Table 6. The

recognition accuracy improved, and then decreased as k in-

Method VGG-16

Center [24] 69.5

Deconv [37] 75.5

Grad [24] 76.0

c-MWP [38] 80.0

SPN [43] 87.5

DCL 88.1

Table 5. Pointing localization accuracy (%) on VOC2007 test set.

Center is a baseline method which uses the image centers as esti-

mation of object centers.

k 0 1 2 3 4 5 6

Acc.(%) 85.5 86.7 87.8 87.6 87.4 87.3 87.2

Table 6. The recognition accuracy on CUB-200-2011 of the model

trained with different value of k.

creases. The best performance is obtained at k = 2. In

particular, the accuracy decreased slowly when k increased

from 2 to 6, which indicates that our method is not particu-

larly sensitive to k.

Model Complexity: During training, DCL only re-

quires a simple operation (RCM) and two lightweight net-

work structures (Adversarial Learning Network and Re-

gion Alignment Network). For ResNet-50 + DCL, there

are 8,192 new parameters introduced by DCL, which is

only 0.034% more parameters than the baseline ResNet-

50. Since there are only negligible additional parameters in

DCL, the network is efficient to train. Moreover, it takes the

same number of iterations as the baseline for finetuning the

network upon convergence.

During testing, only the backbone classification network

is activated. Compared with the ResNet-50 baseline, our

method yields a significantly better result (+2.3%) with the

same time cost at inference, which adds extra practical value

to our proposed method.

5. Conclusion

In this paper, we propose a novel DCL framework for

fine-grained image recognition. The destruction learning in

DCL enhances the difficulty of recognition to guide the net-

work learn expert knowledge for fine-grained recognition.

While the construction learning can model the semantic cor-

relation among parts of the object. Our method does not re-

quire extra supervision information and can be trained end-

to-end in one stage. Extensive experiments against state-

of-the-art methods exhibit the superior performances of our

method on various fine-grained recognition tasks. Also, our

proposed method is lightweight, easy to train, agile for in-

ference and has a good practical value.
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