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Abstract

The growing availability of commodity RGB-D cameras

has boosted the applications in the field of scene under-

standing. However, as a fundamental scene understand-

ing task, surface normal estimation from RGB-D data lacks

thorough investigation. In this paper, a hierarchical fu-

sion network with adaptive feature re-weighting is proposed

for surface normal estimation from a single RGB-D image.

Specifically, the features from color image and depth are

successively integrated at multiple scales to ensure global

surface smoothness while preserving visually salient de-

tails. Meanwhile, the depth features are re-weighted with

a confidence map estimated from depth before merging into

the color branch to avoid artifacts caused by input depth

corruption. Additionally, a hybrid multi-scale loss function

is designed to learn accurate normal estimation given noisy

ground-truth dataset. Extensive experimental results val-

idate the effectiveness of the fusion strategy and the loss

design, outperforming state-of-the-art normal estimation

schemes.

1. Introduction

Per-pixel surface normal estimation has been exten-

sively studied in the recent years. Previous works on nor-

mal estimation mostly assume single RGB image input

[8, 26, 1, 33], providing satisfying results in most cases

despite loss of shape features and erroneous results at the

highlight or dark areas, as shown in Fig. 1(c).

RGB-D cameras are now commercially available, lead-

ing to a great performance enhancement in the applica-

tions of scene understanding, e.g., semantic segmentation

[27, 5, 23], object detection [11, 20], 3D reconstruction

[15, 18, 12], etc. With the depth given by sensors, nor-

mal can be easily calculated via a least square optimiza-

tion [21, 9] as used in the widely used NYUv2 dataset [22],

∗indicates equal contribution.

(a) RGB Image (b) Sensor Depth (c) Using RGB

(d) Using Depth (e) Early Fusion (f) Hierarchical Fusion

Figure 1. Example in Matterport3D dataset. (a) RGB input; (b)

depth input; normal estimation with (c) single RGB [33], (d) depth

inpainting [9], (e) RGB-D early fusion [32], (f) proposed hierar-

chical RGB-D fusion.

but the quality of the normal suffers from the corruption in

depth, e.g., sensor noise along object edges or missing pix-

els due to glossy, black, transparent, and distant surfaces

[24], as shown in Fig. 1(d).

This motivates us to combine the advantages of color

and depth inputs while compensating for the deficiency of

each other in the task of normal estimation. Specifically,

the RGB information is utilized to fill the missing pixels in

depth; meanwhile the depth clue is merged into RGB re-

sults to enhance sharp edges and correct erroneous estima-

tion, resulting in a complete normal map with fine details.

However, research on combining RGB and depth for nor-

mal estimation has not been extensively studied. To the best

of our knowledge, the only work considering RGB-D input

for normal estimation adopts early fusion, i.e., using depth

as an additional channel to the RGB input, leading to little

performance improvement compared with the methods us-

ing the RGB input only [32]. The lack of proper network

design for combining the geometric information in depth

and color image is an impediment to fully take advantage
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of the depth sensor.

Different from previous works on normal estimation

with RGB-D using early fusion [32], we propose to merge

the features from RGB and depth branches at multiple

scales at the decoder side in a hierarchical manner, in order

to guarantee both global surface smoothness and local sharp

features in the fusion results. Additionally, a pixel-wise

confidence map is estimated from the depth input for re-

weighting depth features before merging into RGB branch,

so as to reduce artifact from depth with a smaller confidence

on missing pixels and those along the object edges. An ex-

ample is shown in Fig. 1, where the proposed scheme out-

performs state-of-the-art RGB-based, depth-based, RGBD-

based methods.

Apart from the lack of RGB-D fusion schemes, the short-

age of datasets providing sensor depth and ground-truth

depth pairs is another obstacle for RGB-D normal estima-

tion since the performance of DNN approaches is affected

by the dataset quality [19, 30]. The widely used train-

ing datasets for normal estimation, e.g., NYUv2 [22], do

not provide complete ground-truth normal for the captured

RGB-D images since it is directly computed from the cap-

tured depth after inpainting [14]. If trained on NYUv2, the

network is up to approximate an inpainting algorithm.

Instead we use Matterport3D [2] and ScanNet [6]

datasets with RGB-D captured by camera and ground-truth

normal obtained via multiview reconstruction provided by

[32]. Nevertheless, the ground-truth is not perfect due to the

multiview reconstruction error, especially at object edges

which is crucially for visual evaluation. To overcome the

artifact in the ground-truth, we propose a hybrid multi-scale

loss function based on the noise statistics in the ground-truth

normal map, using L1 loss at the large resolution to obtain

sharper results, and L2 loss at small resolution to ensure

coarse scale accuracy.

In summary, the main contributions of our work are:

• By incorporating RGB and depth inputs via the pro-

posed hierarchical fusion scheme, the two inputs are

able to complement each other in the normal estima-

tion, refine details with depth, and fill the missing

depth pixels with color;

• With the confidence map for depth feature re-

weighting, the effect of artifacts in the depth features

is reduced;

• A hybrid multi-scale loss function is designed by ana-

lyzing the noise statistics in the ground-truth, provid-

ing sharp results with high fidelity despite the imper-

fect ground-truth.

Comparison with the state-of-the-art approaches and exten-

sive ablation study validates the design of network structure

and loss function. The paper is organized as follows. Re-

lated works are discussed in Section 2, and Section 3 pro-

vides a detailed discussion of the proposed method. Ab-

lation study and comparison with state-of-the-art methods

are demonstrated in Section 4 and the work is concluded in

Section 5.

2. Related Work

2.1. Surface Normal Estimation

RGB-based Previous works mostly used a single RGB

image as input. Eigen et al. [8] designed a three-scale con-

volution network architecture that produced a coarse global

prediction with full image first and then refined it with lo-

cal finer-scale network. Wang et al. [28] proposed a net-

work structure that integrated different geometric informa-

tion like local, global, and vanishing point information to

predict the surface normal. More recently, Bansal et al.

[1] proposed a skip-connected structure to concatenate the

CNN response at different scales to capture corresponding

details at each scale, and Zhang et al. [33] adopted a U-Net

structure and achieved state-of-the-art performance.

Due to the difficulty in extracting geometric information

and texture interference from the RGB input, the details of

predictions are poor, with wrong results in the area of insuf-

ficient lighting or high lighting.

Depth-based Surface normal can be inferred from depth

with geometric method, which depends on the neighbor-

ing pixels’ relative depth geometrically [32]. However,

the depth camera used in common datasets, e.g., NYUv2

[22], Matterport3D [2], ScanNet [6] often fails to sense the

depth on glossy, bright, transparent and faraway surfaces

[32, 29], resulting in holes and corruptions in the obtained

depth images. To overcome missing pixels in normal map

inferred from depth, some works proposed to inpaint depth

images using RGB images [7, 10, 16, 25, 31]. Silberman

et al. [22] used optimization-based method [14] to fill the

holes in depth maps. Zhang et al. [32] used a convolutional

network to predict pixel-wise surface normal with a single

RGB image, then used the predicted normal to fill holes in

raw depth.

Nevertheless, depth inpainting cannot handle large holes

in depth; also, the noise in depth will undermine depth-

based normal estimation performance.

Normal-depth consistency based There is a strong ge-

ometric correlation between the depth and the surface nor-

mal. Normal can be calculated from the depth of neigh-

boring pixels, and depth can be refined with normal varia-

tion. For example, Wang et al. [26] proposed a four-stream

convolutional neural network to detect planar regions, then

used a dense conditional random field to smooth results

based on depth and surface normal correlation in planar re-

gion and planar boundary respectively. Chen et al. [3] es-
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Figure 2. Proposed hierarchical RGB-D fusion composed of RGB branch at the upper side, depth branch at the lower-right side, confidence

map module at the lower-left side. The fusion module is abstracted as a fusion layer in the fusion network and illustrated at the lower-left

side. An input with size 320× 240 is used for demonstration.

tablished a new dataset, and proposed two loss functions

to measure the consistency between predicted normal and

depth label for depth and normal prediction. Qi et al. [21]

proposed to predict initial depth and surface normal using

color image, then cross-refine each other using geometric

consistency.

These methods provide different schemes to promote ge-

ometric consistency between normal and depth, but rely on

a single RGB input and do not consider noise from depth

sensors.

RGB-D based The RGB-D based normal estimation has

not been extensively studied in previous works. Normal es-

timation with RGB-D input has been briefly discussed in

[32] where an early fusion was adopted, reported to be al-

most the same as using RGB input. However the method is

not properly designed and the conclusion is not comprehen-

sive. Although 3D reconstruction based methods like [18]

can be used in normal estimation, a series of RGB-D images

is required for those methods, which is beyond the scope of

this paper. The lack of design in RGB-D fusion for surface

normal estimation motivates our work.

2.2. RGB­D Fusion Schemes

Despite the lack of study in RGB-D based normal esti-

mation, RGB-D fusion scheme has been explored for other

tasks, among which semantic segmentation is the most ex-

tensively studied one, e.g., early fusion using RGB-D as a

four-channel input [8], late fusion [4], depth-aware convo-

lution [27], or using 3D point cloud format [20].

The difference from those works is that they do not re-

quire per-pixel accuracy as much as normal prediction, i.e.,

the label interior of one object is constant, but for normal

estimation, correct prediction at each pixel is required, and

the most significant difficulty lies in accurate sharp details.

Therefore, we adopt hierarchical fusion with confidence

map re-weighting to enhance edge preservation in the fu-

sion result without bringing artifacts in depth.

3. Method

As illustrated in Fig. 2, the hierarchical RGB-D fusion

network is composed of three modules: RGB branch, depth

branch, and confidence map estimation. In this section, we

introduce the pipeline for the hierarchical fusion of RGB

and depth branches with the fusion module at different

scales, and confidence map estimation used inside the fu-

sion module for depth conditioning, after which the hybrid

loss function design is detailed. A detailed architecture of

the deep network is provided in the supplementary.

6155



3.1. Hierarchical RGB­D Fusion

Given color image Ic and sensor depth Id, we are aimed

as estimating surface normal map In by minimizing its dis-

tance from the ground-truth normal I
(gt)
n , i.e.,

min
θ

L(I(gt)
n , fθ(Ic, Id)), (1)

where fθ denotes the fusion network function to generate

normal estimation In parameterized by the parameters θ,

which are end-to-end trained via back propagation. A hi-

erarchical fusion scheme is adopted to merge depth branch

into RGB branch for both overall surface orientation recti-

fication and visually salient feature enhancement.

3.1.1 Network Design

First, in the RGB branch where the input is the color image

Ic, we adopt a similar network structure as used in [33],

where a fully convolutional network (FCN) [17] is built

with VGG-16 back-bone as illustrated in the RGB branch

in Fig. 2. Specifically, the encoder is the same as VGG-

16 except that in the last two convolution blocks of the en-

coder, i.e., conv4 and conv5, the channel number is reduced

from 512 to 256 to remove redundant model parameters.

The encoder is accompanied with a symmetric decoder, and

equipped with skip-connections and shared pooling masks

for learning local image features.

Meanwhile, Id is fed into the depth branch to extract

geometric features with a similar network structure as the

RGB branch, except that the last convolution block in the

RGB encoder is removed to give a simplified model.

The fusion takes place at the decoder side. As shown

in Fig. 2, the depth features (colored in green) at each

scale in the decoder are passed into the fusion module and

re-weighted with the confidence map (colored in purple)

down-sampled and repeated to the same resolution as the

depth feature. Then the re-weighted depth features are con-

catenated with the color features with the same resolution

and passed through a deconvolution layer to give the fusion

output features (colored in yellow). Consequently, the fu-

sion module (denoted as FM for short) at scale l is given

as,

FM(F l
c,F

l
d|C

l) = deconv(F l
c ⊕ (F l

d ⊙ Cl)), (2)

where F l
c, F l

d are the features from RGB and depth

branches at scale l, and Cl is the confidence map for depth

conditioning. ⊙ denotes element-wise multiplication and ⊕
denotes the concatenation operation. The concatenation re-

sult after deconvolution layer gives the fusion output. The

fusion is implemented at four scales, where the last scale

output gives the final normal estimation. The confidence

map estimation is addressed later in Section 3.2.

3.1.2 Comparison with Existing RGB-D Fusion

Schemes

Existing RGB-D fusion schemes mostly adopt single-scale

fusion. [32] fused RGB-D at the input, i.e., using depth

as an additional channel along with RGB. However, RGB

and depth are from different domains and cannot be prop-

erly handled using the same encoder as a four-channel in-

put. For example, we adopt the same network structure as

in [33], composed of VGG-16 encoder and a symmetric de-

coder with skip-connection, and use a RGB-D four-channel

input instead of a single RGB to generate the normal as

shown in Fig. 7(d). The output normal does not exhibit

global smoothness, especially in area where depth pixels

are missing. This is because a CNN network is incapable

of handling different domains information from RGB and

depth without prior knowledge about depth artifact.

Late fusion with probability map for RGB and depth is

adopted in [4] for segmentation, and here we generalize the

network structure for normal estimation, by replacing the

probability map with a binary mask indicating whether the

depth pixel is available or not, giving the result in Fig. 7(e).

The role of binary mask we use is consistent with that of the

probability map in [4] which indicates how much the source

is trustworthy. Similar to early fusion, the result of late fu-

sion has noticeable artifacts along the depth holes indicating

the fusion is not smooth.

In light of this, single-scale fusion is not efficient for fus-

ing RGB and depth when RGB and depth contain different

noise. RGB is sensitive to lighting conditions while depth

is corrupted at object edges and distant surfaces, indicating

that the output from RGB and depth can be inconsistent. If

depth is integrated into RGB in a single scale, the fusion

is hard to eliminate the difference between two sources and

give a smooth result. This motivates us to merge depth fea-

tures into RGB branch at four different scales in a hierar-

chical manner. In this way, the features from two branches

are successively merged, where the global surface orienta-

tion error would be corrected at small resolution features,

while detail refinement would take place at the final scale.

As shown in Fig. 7, the result of the proposed hierarchical

fusion gives smoother result with detail well preserved.

3.2. Confidence Map Estimation

While hierarchical fusion improves normal estimation

over existing fusion schemes, further examination at pixels

around depth holes shows that the transition is not smooth

as shown in Fig. 8(e) where the right side of the table has

erroneous prediction close to depth hold boundary. This in-

dicates that a binary masking is not sufficient for depth con-

ditioning, and a more adaptive re-weighting would be more

favorable. Therefore, a light-weight network for depth con-

fidence map is designed as follows.
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(a) RGB Image

(b) Corresponding ground-truth normal

Figure 3. Enlarged patches from input image and ground-truth nor-

mal map in horizontal direction. Upper row: input image, patch in

red rectangle, patch in green rectangle. Bottom row: ground-truth

normal map, patch in red rectangle, patch in green rectangle.

Depth along with a binary mask indicating missing pix-

els in depth are fed into a convolutional network with five

layers as shown in Fig. 2, where the first two layers are with

3×3 kernel size and the following three layers are with 1×1

kernels. In this way, the receptive field is small enough to

restrict local adaption to depth variation. Then the con-

fidence map is down-sampled using shared pooling mask

with depth branch and passed into the fusion module to fa-

cilitate fusion operation as described in Eq. 2. By compar-

ing Fig. 8(e) and (f), the confidence map leads to a more

accurate fusion result, correcting the error at the right side

of the table.

To understand the role of the confidence map, we show

the confidence map in Fig. 8(d). The edge pixels are with

the smallest confidence value indicating a high likelihood

of outlier or noise, while the hole area is with a small yet

non-zero value, suggesting that to enable smooth transition,

information in depth holes can be passed into the merge re-

sult as long as RGB features take the dominant role.

3.3. Hybrid Loss

As mentioned in Section 1, we use Matterport3D and

ScanNet datasets for training and testing because RGB-D

data captured by camera and ground-truth normal pairs are

provided. However, the ground-truth normal suffers from

multiview reconstruction errors as shown in Fig. 3(b) where

the normal map is piece-wise constant inside the mesh trian-

gular and the edge does not align with the RGB input. Given

noisy ground-truth like this, improper handling of loss func-

tion during training will lead to deficient performance. The

reason is as follows.

Given the similar inputs in green and red rectangular in

Fig. 3(a), the output would be similar. However, the corre-

sponding ground-truth normal maps are different as shown

Fig. 3(b), thus by minimizing the loss function, the network

(a) mean (b) median

Figure 4. Mean and median results from normal observations with

the same RGB input.

will learn an expectation of all pairs of input and ground-

truth [13]:

min
θ

E
(Ic,Id,I

(gt)
n )

L(I(gt)
n , fθ(Ic, Id)). (3)

For L2 loss L2(I
(gt)
n , In) = ‖I

(gt)
n − In‖

2
2, the minimiza-

tion will lead to an arithmetic mean of the observations,

while L1 loss L1(I
(gt)
n , In) = |I

(gt)
n − In| will lead to

median of the observations.

To see which loss is more proper for the given dataset,

we sample patches along the edge in Fig. 3 with same hori-

zontal position as patches in the color rectangles, and com-

pute the mean and median normal results of these sampled

patches shown in Fig. 4 where both generate reasonable re-

sults though median result has sharper edges than mean re-

sult, indicating that L1 loss will generate a more visually

appealing result with sharp details.

In this work, we adopt hybrid multi-scale loss function:

L(I(gt)
n , In) =

∑

l=1,2

wlL2(I
(gt)
n (l), In(l)) (4)

+
∑

l=3,4

wlL1(I
(gt)
n (l), In(l)),

where l = 1, 2, 3, 4 denotes the scales from small to large,

and wl is the weight for loss at different scales and is set

to be [0.2, 0.4, 0.8, 1.0]. L1 loss is used for large scale out-

puts for detail enhancement, while L2 loss is used for coarse

scale outputs for overall accuracy. Using hybrid loss gen-

erates clean and visually better result than L2 loss widely

used for normal estimation [21, 33, 1] as shown in Fig. 7.

The proposed method is named as Hierarchical RGB-D Fu-

sion with Confidence Map, and referred to as HFM-Net for

short.

4. Experiment

4.1. Implementation Details

Dataset We evaluate our approach on two datasets, Mat-

terport3D [2] and ScanNet [6]. For the corresponding

ground-truth normal data, we use the render normal pro-

vided by [32] which was generated with multiview recon-

struction. Matterport3D is divided into 105432 images for
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RGB-based Depth-based RGBD-based Ours

Skip-Net Zhang’s Colorization DC GeoNet-D GFMM HFM-Net

Metrics [1] [33] [14] [32] [21] [10]

mean 26.081 19.346 21.588 19.126 17.234 16.537 13.062

Matter- median 19.089 12.070 12.079 9.563 8.744 8.028 6.090

port3D 11.25◦ 31.76 52.64 58.07 61.48 64.89 65.3 72.23

22.5◦ 57.61 72.12 69.59 74.08 78.5 79.94 84.41

30◦ 67.60 79.44 75.00 79.22 83.75 84.16 88.31

mean 26.174 23.306 33.071 30.652 23.289 21.174 14.590

Scan- median 20.598 15.95 23.451 20.762 15.725 13.598 7.468

Net 11.25◦ 28.78 40.43 34.52 39.35 46.41 50.78 65.65

22.5◦ 54.30 63.08 49.47 55.27 64.04 67.30 81.21

30◦ 67.00 71.88 56.37 60.03 76.78 77.00 86.21

runtime 2.501s 0.039s 0.156+0.9s 0.156+0.058s 0.156+0.041s 0.156+0.041s 0.085s

Table 1. Performance of surface normal prediction on Matterport3D and ScanNet dataset.

training and 11302 for testing; ScanNet is divided into

59743 for training and 7517 for testing with file lists pro-

vided in [32]. Since ground-truth normal data in the Mat-

terport3D suffer from reconstruction noise, e.g., in outdoor

scenes or mirror area, we remove the samples in the testing

dataset with large error so as to avoid unreliable evaluation.

After data pruning, 6.47% (782 out of 12084) testing im-

ages are removed, leading to 11302 remaining. Details of

data pruning can be found in the supplementary.

Training Details We use RMSprop optimizer with initial

learning rate set to 1e−3 and decayed at epoch [2, 4, 6, 9, 12]
with decay rate 0.5. The model is trained from scratch with-

out pretrained model for 15 epochs. We first use L2 loss for

all scales in the first 4 epochs and then change to hybrid

loss defined in Eq. 4 to ensure stable training at the begin-

ning. We implement with PyTorch on NVIDIA GeForce

GTX Titan X GPU.

Evaluation Metrics The normal prediction performance

is evaluated with five metrics. We compute the per-pixel

angle distance between prediction and ground-truth, then

compute mean and median for valid pixels with given

ground-truth normal. In addition to mean and median, we

also compute the fraction of pixels with angle difference

with ground-truth less than t where t = 11.25◦, 22.5◦, and

30◦ as used in [9].

4.2. Main Results

We compare our proposed HFM-Net with the state-of-

the-art normal estimation methods, which are classified

into three categories in accordance with Section 2, while

normal-depth consistency based methods are adopted as al-

ternatives for RGB-D fusion thus also put in the RGB-D

category.

RGB-based methods include Skip-Net [1] and Zhang’s

algorithm [33]. Pretrained models on Matterport3D and

ScanNet of Zhang’s are provided in [32], and Skip-Net

is fine-tuned for Matterport3D and ScanNet based on the

pre-trained model on NYUv2 dataset using public available

training code.

Depth-based Depth information is used to compute sur-

face normal in existing works [22, 6, 2] based on geometric

relation between depth and surface normal. Since the in-

put depth is incomplete, we first implement depth inpaint-

ing before converting into normal map. Two algorithms are

used to preprocess the input depth images: colorization al-

gorithm in [14] as used in NYUv2 and the state-of-the-art

depth completion (shortened as DC) [32]. After depth in-

painting, we follow the same procedure in [21] to generate

normal from depth.

RGBD-based For the RGB-D fusion methods, we adopt

methods in GFMM [10] and the state-of-the-art GeoNet

[21] to merge depth input into initial RGB-based normal

output for refinement. Specifically, we choose Zhang’s

method [33] for initial normal estimation from RGB, and

calculate a rough normal from raw depth image at the same

time, then merge the two normal estimations using methods

in GFMM [10] and GeoNet [21] to estimate the final surface

normal map.

We test on two datasets respectively with the five met-

rics as shown in Table 1, where HFM-Net outperforms all

the other schemes in different metrics. In terms of mean

value, HFM-Net outperforms RGB-based methods by at

least 6.284, and 6.064 over depth-inpainting based methods,

and 3.475 over RGBD-based methods. Visual evaluation

results are shown in Fig. 5 and Fig. 6. RGB-based meth-

ods miss details such as the sofa in Fig. 5 with blurry edges.

Depth-based methods have serious errors at the depth hole

regions and noticeable noise. Competing RGB-D fusion

methods fail to generate accurate results at areas where

depth is noisy or corrupted. On the contrary, our HFM-Net
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(a) RGB Image (b) Depth Image (c) Ground-truth (d) Skip-Net [1] (e) Zhang’s [33]

(f) Colorization [14] (g) DC [32] (h) GeoNet-D [21] (i) GFMM [16] (j) HFM-Net

Figure 5. Surface normal estimation with different algorithms, test on Matterport3D dataset.

(a) RGB Image (b) Depth Image (c) Ground-truth (d) Skip-Net [1] (e) Zhang’s [33]

(f) Colorization [14] (g) DC [32] (h) GeoNet-D [21] (i) GFMM [16] (j) HFM-Net

Figure 6. Surface normal estimation with different algorithms, test on ScanNet dataset.

is exhibiting nice normal prediction both at smooth planar

areas and along sharp edges.

4.3. Ablation Study

For better understanding of how HFM-Net works, we in-

vestigate the effect of each component in the network with

the following ablation study.

Hierarchical Fusion We compare hierarchical fusion

(HF) with single-scale fusion including early fusion and

late fusion as described Section 3, denoted as Early-F and

Late-F in Table 2 respectively. The binary mask is used for

Late-F and HF, and all are trained using hybrid loss if not

specified. As can be seen from Table 2, Early-F and Late-F

is less effective than HF+Mask+Hybrid, validating the use

of HF. Furthermore, Fig. 7(d-f) show the difference between

single-scale and hierarchical fusion. The hierarchical fusion

provides more accurate results in a planar surface especially

in depth hole areas marked in black rectangles.

Confidence Map We compare confidence map with bi-

nary mask. Fig. 8 shows the difference between fusion with

confidence map and fusion with binary mask. Fusion with

confidence map can reduce the negative effect of a depth

hole during the fusion, and smooth the prediction around

the boundary region of depth holes.

Hybrid Loss Apart from fusion method, different com-

binations of loss function are examined in the experiment.

In comparison of hybrid loss, the confidence map is used

in fusion. If the network use L2 loss function in all layers,

the prediction will tend to be blurry. On the other hand, a

network with L1 loss will tend to preserve more details. A

hybrid loss function design, as described in Section 3.3 can

generate results with both smooth surface and fine object

details, as shown in the comparison in Fig. 7 (g-l).

4.4. Model Complexity and Runtime

Table 1 reports the runtime of our method and other

state-of-the-art methods. Skip-Net method uses the official

evaluation code in MatCaffe. Colorization method uses the

code provided in NYUv2 dataset. GeoNet-D is the GeoNet

with RGBD input, and we implement it in PyTorch. The
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(a) RGB Image (b) Sensor Depth (c) Ground-truth

(d) Early Fusion (e) Late Fusion (f) Hierarchical Fusion

(g) L2 Loss (h) L1 Loss (i) Hybrid loss

(j) L2 Loss Detail (k) L1 Loss Detail (l) Hybrid Loss Detail

Figure 7. Surface normal estimation with different fusion schemes

and different loss functions: (a) RGB input, (b) depth input, (c)

ground truth, result of (d) early fusion, (e) late fusion, and (f) hi-

erarchical fusion; result of using (g) L2 loss, (h) L1 loss, (i) pro-

posed hybrid loss; (j-l) are the enlarged patches from (g-i). The

hierarchical fusion produces a more accurate prediction in the area

marked in black rectangles. The hybrid loss design preserves the

advantages of both L2 (smooth surface) and L1 loss (local details),

with sharper details and more accurate results in depth holes.

HF+Map HF+Mask HF+Map

Metrics Early-F Late-F +L2 +Hybrid +Hybrid

mean 13.968 13.645 13.688 13.437 13.062

Matter- median 6.855 6.567 7.235 6.507 6.090

port3D 11.25◦ 71.93 70.79 69.21 70.98 72.23

22.5◦ 83.54 83.68 83.45 83.96 84.41

30◦ 87.44 87.75 87.94 88.05 88.31

mean 16.045 17.425 14.946 14.696 14.590

Scan- median 8.949 10.277 8.322 7.545 7.468

Net 11.25◦ 61.17 56.01 62.87 65.42 65.65

22.5◦ 79.32 76.93 80.12 81.10 81.21

30◦ 84.87 83.26 85.72 86.11 86.21

Table 2. Evaluation of variants of the proposed HFM-Net on Mat-

terport3D and ScanNet datasets.

consistency loss is added to GeoNet-D as a comparison

scheme. The network forward runtime is averaged over

Matterport3D test set with input images of size 320×256

on NVIDIA GeForce GTX TITAN X GPU. Apart from the

time cost in neural network forward pass, the runtime of

(a) RGB Image (b) Sensor Depth (c) Ground-truth

(d) Confidence-map (e) HF (Mask) (f) HF (Map)

Figure 8. Surface normal estimation with different map/mask:

(a) RGB input, (b) depth input, (c) ground truth, (d) confidence

map, (e) hierarchical-fusion with mask, (f) hierarchical-fusion

with map.

depth-based and RGBD-based methods also includes the

time spent on geometric calculation. As in shown in Table

1, our method exceeds competing schemes in metric perfor-

mance while taking a reasonably fast time.

5. Conclusion

In this work, we propose a hierarchical fusion scheme

to combine RGB-D features at multiple scales with a con-

fidence map estimated from depth input for depth condi-

tioning to facilitate feature fusion. Moreover, a hybrid loss

function is designed to generate clean normal estimation

even if the training targets suffer from reconstruction noise.

Extensive experimental results demonstrate that our HFM-

Net outperforms the state-of-the-art methods in providing

more accurate surface normal prediction and sharper visu-

ally salient features. Ablation studies validate the superior-

ity of the proposed hierarchical fusion scheme over single-

scale fusion schemes in existing works, the effectiveness

of confidence map in producing accurate estimation around

missing pixels in depth input, and the advantage of the hy-

brid loss function in overcoming dataset deficiency.
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