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Abstract

Generative convolutional deep neural networks, e.g.

popular GAN architectures, are relying on convolution

based up-sampling methods to produce non-scalar out-

puts like images or video sequences. In this paper, we

show that common up-sampling methods, i.e. known as up-

convolution or transposed convolution, are causing the in-

ability of such models to reproduce spectral distributions

of natural training data correctly. This effect is indepen-

dent of the underlying architecture and we show that it can

be used to easily detect generated data like deepfakes with

up to 100% accuracy on public benchmarks. To overcome

this drawback of current generative models, we propose to

add a novel spectral regularization term to the training op-

timization objective. We show that this approach not only

allows to train spectral consistent GANs that are avoiding

high frequency errors. Also, we show that a correct approx-

imation of the frequency spectrum has positive effects on the

training stability and output quality of generative networks.

1. Introduction

Generative convolutional deep neural networks have re-

cently been used in a wide range of computer vision

tasks: generation of photo-realistic images [29, 6], image-

to-image [45, 26, 61, 9, 42, 30] and text-to-image transla-

tions [48, 11, 58, 59], style transfer [27, 60, 61, 25], image

inpainting [45, 54, 33, 26, 56], transfer learning [5, 10, 15]

or even for training semantic segmentation tasks [35, 53],

just to name a few.

The most prominent generative neural network archi-

tectures are Generative Adversarial Networks (GAN) [18]

and Variational Auto Encoders (VAE) [46]. Both basic ap-

proaches try to approximate a latent-space model of the un-
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Figure 1: Common up-convolution methods are inducing

heavy spectral distortions into generated images. The top

figure shows the statistics (mean and variance) after az-

imuthal integration over the power-spectrum (see Section

2.1) of real and GAN generated images. Evaluation on the

CelebA [34] data set, here all GANs (DCGAN [47], DRA-

GAN [32], LSGAN [37], WGAN-GP [20]) are using “trans-

posed convolutions” (see Section 2.2) for up-sampling.

Bottom: Results of the same experiments as above, adding

our proposed spectral loss during GAN training.

derlying (image) distributions from training data samples.

Given such a latent-space model, one can draw new (arti-
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ficial) samples and manipulate their semantic properties in

various dimensions. While both GAN and VAE approaches

have been published in many different variations, e.g. with

different loss functions [18, 4, 20], different latent space

constraints [41, 13, 13, 21, 30] or various deep neural net-

work (DNN) topologies for the generator networks [47, 43],

all of these methods have to follow a basic data generation

principle: they have to transform samples from a low di-

mensional (often 1D) and low resolution latent space to the

high resolution (2D image) output space. Hence, these gen-

erative neural networks must provide some sort of (learn-

able) up-scaling properties.

While all of these generative methods are steering the

learning of their model parameters by optimization of some

loss function, most commonly used losses are focusing ex-

clusively on properties of the output image space, e.g. using

convolutional neural networks (CNN) as discriminator net-

works for the implicit loss in an image generating GAN.

This approach has been shown to be sufficient in order to

generate visually sound outputs and is able to capture the

data (image) distribution in image-space to some extent.

However, it is well known that up-scaling operations noto-

riously alter the spectral properties of a signal [28], causing

high frequency distortions in the output.

In this paper, we investigate the impact of up-sampling

techniques commonly used in generator networks. The top

plot of Figure 1 illustrates the results of our initial experi-

ment, backing our working hypotheses that current genera-

tive networks fail to reproduce spectral distributions. Fig-

ure 1 also shows that this effect is independent of the actual

generator network.

1.1. Related Work

1.1.1 Deepfake Detection

We show the practical impact of our findings for the task of

Deepfake detection. The term deepfake [22, 8] describes the

recent phenomenon of people misusing advances in artifi-

cial face generation via deep generative neural networks [7]

to produce fake image content of celebrities and politicians.

Due to the potential social impact of such fakes, deepfake

detection has become a vital research topic of its own. Most

approaches reported in the literature, like [38, 3, 57], are

themselves relying on CNNs and thus require large amounts

of annotated training data. Likewise, [24] introduces a deep

forgery discriminator with a contrastive loss function and

[19] incorporates temporal domain information by employ-

ing Recurrent Neural Networks (RNNs) on top of CNNs.

1.1.2 GAN Stabilization

Regularizing GANs in order to facilitate a more stable train-

ing and to avoid mode collapse has recently drawn some

attention. While [40] stabilize GAN training by unrolling

the optimization of the discriminator, [50] propose regu-

larizations via noise as well as an efficient gradient-based

approach. A stabilized GAN training based on octave con-

volutions has recently been proposed in [16]. None of these

approaches consider the frequency spectrum for regular-

ization. Yet, very recently, band limited CNNs have been

proposed in [17] for image classification with compressed

models. In [55], first observations have been made that hint

towards the importance of the power spectra on model ro-

bustness, again for image classification. In contrast, we pro-

pose to leverage observations on the GAN generated fre-

quency spectra for training stabilization.

1.2. Contributions

The contributions of our work can be summarized as fol-

lows:

• We experimentally show the inability of current gener-

ative neural network architectures to correctly approx-

imate the spectral distributions of training data.

• We exploit these spectral distortions to propose a very

simple but highly accurate detector for generated im-

ages and videos, i.e. a DeepFake detector that reaches

up to 100% accuracy on public benchmarks.

• Our theoretical analysis and further experiments re-

veal that commonly used up-sampling units, i.e. up-

convolutions, are causing the observed effects.

• We propose a novel spectral regularization term

which is able to compensate spectral distortions.

• We also show experimentally that using spectral regu-

larization in GAN training leads to more stable models

and increases the visual output quality.

The remainder of the paper is organized in as follows: Sec-

tion 2 introduces common up-scaling methods and analyzes

their negative effects on the spectral properties of images.

In Section 3, we introduce a novel spectral-loss that allows

to train generative networks that are able to compensate the

up-scaling errors and generate correct spectral distributions.

We evaluate our methods in Section 4 using current archi-

tectures on public benchmarks.

2. The Spectral Effects of Up-Convolutions

2.1. Analyzing Spectral Distributions of Images
using Azimuthal Integration over the DFT
Power Spectrum

In order to analyze effects on spectral distributions, we

rely on a simple but characteristic 1D representation of the
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Fourier power spectrum. We compute this spectral repre-

sentation from the discrete Fourier Transform F of 2D (im-

age) data I of size M ×N ,

F(I)(k, ℓ) =

M−1
∑

m=0

N−1
∑

n=0

e−2πi· jk
M e−2πi· jℓ

N · I(m,n), (1)

for k = 0, . . . ,M − 1, ℓ = 0, . . . , N − 1,

via azimuthal integration over radial frequencies φ

AI(ωk) =

∫ 2π

0

‖F(I) (ωk · cos(φ), ωk · sin(φ)) ‖2dφ

for k = 0, . . . ,M/2− 1 , (2)

assuming square images1. Figure 2 gives a schematic im-

pression of this processing step.

Figure 2: Example for the azimuthal integral (AI). (Left) 2D

Power Spectrum of an image. (Right) 1D Power Spectrum:

each frequency component is the radial integral over the 2D

spectrum (red and green examples).

2.2. Up­convolutions in generative DNNs

Generative neural architectures like GANs produce high

dimensional outputs, e.g. images, from very low dimen-

sional latent spaces. Hence, all of these approaches need to

use some kind of up-scaling mechanism while propagating

data through the network. The two most commonly used

up-scaling techniques in literature and popular implemen-

tations frameworks (like TensorFlow [2] and PyTorch [44])

are illustrated in Figure 3: up-convolution by interpola-

tion (up+conv) and transposed convolution (transconv) .

We use a very simple auto encoder (AE) setup (see Figure 4)

for an initial investigation of the effects of up-convolution

units on the spectral properties of 2d images after up-

sampling. Figure 5 shows the different, but massive im-

pact of both approaches on the frequency spectrum. Figure

6 gives a qualitative result for a reconstructed image and

shows that the mistakes in the frequency spectrum are rele-

vant for the visual appearance.

1→ M = N . We are aware that this notation is abusive, since F(I)
is discrete. However, fully correct discrete notation would only over com-

plicated a side aspect of our work. A discrete implementations of AI is

provided on https://github.com/cc-hpc-itwm/UpConv.

Figure 3: Schematic overview of the two most common

up-convolution units. Left: low resolution input image

(here 2 × 2); Center: up-convolution by interpolation

(up+conv) - the input is scaled via interpolation (bi-linear

or nearest neighbor) and then convolved with a standard

learnable filter kernel (of size 3 × 3) to form the 5x5 out-

put (green), Right: transposed convolution (transconv) -

the input is padded with a “bed of nails” scheme (gray grid

points are zero) and then convolved with a standard filter

kernel to form the 5× 5 output (green).

Figure 4: Schematic overview of the simple auto en-

coder (AE) setup used to demonstrate the effects of up-

convolutions in Figure 5, using only a standard MSE re-

construction loss (bottom) to train the AE on real images.

We down-scale the input by a factor of two and then use the

different up-convolution methods to reconstruct the original

image size. In Section 3 we use the additional spectral loss

(top) to compensate the spectral distortions (see Figure 7)

.

2.3. Theoretical Analysis

For the theoretic analysis, we consider, without loss of

generality, the case of a one-dimensional signal a and its

discrete Fourier Transform â

âk =

N−1
∑

j=0

e−2πi· jk
N · aj , for k = 0, . . . , N − 1. (3)
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Figure 5: Effects of single up-convolution units (setup see

Figure 4) on the frequency spectrum (azimuthal integral)

of the output images. Both up-convolution methods have

massive effects on the spectral distributions of the out-

puts. Transposed convolutions add large amounts high fre-

quency noise while interpolation based methods (up+conv)

are lacking high frequencies.

Figure 6: Effects of spectral distortions on the image out-

puts in our simple AE setting. Left: original image; Cen-

ter: AE output image; Right: filtered difference image .

The top row shows the blurring effect of missing high fre-

quencies in the (up+conv) case; Bottom row shows the high

frequency artifacts induces by (transconv).

If we want to increase a’s spatial resolution by factor 2, we

get

âup
k̄

=

2·N−1
∑

j=0

e−2πi· jk̄
2·N · aupj (4)

=

N−1
∑

j=0

e−2πi· 2·jk̄2·N · aj +

N−1
∑

j=0

e−2πi·
2·(j+1)k̄

2·N · bj , (5)

for k̄ = 0, . . . , 2N − 1.

where bj = 0 for ”bed of nails” interpolation (as used by

transconv) and bj =
aj−1+aj

2
for bi-linear interpolation (as

used by up+conv).

Let us first consider the case of bj = 0, i.e. ”bed of nails”

interpolation. There, the second term in Eq. (6) is zero. The

first term is similar to the original Fourier Transform, yet

with the parameter k being replaced by k̄. Thus, increasing

the spatial resolution by a factors of 2 leads to a scaling of

the frequency axes by a factor of 1
2

. Let us now consider the

effect from a sampling theory based viewpoint. It is

âup
k̄

=

2·N−1
∑

j=0

e−2πi· jk̄
2·N · aupj (6)

=

2·N−1
∑

j=0

e−2πi· jk̄
2·N ·

∞
∑

t=−∞

aupj · δ(j − 2t) (7)

since the point-wise multiplication with the Dirac impulse

comb only removes values for which aup = 0. Assuming a

periodic signal and applying the convolution theorem [31],

we get

(7) =
1

2
·

∞
∑

t=−∞





∞
∑

j=−∞

e−2πi· jk̄
2·N aupj





(

k̄ −
t

2

)

, (8)

which equals to

1

2
·

∞
∑

t=−∞





∞
∑

j=−∞

e−2πi· jk̄
N · aj





(

k̄ −
t

2

)

(9)

by Eq. (6). Thus, the ”bed of nails upsampling” will cre-

ate high frequency replica of the signal in âup. To remove

these frequency replica, the upsampled signal needs to be

smoothed appropriately. All observed spatial frequencies

beyond N
2

are potential upsampling artifacts. While it is

obvious from a theoretical point of view, we also demon-

strate practically in Figure 8 that the correction of such a

large frequency band is (assuming medium to high resolu-

tion images) is not possible with the commonly used 3 × 3
convolutional filters.

In the case of bilinear interpolation, we have bj =
aj−1+aj

2
in Eq. (6), which corresponds to an average fil-

tering of the values of a adjacent to bj . This is equivalent

to a point-wise multiplication of aup spectrum âup with a

sinc function by their duality and the convolution theorem,

which suppresses artificial high frequencies. Yet, the re-

sulting spectrum is expected to be overly low in the high

frequency domain.

3. Learning to Generate Correct Spectral Dis-

tributions

The experimental evaluations of our findings in the pre-

vious section and their application to detect generated con-
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tent (see Section 4.1), raise the question if it would be

possible to correct the spectral distortion induced by the

up-convolution units used in generative networks. After

all, usual network topologies contain learnable convolu-

tional filters which follow the up-convolutions and poten-

tially could correct such errors.

3.1. Spectral Regularization

Since common generative network architectures are

mostly exclusively using image-space based loss functions,

it is not possible to capture and correct spectral distortions

directly. Hence, we propose to add an additional spectral

term to the generator loss:

Lfinal = LGenerator + λ · LSpectral , (10)

where λ is the hyper-parameter that weights the influence of

the spectral loss. Since we are already measuring spectral

distortions using azimuthal integration AI (see Eq. (2)),

and AI is differentiable, a simple choice for LSpectral is the

binary cross entropy between the generated output AIout

and the mean AIreal obtained from real samples:

LSpectral :=−
1

(M/2− 1)

M/2−1
∑

i=0

AIreali · log(AIouti )

+ (1−AIreali ) · log(1−AIouti ) (11)

Notice that M is the image size and we use normalization

by the 0th coefficient (AI0) in order to scale the values of

the azimuthal integral to [0, 1].
The effects of adding our spectral loss to the AE setup

from Section 2.2 for different values of λ are shown in Fig-

ure 7. As expected based on our theoretical analysis in sec.

2.3, the observed effects can not be corrected by a single,

learned 3 × 3 filter, even for large values λ. We thus need

to reconsider the architecture parameters.

3.2. Filter Sizes on Up­Convolutions

In Figure 8, we evaluate our spectral loss on the AE

from Section 2.2 with respect to filter sizes and the num-

ber of convolutional layers. We consider varying decoder

filter sizes from 3 × 3 to 11 × 11 and 1 or 3 convolutional

layers. While the spectral distortions from the up-sampling

can not be removed with a single and even not with three

3× 3 convolutions, it can be corrected by the proposed loss

when more, larger filters are learned.

4. Experimental Evaluation

We evaluate the findings of the previous sections in three

different experiments, using prominent GAN architectures

on public face generation datasets. Section 4.1 shows that

common face generation networks produce outputs with
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Figure 7: Auto encoder (AE) results with spectral loss by λ.

Even if the spectral loss has a high weight, spectral distor-

tions can not be corrected with a single 3× 3 convolutional

layer. This result is in line with the findings from Section

2.3.
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Figure 8: AE results with spectral loss by filter size of

the convolution following the up-sampling step. The re-

sult heavily depends on the chosen filter size and number

of convolutional layers. With three 5 × 5 convolutional fil-

ters available, the AE can greatly reduce spectral distortions

using the proposed spectral loss.

strong spectral distortions which can be used to detect ar-

tificial or “fake” images. In Section 4.2, we show that our

spectral loss is sufficient to compensate artifacts in the fre-

quency domain of the same data. Finally, we empirically

show in Section 4.3 that spectral regularization also has pos-

itive effects on the training stability of GANs.

4.1. Deepfake Detection

In this section, we show that the spectral distortions

caused by the up-convolutions in state of the art GANs can

be used to easily identify “fake” image data. Using only a

small amount of annotated training data, or even an unsu-

pervised setting, we are able to detect generated faces from

public benchmarks with almost perfect accuracy.
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Figure 9: Overview of the processing pipeline of our approach. It contains two main blocks, a feature extraction block using

DFT and a training block, where a classifier uses the new transformed features to determine whether the face is real or not.

Notice that input images are converted to grey-scale before DFT.

4.1.1 Benchmarks

We evaluate our approach on three different data sets of fa-

cial images, providing annotated data with different spacial

resolutions:

• FaceForensics++ [49] contains a DeepFake detec-

tion data set with 363 original video sequences of

28 paid actors in 16 different scenes, as well as over

3000 videos with face manipulations and their corre-

sponding binary masks. All videos contain a track-

able, mostly frontal face without occlusions which en-

ables automated tampering methods to generate realis-

tic forgeries. The resolution of the extracted face im-

ages varies, but is usually around 80× 80× 3 pixels.

• The CelebFaces Attributes (CelebA) dataset [34] con-

sists of 202,599 celebrity face images with 40 varia-

tions in facial attributes. The dimensions of the face

images are 178× 218× 3, which can be considered to

be a medium resolution in our context.

• In order to evaluate high resolution 1024 × 1024 ×
3 images, we provide the new Faces-HQ 2 data

set, which is a annotated collection of 40k pub-

licly available images from CelebA-HQ [29], Flickr-

Faces-HQ dataset [30], 100K Faces project [1] and

www.thispersondoesnotexist.com.

4.1.2 Method

Figure 9 illustrates our simple processing pipeline, extract-

ing spectral features from samples via azimuthal integration

(see Figure 2) and then using a basic SVM [51] classifier3

for supervised and K-Means [36] for unsupervised fake de-

tection. For each experiment, we randomly select training

sets of different sizes and use the remaining data for testing.

Training and test sets are equally balanced in their accord-

ing class labels. All reported results are mean values of ten

2Faces-HQ data has a size of 19GB. Download:

https://cutt.ly/6enDLYG. Also refer to [14].
3SVM hyper-parameters can be found in the source code

independent experiments.

In order to handle input images of different sizes, we nor-

malize the 1D power spectrum by the 0th coefficient and

scale the resulting 1D feature vector to a fixed size.

4.1.3 Results

Figure 10 shows that real and “fake” faces form well de-

lineated clusters in the high frequency range of our spectral

feature space. The results of the experiments in Table 1 con-

firm that the distortions of the power spectrum, caused by

the up-sampling units, are a common problem and allow an

easy detection of generated content. This simple indicator

even outperforms complex DNN based detection methods

using large annotated training sets4.
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Figure 10: AI (1D power spectrum) statistics (mean and

variance) of 1000 samples from each Faces-HQ sub-dataset.

Clearly, real and “fake” images can be distinguished by

their AI representation.

4.2. Applying Spectral Regularization

In this section, we evaluate the effectiveness of our reg-

ularization approach on the CelebA benchmark, as in the

4Note: results of all other methods as reported by [57]. The direct

comparison of methods might be biased since [57] used the same real data

but generated the fake data independently with different GANs.
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(a) DCGAN. (b) DRAGAN. (c) LSGAN. (d) WGAN.

Figure 11: Samples from the different types of GAN and their 1D Power Spectrum. Top row: samples produced by standard

topologies. Bottom row: samples produced by standard topologies together with our spectral regularization technique.
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Figure 12: Correlation between FID values and GAN outputs for a DCGAN baseline on CelebA through out a training run.

Low FID scores correspond to diverse but visually sound face image outputs. High FID scores indicate poor quality outputs

and “mode collapse” scenarios where all generated images are bound to a very narrow sub-space of the original distribution.

experiment before. Based our theoretic analysis (see Sec-

tion 2.3) and first AE experiments in Section 3, we extend

existing GAN architectures in two ways: first, we add a

spectral loss term (see Eq. (11)) to the generator loss. We

use 1000 unannotated real samples from the data set to es-

timate AIreal, which is needed for the computation of the

spectral loss (see Eq. (11)). Second, we change the convo-

lution layers after the last up-convolution unit to three filter

layers with kernel size 5 × 5. The bottom plot of Figure1

shows the results for this experiment in direct comparison to

the original GAN architectures. Several qualitative results

produced without and with our proposed regularization are

given in Figure 11.

4.3. Positive Effects of Spectral Regularization

By regularizing the spectrum, we achieve the direct ben-

efit of producing synthetic images that not only look realis-

tic, but also mimic the behaviour in the frequency domain.

In this way, we are one step closer to sample images from

the real distribution. Additionally, there is an interesting

side-effect of this regularization. During our experiments,

we noticed that GANs with a spectral loss term appear to
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80% (train) - 20% (test)

data set method # samples supervised unsupervised

Faces-HQ ours 1000 100% 82%

Faces-HQ ours 100 100% 81%

Faces-HQ ours 20 100% 75%

CelebA ours 2000 100% 96%

CelebA [57] 100000 99.43% -

CelebA [39] 100000 86.61% -

FaceForensics++ oursA 2000 87% -

FaceForensics++ oursB 2000 90% -

Table 1: Test accuracy. Our methods use SVM (supervised)

and k-means (unsupervised) under different data settings.

A) Evaluated on single frames. B) Accuracy on full video

sequences via majority vote of single frame detections.

be much more stable in terms of avoiding “mode-collapse”

[18] and better convergence. It is well known that GANs

can suffer from challenging and unstable training proce-

dures and there is little to no theory explaining this phe-

nomenon. This makes it extremely hard to experiment with

new generator variants, or to employ them in new domains,

which drastically limits their applicability.

In order to investigate the impact of spectral regulariza-

tion on the GAN training, we conduct a series of experi-

ments. By employing a set of different baseline architec-

tures, we assess the stability of our spectral regularization,

providing quantitative results on the CelebA dataset. Our

evaluation metric is the Fréchet Inception Distance (FID)

[23], which uses the Inception-v3 [52] network pre-trained

on ImageNet [12] to extract features from an intermediate

layer.
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Figure 13: FID (lower is better) over training time for DC-

GAN baselines with and without spectral loss (here λ = 2).

While the up+conv variant of DCGAN is failing to improve,

the FID score over the training time in the transconv version

is converging but unstable. Only our spectral loss variant is

able to achieve low and stable FID scores.

Figures 13 and 14 show the FID evolution along the

training epochs, using a baseline GAN implementation with
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Figure 14: FID (lower is better) over training time for LS-

GAN baselines with and without spectral loss (here λ =
0.5). As for DCGANS, is the up+conv variant of LSGAN

failing to improve the FID score over the training time. The

transconv version is converging but unstable. Again, only

our spectral loss achieves low and stable FID scores.

different up-convolution units and a corresponding version

with spectral loss. These results show an obvious positive

effect in terms of the FID measure, where spectral regular-

ization keeps a stable and low FID through out the training

while unregularized GANs tend to “collapse”. Figure 12 vi-

sualizes the correlation between high FID values and failing

GAN image generations.

5. Discussion and Conclusion

We showed that common “state of the art” convolutional

generative networks, like popular GAN image generators

fail to approximate the spectral distributions of real data.

This finding has strong practical implications: not only can

this be used to easily identify generated samples, it also im-

plies that all approaches towards training data generation or

transfer learning are fundamentally flawed and it can not be

expected that current methods will be able to approximate

real data distributions correctly. However, we showed that

there are simple methods to fix this problem: by adding

our proposed spectral regularization to the generator loss

function and increasing the filter sizes of the final generator

convolutions to at least 5 × 5, we were able to compensate

the spectral errors. Experimentally, we have found strong

indications that the spectral regularization has a very

positive effect on the training stability of GANs. While

this phenomenon needs further theoretical investigation,

intuitively this makes sense as it is known that high frequent

noise can have strong effects on CNN based discriminator

networks, which might cause overfitting of the generator.

Source code available:

https://github.com/cc-hpc-itwm/UpConv
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