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Abstract

Foreground map evaluation is crucial for gauging the

progress of object segmentation algorithms, in particular

in the field of salient object detection where the purpose

is to accurately detect and segment the most salient ob-

ject in a scene. Several widely-used measures such as

Area Under the Curve (AUC), Average Precision (AP) and

the recently proposed Fω
β (Fbw) have been used to evalu-

ate the similarity between a non-binary saliency map (SM)

and a ground-truth (GT) map. These measures are based

on pixel-wise errors and often ignore the structural simi-

larities. Behavioral vision studies, however, have shown

that the human visual system is highly sensitive to struc-

tures in scenes. Here, we propose a novel, efficient, and

easy to calculate measure known as structural similarity

measure (Structure-measure) to evaluate non-binary fore-

ground maps. Our new measure simultaneously evalu-

ates region-aware and object-aware structural similarity

between a SM and a GT map. We demonstrate superiori-

ty of our measure over existing ones using 5 meta-measures

on 5 benchmark datasets.

1. Introduction

The evaluation of a predicted foreground map against

a ground-truth (GT) annotation map is crucial in evaluat-

ing and comparing various computer vision algorithm for

applications such as object detection [6, 8, 24, 40], salien-

cy prediction [5, 20, 42], image segmentation [41], content-

based image retrieval [12, 15, 22], semantic segmentation

[21,45,46] and image collection browsing [10,14,29]. As a

specific example, here we focus on salient object detection

models [4, 6, 7, 16], although the proposed measure is gen-

eral and can be used for other purposes. It is necessary to

point out that the salient object is not necessary to be fore-

ground object [18].

The GT map is often binary (our assumption here). The

foreground maps are either non-binary or binary. As a re-
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Figure 1. Inaccuracy of existing evaluation measures. We com-

pare the ranking of saliency maps generated by 3 state-of-the-art

salient object detection algorithms: DISC [11], MDF [27], and M-

C [48]. According to the application’s ranking (last row; Sec. 5.1),

the blue-border map ranks first, followed by the yellow- and red-

border maps. The blue-border map captures the dog’s structure

most accurately, with respect to the GT. The yellow-border map

looks fuzzy although the overall outline of the dog is still present.

The red-border map almost completely destroyed the structure of

the dog. Surprisingly, all of the measures based on pixel-wise er-

rors (first 3 rows) fail to rank the maps correctly. Our new measure

(4th row) ranks the three maps in the right order.

sult, evaluation measures can be classified into two types.

The first type is the binary map evaluation with the common

measures being Fβ-measure [2,13,33] and PASCAL’s VOC

segmentation measure [17]. The second type is the non-

binary map evaluation. Two traditional measures here in-

clude AUC and AP [17]. A newly released measure known

as Fbw [36] has been proposed to remedy flaws of AP and

AUC measures (see Sec. 2). Almost all salient objection

detection methods output non-binary maps. Therefore, in

this work we focus on non-binary map evaluation.

It is often desired that the foreground map should contain

the entire structure of the object. Thus, evaluation measures

are expected to tell which model generates a more complete

object. For example, in Fig. 1 (first row) the blue-border
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Figure 2. Structure-measure (λ = 0.25,K = 4) for the outputs of SalCut [13] algorithm (2nd row) when fed with inputs of 10 saliency

detection algorithms (1st row).

map better captures the dog than the red-border map. In the

latter case, shape of the dog is drastically degraded to a de-

gree that it is difficult to guess the object category from its

segmentation map. Surprisingly, all of the current evalua-

tion measures fail to correctly rank these maps (in terms of

preserving the structure).

We employed 10 state-of-the-art saliency detection mod-

els to obtain 10 saliency maps (Fig. 2; first row) and then

fed these maps to the SalCut [13] algorithm to generate

corresponding binary maps (2th row). Finally, we used

our Structure-measure to rank these maps. A lower val-

ue for our measure corresponds to more destruction in the

global structure of the man (columns e to j). This experi-

ment clearly shows that our new measure emphasizes the

global structure of the object. In these 10 binary maps

(2rd row), there are 6 maps with Structure-measure below

0.95, i.e., with percentage 60%. Using the same thresh-

old (0.95), we found that the proportions of destroyed im-

ages in four popular saliency datasets (i.e., ECSSD [47],

HKU-IS [27], PASCAL-S [31], and SOD [37]) are 66.80%,

67.30%, 81.82% and 83.03%, respectively. Using the Fβ

measure to evaluate the binary maps, these proportions are

63.76%, 65.43%, 78.32% and 82.67%, respectively. This

means that our measure is more restrictive than the Fβ-

measure on object structure.

To remedy the problem of existing measures (i.e., low

sensitivity to global object structure), we present a struc-

tural similarity measure (Structure-measure) 1 based on

two observations:

• Region perspectives: Although it is difficult to de-

scribe the object structure of a foreground map, we

notice that the entire structure of an object can be

well illustrated by combining structures of constituent

object-parts (regions).

• Object perspectives: In the high-quality foreground

1Source code and results for this measure on the entire datasets are

available at the project page: http://dpfan.net/smeasure/.

maps, the foreground region of the maps contrast

sharply with the background regions and these regions

usually have approximately uniform distributions.

Our proposed similarity measure can be divided into two

parts, including a region-aware structural similarity mea-

sure and an object-aware structural similarity measure. The

region-aware measure tries to capture the global structure

information by combining the structural information of al-

l the object-parts. The structural similarity of regions has

been well explored in the image quality assessment (IQA)

community. The object-aware similarity measure tries to

compare global distributions of foreground and background

regions in SM and GT maps.

We experimentally show that our new measure is more

effective than other measures using 5 meta-measures (a new

one introduced by us) on 5 publicly available benchmark

datasets. In the next section, we review some of the popular

evaluation measures.

2. Current Evaluation Measures

Saliency detection models often generate non-binary

maps. Traditional evaluation measures usually convert

these non-binary maps into multiple binary maps.

Evaluation of binary maps: To evaluate a binary map,

four values are computed from the prediction confusion ma-

trix: True Positives (TP), True Negatives (TN), False Posi-

tives (FP) and False Negatives (FN). These values are then

used to compute three ratios: True Positive Rate (TPR) or

Recall, False Positive Rate (FPR), and Precision. The Pre-

cision and Recall are combined to compute the traditional

Fβ-measure:

Fβ =
(1 + β2)Precision ·Recall

β2 · Precision+Recall
(1)

Evaluation of non-binary maps: AUC and AP are two

universally-agreed evaluation measures. Algorithms that

produce non-binary maps apply three steps to evaluate the
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agreement between model predictions (non-binary maps)

and human annotations (GT). First, multiple thresholds are

applied to the non-binary map to get multiple binary maps.

Second, these binary maps are compared to the binary mask

of the GT to get a set of TPR & FPR values. These values

are plotted in a 2D plot, which then the AUC distils the area

under the curve.

The AP measure is computed in a similar way. One can

get a Precision & Recall curve by plotting Precision p(r) as

a function of Recall r. AP measure [17] is the average value

of p(r) over the evenly spaced x axis points from r = 0 to

r = 1.

Recently, a measure called Fbw [36] has offered an intu-

itive generalization of the Fβ-measure. It is defined as:

Fω
β =

(1 + β2)Precisionω ·Recallω

β2 · Precisionω +Recallω
(2)

The authors of Fbw identified three causes of inaccurate

evaluation of AP and AUC measures. To alleviate these

flaws, they 1) extended the four basic quantities TP, TN,

FP, and FN to non-binary values and, 2) assigned different

weights (w) to different errors according to different loca-

tion and neighborhood information. While this measure im-

proves upon other measures, sometimes it fails to correctly

rank the foreground maps (see the 3rd row of the Fig. 1). In

the next section, we will analyze why the current measures

fail to rank these maps correctly.

3. Limitations of Current Measures

Traditional measures (AP, AUC and Fbw) use four types

of basic measures (FN, TN, FP and TP) to compute Preci-

sion, Recall and FPR. Since all of these measures are cal-

culated in a pixel-wise manner, the resulting measures (FN,

TN, FP and TP) cannot fully capture the structural informa-

tion of predicted maps. Predicted maps with fine structural

details are often desired in several applications. Therefore,

evaluation measures sensitive to foreground structures are

favored. Unfortunately, the aforementioned measures (AP,

AUC and Fbw) fail to meet this expectation.

A typical example is illustrated in Fig. 3 (a) which con-

tains two different types of foreground maps. In one, a black

square falls inside the digit while in the other it touches

the boundary. In our opinion, SM2 is favored over SM1

since the latter destroys the foreground maps more serious-

ly. However, the current evaluation measures result in the

same order. This is contradictory to our common sense.

A more realistic example is shown in Fig. 3 (b). The

blue-border map here better captures the pyramid than the

red-border map, because the latter offers a fuzzy detection

map that mostly highlights the top part of the pyramid while

ignoring the rest. From an application standpoint (3th row;

the output of the SalCut algorithm fed with saliency maps
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Figure 3. Structural similarity evaluation. In subfigure (a), two

different foreground maps result in the same FN, TN, FP, and TP

scores. In subfigure (b), two maps are produced by two saliency

models DSR [30], and ST [34]. According to the application’s

ranking and our user-study (last row; Sec. 5.1), the blue-border

map is the best, followed by the red-border map. Since Fbw mea-

sure does not account for the structural similarity, it results in a

different ranking. Our measure (2th row) correctly ranks the blue-

border map as higher.

and ranked by our measure, i.e., the 2nd row), the blue-

border map offers a complete shape of the pyramid. Thus,

if the evaluation measure cannot capture the object struc-

tural information, it cannot provide reliable information for

model selection in applications.

4. Our measure

In this section, we introduce our new measure to evaluate

foreground maps. In image quality assessment (IQA) field,

a measure known as structural similarity measure (SSIM)

[44] has been widely used to capture the structural similarity

of the original image and a test image.

Let x = {xi|i = 1, 2, · · · , N} and y = {yi|i =
1, 2, · · · , N} be the SM and GT pixel values, respective-

ly. The x̄, ȳ, σx, σy are the mean and standard deviations

of x and y. σxy is the covariance between the two. Then,

SSIM can be formulated as a product of three components:

luminance comparison, contrast comparison and structure

comparison.

ssim =
2x̄ȳ

(x̄)2 + (ȳ)2
·
2σxσy

σ2
x + σ2

y

·
σxy

σxσy

(3)

In Equ. (3), the first two terms denote the luminance

comparison and contrast comparison, respectively. The

closer the two (i.e., x̄ and ȳ, or σx and σy), the closer the

comparison (i.e., luminance or contrast) to 1. The structures

of the objects in an image are independent of the luminance

that is affected by illumination and the reflectance. So the

design of a structure comparison formula should be inde-

pendent of luminance and contrast. SSIM [44] associate two

unit vectors (x − x̄)/σx and (y − ȳ)/σy with the structure

of the two images. Since the correlation between these two
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vectors is equivalent to the correlation coefficient between

x and y, the formula of structure comparison is denoted by

the third term in Equ. (3).

In the field of salient object detection, researcher-

s are concerned more about the foreground object struc-

tures. Thus, our proposed structure measure combines both

region-aware and object-aware structural similarities. The

region-aware structural similarity performs similar to [44],

which aims to capture object-part structure information

without any special concern about complete foreground.

The object-aware structural similarity is designed to main-

ly capture the structure information of the complete fore-

ground objects.

4.1. Region­aware structural similarity measure

In this section, we investigate how to measure region-

aware similarity. The region-aware similarity is designed

to assess the object-part structure similarity against the GT

maps. We first divide each of the SM and GT maps into four

blocks using a horizontal and a vertical cut-off lines that

intersect at the centroid of the GT foreground. Then, the

subimages are divided recursively like the paper [25]. The

total number of blocks is denoted as K. A simple example

is shown in Fig. 4. The region similarity ssim(k) of each

block is computed independently using Equ. (3). We assign

a different weight (wk) to each block proportional to the GT

foreground region this block covers. Thus, the region-aware

structural similarity measure can be formulated as

Sr =

K∑

k=1

wk ∗ ssim(k) (4)

According to our investigation, our proposed Sr can well

describe the object-part similarity between a SM and a GT

map. We also tried to directly use SSIM to assess the similar-

ity between SM and GT at the image level or in the sliding

window fashion as mentioned in [44]. These approaches

fail to capture region-aware structure similarities.

4.2. Object­aware structural similarity measure

Dividing the saliency map into blocks helps evaluate the

object-part structural similarity. However, the region-aware

measure (Sr) cannot well account for the global similari-

ty. For high-level vision tasks such as salient object de-

tection, the evaluation of the object-level similarity is cru-

cial. To achieve this goal, we propose a novel method to as-

sess the foreground and background separately. Since, the

GT maps usually have important characteristics, including

sharp foreground-background contrast and uniform distri-

bution, the predicted SM is expected to possess these prop-

erties. This helps easily distinguish foreground from the

background. We design our object-aware structural similar-

ity measure with respect to these two characteristics.

31

GT
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FG BG

S
o

S
r

Figure 4. Framework of our Structure-measure.

Sharp foreground-background contrast. The fore-

ground region of the GT map contrasts sharply with the

background region. We employ a formulation that is simi-

lar with the luminance component of SSIM, to measure how

close the mean probability is between the foreground region

of SM and the foreground region of GT. Let xFG and yFG

represent the probability values of foreground region of S-

M and GT, respectively. x̄FG and ȳFG denote the means

of xFG and yFG, respectively. The foreground comparison

can be represented as,

OFG =
2x̄FGȳFG

(x̄FG)2 + (ȳFG)2
. (5)

Equ. (5) has several satisfactory properties:

• Swapping the value of x̄FG and ȳFG, OFG will not

change the result.

• The range of OFG is [0,1].

• If and only if x̄FG = ȳFG, we will get OFG = 1.

• The most important property, however, is that the clos-

er the two maps, the closer the OFG to 1.

These properties make Equ. (5) suitable for our purpose.

Uniform saliency distribution. The foreground and

background regions of the GT maps usually have unifor-

m distributions. So, it is important to assign a higher value

to a SM with salient object being uniformly detected (i.e.,

similar saliency values across the entire object). If the vari-

ability of the foreground values in the SM is high, then the

distribution will not be even.

In probability theory and statistics, the coefficient of

variation which is defined as the ratio of the standard de-

viation to the mean (σx/x̄) is a standardized measure of

dispersion of a probability distribution. Here, we use it to

represent the dispersion of the SM. In other words, we can

use the coefficient of variation to compute the distribution

of dissimilarity between SM and GT. According to Equ. (5),

the total dissimilarity between SM and GT in object level

can be written as,

DFG =
(x̄FG)

2 + (ȳFG)
2

2x̄FGȳFG

+ λ ∗
σxFG

x̄FG

(6)
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where λ is a constant to balance the two terms. Since the

mean probability of the GT foreground is exactly 1 in prac-

tice, the similarity between SM and GT in object level can

be formulated as,

OFG =
1

DFG

=
2x̄FG

(x̄FG)2 + 1 + 2λ ∗ σxFG

(7)

To compute background comparison OBG, we regard

the background as the complementary component of fore-

ground by subtracting the SM and GT maps from 1 as

shown in Fig. 4. Then, OBG can be similarly defined as,

OBG =
2x̄BG

(x̄BG)2 + 1 + 2λ ∗ σxBG

(8)

Let µ be the ratio of foreground area in GT to image

area (width ∗ height). The final object-aware structural

similarity measure is defined as,

So = µ ∗OFG + (1− µ) ∗OBG (9)

4.3. Our new structure­measure

Having region-aware and object-aware structural simi-

larity evaluation definitions, we can formulate the final mea-

sure as,

S = α ∗ So + (1− α) ∗ Sr, (10)

where α ∈ [0, 1]. We set α = 0.5 in our implementation.

Using this measure to evaluate the three SM maps in Fig. 1,

we can correctly rank the maps consistent with the applica-

tion rank.

5. Experiments

In order to test the quality of our measure, we utilized

4 meta-measures proposed by Margolin et al. [36] and 1

meta-measures proposed by us. These meta-measures are

used to evaluate the quality of evaluation measures [39]. To

conduct fair comparisons, all meta-measures are computed

on the ASD (a.k.a ASD1000) dataset [1]. The non-binary

foreground maps (5000 maps in total) were generated using

five saliency detection models including CA [19], CB [23],

RC [13], PCA [35], and SVO [9]. We assign λ = 0.5 and

K = 4 in all experiments. When using a single CPU thread

(4 GHz), our Matlab implementation averagely takes 5.3 ms

to calculate the structure measure of an image.

5.1. Meta­Measure 1: Application Ranking

An evaluation measure should be consistent with the

preferences of an application that uses the SM as input. We

assume that the GT map is the best for the applications. Giv-

en a SM, we compare the application’s output to that of the

GT output. The more similar a SM is to the GT map, the

closer its application’s output should be to the GT output.
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(a) Meta-Measure 1 (b) Meta-Measure 2

Figure 5. Meta-measure 1&2-results.

To quantify the accuracy in ranking, we use the SalCut

[13] as the application to perform this meta-measure.

Here, we utilize 1-Spearman’s ρ measure [3] to evaluate

the ranking accuracy of the measures, where lower values

indicates better ranking consistency. Comparison between

different measurements are shown in Fig. 5 (a), which indi-

cates that our structure measure produces best ranking con-

sistency among other alternative methods.

5.2. Meta­Measure 2: State­of­the­art vs. Generic

The second meta-measure is that a measure should prefer

the output achieved by a state-of-the-art method over gener-

ic baseline maps (e.g., centered Gaussian map) that discard

the image content. A good evaluation measure should rank

the SM generated by a state-of-the-art model higher than a

generic map.

We count the number of times a generic map scored

higher than the mean score generated by the five state-of-

the-art models (CA [19], CB [23], RC [13], PCA [35], S-

VO [9]). The mean score provides an indication of model

robustness. The results are shown in Fig. 5 (b). The low-

er the value here, the better. Over 1000 images, our mea-

sure has only 11 errors (i.e., generic winning over the s.t.a).

Meanwhile, the AP and AUC measures are very poor and

make significantly more mistakes.

5.3. Meta­Measure 3: Ground­truth Switch

The third meta-measure specifies that a good SM should

not obtain a higher score when switching to a wrong GT

map. In Margolin et al. [36], a SM is considered as “good”

when it scores at least 0.5 out of 1 (when compared to the

original GT map). Using this threshold (0.5), top 41.8%

of the total 5000 maps were selected as “good” ones. For

a fair comparison, we follow Margolin et al. to select the

same percentage of “good” maps. For each of the 1000 im-

ages, 100 random GT switches were tested. We then count-

ed the percentage of times that a measure increases a salien-

cy map’s score when an incorrect GT map was used.

The Fig. 6 (a) shows the results. The lower the score,

the higher capability to match to the correct GT. Our mea-

sure performs the best about 10 times better compared to

the second best measure. This is due to the fact that our
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Figure 6. Meta-measure 3&4-results.

(a) GT (b) GT (c) Dif (d) SM1 (e) SM2

Figure 7. Meta-measure 4: Annotation errors. (a) ground-truth

map, (b) morphologically changed version of a, (c) difference map

between a and b, (d) saliency map1, (e) saliency map2.

measure captures the object structural similarity between a

SM and a GT map. Our measure will assign a lower value

to the “good” SM when using a random selected GT since

the object structure has changed in the random GT.

5.4. Meta­Measure 4: Annotation errors

The fourth meta-measure specifies that an evaluation

measure should not be sensitive to slight errors/inaccuracies

in the manual annotation of the GT boundaries. To perfor-

m this meta-measure, we make a slightly modified GT map

by using morphological operations. An example is shown

in Fig. 7. While the two GT maps in (a) & (b) are almost

identical, measures should not switch the ranking between

the two saliency maps when using (a) or (b).

We use 1-Spearman’s Rho measure to examine the rank-

ing correlation before and after the annotation errors were

introduced. The lower the score, the more robust an evalu-

ation measure is to annotation errors [36]. The results are

shown in Fig. 6 (b). Our measure outperforms both the AP

and the AUC but not the best. Inspecting this finding, we re-

alized that it is not always the case that the lower the score,

the better an evaluation measure. The reason is that some-

times “slight” inaccurate manual annotations can change

the structure of the GT map, which in turn can change the

rank. We examined the effect of structure change careful-

ly. Major structure change often corresponds to continu-

ous large regions in the difference map between GT and its

morphologically changed version. We try to use the sum of

corroded version of the difference map as measure of major

structure change and sort all GT maps.

Among top 10% least change GT maps, our measure and

Fbw have the same MM4 scores (same rank). When the

topology of GT map does not change, our measure and F-

Figure 8. Structural changes examples. The first row are GT

maps. The second row are its morphologically changed version.
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Figure 9. Structural unchanged/changed. (a) Both of our and

Fbw measures are not sensitive to a inaccuracies (structural un-

changed) in the manual annotation of the GT boundaries. (b) The

ranking of an evaluation measure should be sensitive to the struc-

tural changes. Surprisingly, the current best measure (Fbw) can-

not adaptive to the structural changes. Using our measure, we can

change the rank correctly. Best viewed on screen.

bw measure keep the original ranking. We can see from

the example Fig. 9 (a). While ground truth maps (GT and

Morphologic GT) differ slightly, both Fbw and our measure

keep the ranking order of the two saliency maps, depending

on the GT used.

Among top 10% most changes GT maps, we asked 3

users to judge whether the GT maps have major structure

change. 95 out of 100 GT maps were considered to have

major structure change, (similar to Fig. 8, such as small bar,

thins legs, slender foot and minute lines in each group), for

which we believe that keeping rank stability is not good.

Fig. 9 (b) demonstrates this argument. When we use the

GT map as the reference, Fbw and our measure rank the t-

wo maps properly. However, when using Morphologic GT

as the reference, ranking results are different. Clearly, the

blue-border SM is visually and structurally more similar to

the Morphologic GT map than the red-border SM. The mea-

sure should rank the blue-border SM higher than red-border

SM. So the ranking of these two maps should be changed.

While the Fbw measure fails to meet this end, our measure

gives the correct order.

Above-mentioned analysis suggests that this meta-

measure is not very reliable. Therefore, we do not include

it in our further comparison on other datasets.
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Table 1. Quantitative comparison with current measures on 3 meta-Measures. The best result is highlighted in blue. MM:meta-Measure.

PASCAL-S [31] ECSSD [47] SOD [37] HKU-IS [27]

MM1 MM2(%) MM3(%) MM1 MM2(%) MM3(%) MM1 MM2(%) MM3(%) MM1 MM2(%) MM3(%)

AP 0.452 12.1 5.50 0.449 9.70 3.32 0.504 9.67 7.69 0.518 3.76 1.25

AUC 0.449 15.8 8.21 0.436 12.1 4.18 0.547 14.0 8.27 0.519 7.02 2.12

Fbw 0.365 7.06 1.05 0.401 3.00 0.84 0.384 16.3 0.73 0.498 0.36 0.26

Ours 0.320 4.59 0.34 0.312 3.30 0.47 0.349 9.67 0.60 0.424 0.34 0.08
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Figure 10. The rank distance between Fbw and our measure. The (a)-(c) is the three datasets that present the rank distance between

Fbw and our Structure-measure. The y axis of the plot is the number of the images. The x axis is the rank distance.

5.5. Further comparison

The results in Fig. 5 & Fig. 6 (a) show that our measure

achieves the best performance using 3 meta-measures over

the ASD1000 dataset. However, a good evaluation measure

should perform well over almost all datasets. To demon-

strate the robustness of our measure, we further performed

experiments on four widely-used benchmark datasets.

Datasets. The used datasets include PASCAL-S [31],

ECSSD [47], HKU-IS [27], and SOD [37]. PASCAL-S

contains 850 challenging images, which have multiple ob-

jects with high background clutter. ECSSD contains 1000
semantically meaningful but structurally complex images.

HKU-IS is another large dataset that contains 4445 large-

scales images. Most of the images in this dataset contain

more than one salient object with low contrast. Finally, we

also evaluate our measure over SOD dataset, which is a sub-

set of the BSDS dataset. It contains a relatively small num-

ber of images (300), but with multiple complex objects.

Saliency Models. We use 10 state-of-the-art models in-

cluding 3 traditional models (ST [34], DRFI [42], and D-

SR [30]) and 7 deep learning based models (DCL [28], r-

fcn [43], MC [48], MDF [27], DISC [11], DHS [32], and

ELD [26]) to test the measures.

Results. Results are shown in Tab. 1. Our measure per-

forms the best according to the first meta-measure. This

indicates that our measure is more useful for applications

than others. According to meta-measure 2, our measure per-

forms better than the existing measures, except that ECSSD

where it is ranked second. For meta-measure 3, our measure

reduces the error rate by 67.62%, 44.05%, 17.81%, 69.23%
in PASCAL, ECSSD, SOD and HKU-IS, respectively com-

pared to the second ranked measure. This indicates that our

measure has higher capacity to measure the structural simi-

larity between a SM and a GT map. All in all, our measure

wins in the majority of cases which clearly demonstrates

that our new measure is more robust than other measures.

5.6. Meta­Measure 5: Human judgments

Here, we propose a new meta-measure to evaluate fore-

ground evaluation measures. This meta-measure specifies

that the map ranking according to an evaluation measure

should agree with the human ranking. It is argued that “a

human being is the best judge to evaluate the output of any

segmentation algorithm” [38]. However, subjective evalua-

tion over all images of a dataset is impractical due to time

and monetary costs. To the best of our knowledge, there is

no such visual similarity evaluation database available that

meets these requirements.

Source saliency maps collection. The source salien-

cy maps are sampled from the three large scale datasets:

PASCAL-S, ECSSD, and HKU-IS. As mentioned above,

we use 10 state-of-the-art saliency models to generate the

saliency maps in each dataset. Therefore, we have 10 salien-

cy maps for each image. We use Fbw and our measure to

evaluate the 10 maps and then pick the first ranked map ac-

cording to each measure. If the two measures choose the

same map, their rank distance is 0. If one measure ranks

a map first, but the other ranks the same map in the n-th

place, then their rank distance is |n−1|. Fig. 10 (a), (b) and

(c) show the rank distance between the two measures (i.e.,

histogram). The blue-box is the number of images for each

rank distance. Some maps with rank distance greater than 0

are chosen as candidates for our user study.

User study. We randomly selected 100 pairs of maps
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Figure 11. Our user study platform.
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Figure 12. Results of our user study. The x axis is the viewer

id. The y axis shows the percentage of the trials in which a viewer

preferred the map chosen by our measure.

from the three datasets. The top panel in Fig. 11 (b) shows

one example trial where the best map according to our mea-

sure in the left, and the best map according to the Fbw on the

far right. The user is asked to choose the map he/she thinks

resembles the most with the GT map. In this example, these

two maps are obviously different making the user decide

easily. In another example (bottom panel in Fig. 11 (b)),

the two maps are too similar making it difficult to choose

the one closet to the GT. Therefore, we avoid showing such

cases to the subjects. Finally, we are left with a stimulus

set of size 50 pairs. We developed a mobile phone app to

conduct the user study. We collected data from 45 viewers

who were naive to the purpose of the experiment. Viewers

had normal or corrected vision. (Age distribution is 19-29

years old; Eduction from undergraduate to Ph.D; 10 differ-

ent major such as history, medicine and finance; 25 males

and 20 females)

Results. Results are shown in Fig. 12. The percentage of

trials (averaged over subjects) in which a viewer preferred

the map chosen by our measure is 63.69%. We used the

same way to do another 2 user study experiments ( AP com-

pare to our measure, AUC compare to our measure). The

results are 72.11% and 73.56% respectively, which means
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Figure 13. Ranking of 10 saliency models using our new mea-

sure. The y axis shows the average score on each dataset

(PASCAL-S [31], ECSSD [47], HKU-IS [27], SOD [37]).

that our measure correlates better with human judgments.

5.7. Saliency model comparison

Establishing that our Structure-measure offers a better

way to evaluate salient object detection models, here we

compare 10 state-of-the-art saliency models on 4 datasets

(PASCAL-S, ECSSD, HKU-IS, and SOD). Fig. 13 shows

the rank of 10 models. According to our measure, the best

models in order are dhsnet, DCL and rfcn. Please see the

supplementary material for sample maps of these models.

6. Discussion and Conclusion

In this paper, we analyzed the current saliency evaluation

measures based on pixel-wise errors and showed that they

ignore the structural similarities. We then presented a new

structural similarity measure known as Structure-measure

which simultaneously evaluates region-aware and object-

aware structural similarities between a saliency map and a

ground-truth map. Our measure is based on two importan-

t characteristics: 1) sharp foreground-background contrast,

and 2) uniform saliency distribution. Further, the proposed

measure is efficient and easy to calculate.

Experimental results on 5 datasets demonstrate that our

measure performs better than the current measures includ-

ing AP, AUC, and Fbw. Finally, we conducted a behavioral

judgment study over a database of 100 saliency maps and 50

GT maps. Data from 45 subjects shows that on average they

preferred the saliency maps chosen by our measure over the

saliency maps chosen by the AP, AUC and Fbw.

In summary, our measure offers new insights into salien-

t object detection evaluation where current measures fail

to truly examine the strengths and weaknesses of saliency

models. We encourage the saliency community to consider

this measure in future model evaluations and comparisons.
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