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Abstract

In this paper, we propose a unified end-to-end trainable

multi-task network that jointly handles lane and road mark-

ing detection and recognition that is guided by a vanishing

point under adverse weather conditions. We tackle rainy

and low illumination conditions, which have not been exten-

sively studied until now due to clear challenges. For exam-

ple, images taken under rainy days are subject to low illu-

mination, while wet roads cause light reflection and distort

the appearance of lane and road markings. At night, color

distortion occurs under limited illumination. As a result, no

benchmark dataset exists and only a few developed algo-

rithms work under poor weather conditions. To address this

shortcoming, we build up a lane and road marking bench-

mark which consists of about 20,000 images with 17 lane

and road marking classes under four different scenarios:

no rain, rain, heavy rain, and night. We train and evaluate

several versions of the proposed multi-task network and val-

idate the importance of each task. The resulting approach,

VPGNet, can detect and classify lanes and road markings,

and predict a vanishing point with a single forward pass.

Experimental results show that our approach achieves high

accuracy and robustness under various conditions in real-

time (20 fps). The benchmark and the VPGNet model will

be publicly available 1.

1. Introduction

Autonomous driving is a large system that consists of

various sensors and control modules. The first key step for

robust autonomous driving is to recognize and understand

the environment around a subject. However, simple recog-

nition of obstacles and understanding of geometry around

a vehicle is insufficient. There are traffic regulations dic-

tated by traffic symbols such as lane and road markings that

1 https://github.com/SeokjuLee/VPGNet
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Figure 1. Examples of our lane and road markings detection

results in: (a) complex city scene; (b) multiple road mark-

ings; (c) night scene; (d) rainy condition. Yellow region is

the vanishing area. Each class label is annotated in white.

should be complied with. Moreover, for an algorithm to be

applicable to autonomous driving, it should be robust under

diverse environments and perform in real-time.

However, research on lane and road marking detection

thus far has been limited to fine weather conditions. Hand-

crafted feature based methods exploit edge, color or tex-

ture information for detection, which results in a perfor-

mance drop when the algorithm is tested under challeng-

ing weather and illumination conditions. Likewise, meth-

ods based on a combination of a Convolutional Neural Net-

work (CNN) and hand-crafted features face the same chal-

lenge. Recently, a few CNN based approaches have been

developed to tackle the problem in an end-to-end fashion in-

cluding learning-based algorithms. They demonstrate good

performance on benchmarks and in real road scenes, but are

still limited to fine weather and simple road conditions.

The lack of public lane and road marking datasets is an-

1947



other challenge for the advancement of autonomous driv-

ing. Available datasets are often limited and insufficient

for deep learning methods. For example, Caltech Lanes

Dataset [1] contains 1,225 images taken from four different

places. Further, Road Marking Dataset [34] contains 1,443

images manually labeled into 11 classes of road markings.

Existing datasets are all taken under sunny days with a clear

scene and adverse weather scenarios are not considered.

With recent advances in deep learning, the key to ro-

bust recognition in challenging scenes is a large dataset that

incorporates data captured under various circumstances.

Since no proper datasets available for lane and road mark-

ing recognition, we have collected and annotated lanes and

road markings of challenging scenes captured in urban ar-

eas. Additionally, a higher network capability with a proper

training scheme is required to generate a fine representation

to cope with varied data. We propose to train a network that

recognizes a global context in a manner similar to humans.

Interestingly, humans can drive along a lane even when

it is hard to spot. Research works [20, 19, 28] have empir-

ically shown that the drivers gaze direction is highly corre-

lated with the road direction. This implies that a geometric

context plays a significant role in the lane localization. In-

spired by this, we aim to utilize a vanishing point prediction

task to embed a geometric context recognition capability

to the proposed network. Further, we hope to advance au-

tonomous driving research with the following contributions:

• We build up a lane and road marking detection and

recognition benchmark dataset taken under various

weather and illumination conditions. The dataset con-

sists of about 20,000 images with 17 manually anno-

tated lane and road markings classes. Vanishing point

annotation is provided as well.

• We design a unified end-to-end trainable multi-task

network that jointly handles lane and road marking de-

tection and recognition that is guided by the vanishing

point. We provide an extensive evaluation of our net-

work on the created benchmark. The results show ro-

bustness under different weather conditions with real-

time performance. Moreover, we suggest that the pro-

posed vanishing point prediction task enables the net-

work to detect lanes that are not explicitly seen.

This paper is organized as follows. Section 2 covers re-

cent algorithms developed for lane and road marking detec-

tion. A description of the benchmark is given in Section 3.

Section 4 explains our network architecture and training

scheme. Experimental results are reported in Section 5. Fi-

nally, Section 6 concludes our work.

2. Related Work

In this section, we introduce previous works that aim to

resolve the road scene detection challenge. Our setup as

well as related works is based on a monocular vision setup.

2.1. Lane and Road Marking Detection

Although lane and road marking detection appears to

be a simple problem, the algorithm must be accurate in a

variety of environments and have fast computation time.

Lane detection methods based on hand-crafted features

[9, 17, 15, 5, 29, 31, 33] detect generic shapes of markings

and try to fit a line or a spline to localize lanes. This group of

algorithms performs well for certain situations while show-

ing poor performance in unfamiliar conditions. In the case

of road marking detection algorithms, most of the works

are based on hand-crafted features. Tao et al. [34] extract

multiple regions of interest as Maximally Stable Extremal

Regions (MSER) [25], and rely on FAST [32] and HOG[7]

features to build templates for each road marking. Similarly,

Greenhalgh et al. [13] utilizes HOG features and a SVM is

trained to produce class labels. However, as in the lane de-

tection case, these approaches show a performance drop in

unfamiliar conditions.

Recently, deep learning methods have shown great suc-

cess in computer vision, including lane detection. [18, 16]

proposes a lane detection algorithm based on a CNN. Jun Li

et al. [21] uses both a CNN and a Recurrent Neural Network

(RNN) to detect lane boundaries. In this work, the CNN

provides geometric information of lane structures, and this

information is utilized by the RNN that detects the lane. Bei

He et al. [14] proposes using a Dual-View Convolutional

Neutral Network (DVCNN) framework for lane detection.

In this approach, the front-view and top-view images are fed

as input to the DVCNN. Similar to the lane detection algo-

rithms, several works have examined the application of neu-

ral networks as a feature extractor and a classifier to enhance

the performance of road marking detection and recognition.

Bailo et al. [2] proposes a method that extracts multiple re-

gions of interest as MSERs [25], merges regions that pos-

sibly belong to the same class, and finally classifies region

proposals by utilizing a PCANet [6] and a neural network.

Although the aforementioned approaches provide a

promising performance of lane and road marking detection

using deep learning, the problem of detection under poor

conditions is still not solved. In this paper, we propose a

network that performs well in any situation including bad

weather and low illumination conditions.

2.2. Object Detection by CNNs

With advances of deep learning, recognition tasks such

as detection, classification, and segmentation have been

solved under a wide set of conditions, yet there is no lead-

ing solution. RCNN and its variants [12, 11, 27] provide

a breakthrough in detection and classification, outperform-

ing previous approaches. Faster RCNN [27] replaces hand-

crafted proposal methods with a convolutional network in a

way that the region proposal layer shares extracted features

with the classification layer. Overfeat [30] shows that a con-
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volutional network with a sliding window approach can be

efficiently computed. Its performance in object recognition

and localization using multi-scale images is also reported.

Some of its variants [23, 26] achieve state of the art perfor-

mance in detection tasks. Although these approaches show

cutting edge results on large-scale benchmarks [8, 10, 22],

which contain objects that occupy a significant part of an

image, the performance decreases for smaller and thinner

objects (e.g. lane or road markings).

Several deep learning approaches specialize in a lane and

small object recognitions. For example, Huval et al. [16] in-

troduce a method for lanes and vehicles detection based on

a fully convolutional architecture. They use the structure of

[30] and extend the method with an integrated regression

module composed of seven convolutional layers for feature

sharing. The network is divided into two branches which

perform binary classification and regression task. They

evaluate results under a nice weather on a highway with-

out complex road symbols, but do not perform a multi-label

classification. Additionally, Zhu et al. [35] propose a multi-

task network for traffic sign (relatively small size) detection

and classification. In this work, the classification layer is

added in parallel to the [16] network to perform detection

and classification. As a result, this work reports better per-

formance of detecting small objects than Fast RCNN [11].

3. Benchmark

3.1. Data Collection and Annotation

We have collected the dataset in various circumstances

and categorized the images according to the time of the day

and weather conditions. The dataset comprises situations

during day time with different levels of precipitation: no

rain, rainfall, and heavy rainfall. Night time images are not

subdivided by weather condition but include general images

taken in a challenging situation with low illumination. The

number of images for each scenario is shown in Table 1.

Since our dataset is captured under bad weather conditions,

we mount a camera inside a vehicle (in the center). In this

way, we can avoid damaging the camera sensor while also

preventing direct water drops on the camera lens. However,

since several videos are recorded in heavy rain, a part of

a window wiper is captured occasionally. The camera is

directed to the front view of the car. Image resolution is

1288×728. Our data are captured in a downtown area of

Seoul, South Korea. The shapes and symbols of the lane

and road markings follow the regulations of South Korea.

We manually annotate corner points of lane and road

markings. Corner points are connected to form a polygon

which results in a pixel-level mask annotation for each ob-

ject. In a similar manner, each pixel contains a class label.

However, if the network is trained with a thin lane an-

notation, the information tends to vanish through convo-

lution and pooling layers. Further, since most of the neu-

Table 1. Number of frames for each scenario in the dataset.
Scenario (Scn.) Total frames Training set Test set

Daytime

No rain (Scn. 1) 13,925 9,184 4,741

Rain (Scn. 2) 4,059 3,322 737

Heavy rain (Scn. 3) 825 462 363

Night (Scn. 4) 2,288 1,815 473

Total 21,097 14,783 6,314

Single yellow

Dashed white

Double yellow

Straight arrow

Figure 2. Pixel- and grid-level annotations of the dataset.

ral networks require a resized image (usually smaller than

original size), the thin annotations become barely visible.

Therefore, we propose projecting pixel-level annotation to

the grid-level mask. The image is divided into a grid 8×8

and the grid cell is filled with a class label if any pixel from

the original annotation lies within the grid cell. Considering

that the input size of our network is 640×480 and the out-

put size is 80×60, the grid size is set to be proportional to

the scale factor (1/8) between the input and output images.

Specifically, the grid size is set to be 8×8. Figure 2 shows

an annotation example.

The vanishing point annotation is also provided. We lo-

calize the vanishing point in a road scene where parallel

lanes supposedly meet. The vanishing point is manually

annotated by a human. Depending on the scene, a dif-

ficulty level (EASY, HARD, NONE) is assigned to every

vanishing point. EASY level includes a clear scene (e.g.

straight road); HARD level includes a cluttered scene (e.g.

traffic jam); NONE is where a vanishing point does not exist

(e.g. intersection). It is important to note that both straight

and curved lanes are utilized to predict the vanishing point.

We describe the definition of our vanishing point in detail

in Section 4.2. Furthermore, annotation examples are pre-

sented in the supplementary material.

3.2. Dataset Statistics

Our dataset consists of about 20,000 images taken dur-

ing three weeks of driving in Seoul. The raw video (30 fps)

is sampled at 1Hz intervals to generate image data. Images

of the complex urban traffic scenes contain lane and road

markings under various weather conditions during different

time of the day. In total, 17 classes are annotated covering

the most common markings found on the road. Although

we recorded the video in various circumstances, a data im-

balance between different types of lane and road markings

is observed. For example, in the case of lane classes, dashed

white and double yellow lines are more common than other

lane types. Regarding road marking classes, straight arrows

and crosswalks appear most frequently. We also define a

“Other markings” class containing road markings that are
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Table 2. Number of instances for each class in the dataset.
Lane Road marking Vanishing point

Single white 25,354 Stop line 7,298 EASY 19,302

Dashed white 74,733 Left arrow 1,186 HARD 262

Double white 206 Right arrow 537 NONE 1,533

Single yellow 28,054 Straight arrow 6,968

Dashed yellow 5,734 U-turn arrow 127

Double yellow 8,998 Speed bump 1,523

Dashed blue 1,306 Crosswalk 13,632

Zigzag 1,417 Safety zone 6,031

Other markings 52,975

present only in South Korea, or have an insufficient num-

ber of instances to be trained as a separate class. Types of

classes and the number of instances are listed in Table 2.

4. Neural Network

4.1. Architecture

Our network, VPGNet, is inspired by the work of [16]

and [35]. The competitive advantage of our network is that

it is specialized to detect and recognize lane and road mark-

ings as well as to localize vanishing point.

We propose a data layer to induce grid-level annotation

that enables training of both lane and road markings simul-

taneously. Originally in [16], [35], the box regression task

aims to fit a single box to a particular object. This works

well for objects with a blob shape (traffic signs or vehicles),

but lane and road markings cannot be represented by a sin-

gle box. Therefore, we propose an alternative regression

that utilizes a grid-level mask. Points on the grid are re-

gressed to the closest grid cell and combined by a multi-

label classification task to represent an object. This enables

us to integrate two independent targets, lane and road mark-

ings, which have different characteristics and shapes. For

the post-processing, lane classes only use the output of the

multi-label task, and road marking classes utilize both grid

box regression and multi-label task (see Section 4.4). Ad-

ditionally, we add a vanishing point detection task to infer a

global geometric context during training of patterns of lane

and road markings (explained in Section 4.2).

The overall architecture is described in Table 3 and Fig-

ure 3. The network has four task modules and each task

performs complementary cooperation: grid box regression,

object detection, multi-label classification, and prediction

of the vanishing point. This structure allows us to detect and

classify the lane and road markings, and predict the vanish-

ing region simultaneously in a single forward pass.

4.2. Vanishing Point Prediction Task

Due to poor weather environments, illumination con-

ditions, and occlusion, the visibility of lanes decreases.

However, in such situations, humans intuitively can predict

the locations of the lanes from global information such as

nearby structures of roads or the flow of traffic [20, 19, 28].

Inspired by this, we have designed a Vanishing Point Predic-

tion (VPP) task that guides robust lane and road marking de-

tection similar to human vision. A vanishing point is a point

where parallel lines in a three-dimensional space converge

to a two-dimensional plane by a graphical perspective. In

most cases of driving, lane and road markings converge to

a single point regardless of whether the roads are curved or

straight. In this paper, “Vanishing Point (VP)” is defined as

the nearest point on the horizon where lanes converge and

disappear predictively around the farthest point of the visi-

ble lane. This VP can be used to provide a global geometric

context of a scene, which is important to infer the location

of lanes and road markings. We integrate the VPP module

with the multi-task network to train the geometric patterns

of lane convergence to one point.

Borji [4] has shown that a CNN can localize the VP. The

author vectorizes the spatial output of the network to pre-

dict the exact location of a VP by using a softmax classifier.

However, selecting exactly one point over the whole net-

work’s output size results in imprecise localization. In or-

der to provide more robust localization, we perform several

experiments to guide the VP.

First, for the VPP task, we tried regression losses (i.e. L1,

L2, hinge losses) that directly calculate pixel distances from

a VP. Unfortunately, the results are not favorable since it

is difficult to balance the losses with other tasks (object

detection/multi-label classification) due to the difference in

the loss scale. Therefore, we adopt a cross entropy loss

to balance the gradients propagated from each of the de-

tection tasks. By using cross entropy loss, first we apply

a binary classification method that directly classifies back-

ground and foreground ( i.e. vanishing area, see Figure 4a),

as in the object detection task. The binary mask is gener-

ated in the data layer by drawing a fixed size circle centered

at the VP we annotated. However, using this method on the

VPP task results in extremely fast convergence of the train-

ing loss. This is caused by the imbalance of the number

of background and foreground pixels. Since the vanishing

area is drastically smaller than the background, the network

is initialized to infer every pixel as background class. This

phenomenon contradicts our original intention of training

the VPP to learn the global context of a scene.

Considering the challenge imposed by the aforemen-

tioned imbalance during the binary VPP method, we have

newly designed the VPP module. As stated before, the pur-

pose of attaching the VPP task is to improve a scene rep-

resentation that implies a global context to predict invisible

lanes due to occlusions or extreme illumination condition.

The whole scene should be taken into account to efficiently

reflect global information inferring lane locations. We use

a quadrant mask that divides the whole image into four sec-

tions. The intersection of these four sections is a VP. In this

way, we can infer the VP using four quadrant sections which

cover the structures of a global scene. To implement this,

we define five channels for the output of the VPP task: one

absence channel and four quadrant channels. Every pixel
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Table 3. Proposed network structure.
Layer Conv 1 Conv 2 Conv 3 Conv 4 Conv 5 Conv 6 Conv 7 Conv 8

Kernel size, stride, pad 11, 4, 0 5, 1, 2 3, 1, 1 3, 1, 1 3, 1, 1 6, 1, 3 1, 1, 0 1, 1, 0

Pooling size, stride 3, 2 3, 2 3, 2

Addition LRN LRN Dropout Dropout, branched Branched

Receptive field 11 51 99 131 163 355 355 355

Conv1+Pool 

(11×11)

3 96 256 384 384

Conv2+Pool

(5×5)

Conv6

(6×6)

Conv5+Pool

(3×3)

Conv4

(3×3)

Conv3

(3×3)

384

640

480

79

59

29

39

29

39

29

39

14

19

15

20

4096

4096

4096

4096

15

20

15

20

15

20

4096

4096

4096

4096

15

20

15

20

15

20

15

20

Conv8 (1×1)

Conv8 (1×1)

Conv8 (1×1)

Conv8 (1×1)

Tiling (8×8)

256

Tiling (8×8)

128

Tiling (4×4)

1024

Tiling (8×8)

320

Grid Box

(120×160×4)

Object Mask

(120×160×2)

Multi-label

(60×80×64)

VPP

(120×160×5)

15

20

15

20

15

20

15

20

Conv7 (1×1)

Conv7 (1×1)

Conv7 (1×1)

Conv7 (1×1)

Shared layers Branch layers

Figure 3. VPGNet performs four tasks: grid regression, object detection, multi-label classification, and vanishing point

prediction.

in the output image chooses to belong to one of the five

channels. The absence channel is used to represent a pixel

with no VP, while the four quadrant channels stand for one

of the quadrant sections on the image. For example, if the

VP is present in the image, every pixel should be assigned

to one of the quadrant channels, while the absence chan-

nel cannot be chosen. Specifically, the third channel would

be guided by the upper right diagonal edges from the road

scene, and the fourth channel would extract the upper left

diagonal edges from the road scene. On the other hand, if

the VP is hard to be identified (e.g. intersection roads, occlu-

sions), every pixel will tend to be classified as the absence

channel. In this case, the average confidence of the absence

channel would be high.

Unlike the binary classification approach, our quadrant

method enriches the gradient information that contains a

global structure of a scene. The loss comparison in Fig-

ure 4b indirectly shows that the network is trained without

overfitting compared to the binary case. Note that we only

use the quadrant VPP method for the evaluation. The bi-

nary VPP method is introduced only to show readers that

a naive VPP training scheme does not yield satisfactory re-

sults. The whole multi-task network allows us to detect and

recognize the lane and road marking, as well as to predict

the VP simultaneously in a single forward pass.

4.3. Training

Our network includes four tasks which cover different

contexts. The detection task recognizes objects and covers

a local context, while the VPP task covers a global con-

text. If those tasks are trained altogether at the same train-

ing phase, the network can be highly influenced by a certain

dominant task. We noticed that during the training stage the

VPP task became dependent on the lane detection task. The

dependency between lanes and the VP implies a strong in-

formation correlation. In this case, the VP provides redun-

Binary annotation

Quadrant annotation

Training image

Network prediction
(Red: high, Blue: low confidence)

1

0

1

0

(a)

0 100 200 300 400  500 
Iterations (x100)

600 700 800 900

Lo
ss

0

0.1

0.2

0.3

0.4

0.5

0.6

VPP
VPP

 task loss (w/ binary VPP) 
 task loss (w/ quadrant VPP)

Object mask 
Object mask

 task loss (w/ binary VPP) 
 task loss (w/ quadrant VPP)

Multi-label task loss (w/ binary VPP) 
Multi-label task loss (w/ quadrant VPP)

(b)

Figure 4. (a) Output visualization of binary and quadrant

VPP methods. For the prediction of the quadrant method,

only four quadrant channels are visualized except for an ab-

sence channel. (b) The loss comparison of two methods.

dant information to the network, leading to marginal lane

detection improvement. In order to prevent this side effect,

we train the network in two phases to tolerate the balance

between the tasks.

In the first phase, we train only the VPP task. We fix the

learning rates to zero for every task except the VPP mod-

ule. In this way, we can train the kernels to learn a global

context of the image. The training of this phase stops upon

reaching convergence of the VP detection task. Although

we train only the VPP task, due to the weight update of the

mutually shared layers, losses of the other detection tasks

are also decreased by about 20%. This shows that lane and

road marking detection and VPP tasks share some common

characteristics in the feature representation layers.

In the second phase, we further train all the tasks using

the initialized kernels from the first phase. Since all tasks

are trained together at this point, it is important to balance

their learning rates. If a certain task loss weight is small, it

becomes dependent on other tasks and vice versa. Equation

(1) shows the summation of four losses from each task:

Loss = w1Lreg + w2Lom + w3Lml + w4Lvp (1)

where Lreg is a grid regression L1 loss, Lom and Lml and
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Lvp are cross entropy losses in each branch of the network.

We balance the tasks by weight terms w1∼w4 in the fol-

lowing way. First, w1∼w4 are set to be equal to 1, and the

starting losses are observed. Then, we set the reciprocal of

these initial loss values to the loss weight so that the losses

are uniform. In the middle of the training, if the scale differ-

ence between losses becomes large, this process is repeated

to balance the loss values. The second phase stops when the

validation accuracy is converged.

4.4. Post-Processing

Each lane and road marking class and VPs are required

to be represented suitably for real world application. There-

fore, we implement post-processing techniques to generate

visually satisfying results.

Lane In the case of the lane classes, we use the fol-

lowing techniques: point sampling, clustering, and lane re-

gression. First, we subsample local peaks from the region

where the probability of lane channels from the multi-label

task is high. The sampled points are potential candidates

to become the lane segments. Further, selected points are

projected to the birds-eye view by inverse perspective map-

ping (IPM) [3]. IPM is used to separate the sampled points

near the VP. This is useful not only for the case of straight

roads but also curved ones. We then cluster the points by

our modified density-based clustering method. We sequen-

tially decide the cluster by the pixel distance. After sorting

the points by the vertical index, we stack the point in a bin

if there is a close point among the top of the existing bins.

Otherwise, we create a new bin for a new cluster. By doing

this, we can reduce the time complexity of the clustering.

The last step is quadratic regressions of the lines from the

obtained clusters utilizing the location of the VP. If the far-

thest sample point of each lane cluster is close to the VP,

we include it in the cluster to estimate a polynomial model.

This makes the lane results stable near the VP. The class

type is assigned to each line segment from the multi-labeled

output of the network.

Road marking For the road marking classes, grid sam-

pling and box clustering are applied. First, we extract grid

cells from the grid regression task with high confidence for

each class from the multi-label output. We then select cor-

ner points of each grid and merge them with the nearby grid

cells iteratively. If no more neighboring grid cells belong

to the same class, the merging is terminated. Some road

markings such as crosswalks or safety zones that are diffi-

cult to define by a single box are localized by grid sampling

without subsequent merging.

Vanishing point Our VPP module outputs five chan-

nels of the confidence map: four quadrant channels and one

absence channel. Through these quadrants, we generate the

location of a VP. The VP is where all four quadrants inter-

sect. That is, we need to find a point where four confidences

from each quadrant channel become close. Equation (2) and

(3) describe the boundary intersection of each quadrant:

Pavg =
1− (

∑
p0(x, y))/(m× n)

4
(2)

locvp = argmin
(x,y)

4∑

n=1

|Pavg − pn(x, y)|
2

(3)

where Pavg is the probability that a VP exists in the im-

age, pn(x, y) is the confidence of (x, y) on nth channel

(n = 0: absence channel), m×n is the confidence map size,

and locvp is the location of the VP.

5. Results

Our experiments consist of six parts. First, we show the

experimental settings such as dataset splits and training pa-

rameters. Secondly, we provide an analysis of our network.

We explore how multiple tasks jointly cooperate and affect

the performance of each other. Third, our evaluation metric

for each target is introduced. Lastly, we show lanes, road

markings, and VPs detection and classification results.

5.1. Experimental Settings

A summary of the datasets is provided in Table 1. During

the training, we double the number of images by flipping the

original ones. This, in turn, doubles the training set and also

prevents positional bias that comes from the lane positions.

More specifically, the dataset is obtained in a right-sided

driving country, and by flipping the dataset we can simulate

a left-sided environment.

At the first training phase, we initialize the network only

by the VPP task. After the initialization, all four tasks are

trained simultaneously. For every task, we use Stochastic

Gradient Descent optimization with a momentum of 0.9 and

a mini-batch size of 20. Since multiple tasks must converge

proportionally, we tune the learning rate of each task.

We train three models of the network divided by task:

2-Task (revised [16]), 3-Task (revised [35]), and 4-Task

(VPGNet). 2-Task network includes regression and binary

classification tasks. 3-Task network includes 2-Task and a

multi-label classification task. 4-Task network includes 3-

Task and a VPP task, which is the VPGNet. Since the lane

detection in [16] is not fully reproducible, we modify the

data layer to handle the grid mask and move one convolu-

tional layer from shared layers to branch layers, as in the 3-

and 4-Task networks. The 3-Task network is similar to [35],

but we modify the data layer to handle the grid mask.

We test our models on NVIDIA GTX Titan X and

achieve a speed of 20 Hz by using only a single forward

pass. Specifically, the single forward pass takes about 30

ms and the post-processing takes about 20 ms or less.

5.2. Analysis of Multi Task Learning

In this section, we validate whether our multi-task mod-

ules contribute to improvement of the network training. We
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Figure 5. Activated neurons in the feature sharing network.

Intensity scale in each layer activation is equalized.

observe the activated neurons in the feature sharing net-

work. From the lower to higher layer, the abstraction level

is accelerated. Figure 5 shows the activated neurons after

each convolutional layer before the branch. We average

over all channel values. For a fair comparison, we equalize

the intensity scale in each layer activation. As the results

show, if we use more tasks, more neurons respond, espe-

cially around the boundaries of roadways.

5.3. Evaluation Metrics

In this section, we show the newly proposed evalua-

tion metrics for our benchmark evaluation. First, we in-

troduce our evaluation metric for the lane detection. Since

the ground truth of our benchmark is annotated with grid

cells we compute the minimum distance from the center of

each cell to the sampled lane points for every cell. If the

minimum distance is within the boundary R, we mark these

sampled points as true positive and the corresponding grid

cell as detected. By measuring every grid cell on the lane,

we can strictly evaluate the location of lane segments. Ad-

ditionally, we measure F1 score for the comparison.

In the case of road markings, we use mitigated evaluation

measurement. Since the only information we need while

driving is the road marking in front of us rather than the

exact boundary of the road markings, we measure the preci-

sion of predicted blobs. Specifically, we count all predicted

cells overlapped with the ground truth grid cells. The over-

lapped cells are marked as true positive cells. If the number

of true positive cells is greater than half of the number of

all predicted cells over a clustered blob, the overlaid ground

truth target is defined as detected. Additionally, we measure

the recall score for comparison.

For evaluation of the VP, we measure the Euclidean dis-

tance between a ground truth point and a predicted VP. The

recall score is evaluated by varying the threshold distance

R from the ground truth VP. Figure 6 shows a summary of

how we measure all three targets of our network.

Sampled points

GT grid boxes

R: Threshold 

distance

Ground truth Lane

Vanishing pointRoad marking

GT

Prediction

Detected VP

GT point

R

Figure 6. Graphical explanation of the evaluation metrics.

5.4. Lane Detection and Recognition

For lane classes, we measure detection, as well as simul-

taneous detection and classification performance. First, we

compare our multi-task networks with the baseline methods

in the Caltech Lanes Dataset [1] (see Figure 7). We set R
to equal to the average half value of the lane thickness (20

pixels). Due to perspective effect, the double lane in front of

the camera is about 70 to 80 pixels thick, and it is as small

as 8 pixels (a single grid size) near the VP. Since this dataset

contains relatively easy scenes during daytime, the overall

performance of 2-, 3-, and 4-Task networks is very similar.

Nevertheless, our network achieves the best F1 score.

Further, we provide a comparison of the proposed three

versions of multi-task networks and the FCN-8s [24] seg-

mentation method on our benchmark dataset. It is important

to note that our networks utilize grid-level annotation, while

FCN-8s is trained independently with both pixel- and grid-

level annotations. For testing purposes, four scenarios have

been selected as in Section 5.1, and the F1 score is com-

pared in each scenario. Figure 8 shows the experimental

results. Noticeably, our method shows significantly better

lane detection performance in each bad weather condition

scenario. Moreover, the forward pass time of the VPGNet

is 30 ms, while FCN-8s [24] takes 130 ms.

Interestingly, FCN-8s shows better performance with the

proposed grid-level annotation scheme compared to pixel-

level annotation. This proves that the grid-level annotation

is more suitable for lane detection and recognition. The rea-

son is that grid-level annotation generates stronger gradients

from the edge information around the thinly annotated area

(i.e. lane or road markings), which, in turn, results in en-
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Figure 7. Lane detection score on Caltech lanes dataset.
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Figure 8. Lane detection score on our benchmark.

riched training and leads to better performance.

In order to see what happens if the VP does not exist, we

conducted an additional test on images without the VP (e.g.

intersection roads or occlusions). Table 4 shows the results

of the experiment, demonstrating that the enhancement of

feature representation through the VPP task helps to find

lanes even when there is no VP. Selected results are shown

in the supplementary material.

For the simultaneous detection and classification of lane

classes, due to the class imbalance, we measure the F1 score

of the top four lane classes by the number of instances. The

selected classes are: single white, dashed white, single yel-

low, and double yellow lines. Table 5 shows the perfor-

mance of the 3- and 4-Task networks. Except for “no rain,

daytime condition”, recognition of the single white line is

highly improved. This shows that using the VPP task on

rainy and night conditions improves the activation of road-

way boundaries which are usually marked with single white

lines.

5.5. Road Marking Detection and Recognition

In the case of road marking classes, we evaluate the si-

multaneous detection and classification performance. Due

to the dataset imbalance of road marking classes, we mea-

sure the recall score of the top four road marking classes by

the number of instances. The selected classes are as follows:

stop line, straight arrow, crosswalk, and safety zone. Table 6

shows the performance of 3- and 4-Task networks. Except

for the stop line class in “no rain, daytime condition”, the

evaluation results are highly improved. This makes sense

because the stop line has horizontal edges which are not

Table 4. Lane detection score on No-VP set (Red: Best).

FCN-8s

(pixel)

FCN-8s

(grid)

3-Task

(revised [35])

4-Task

(VPGNet)

No-VP set 0.3310 0.4496 0.4535 0.5234

Table 5. Simultaneous detection and classification F1 score

for lane classes (Red: Best).

Lane class Single white Dashed white Single yellow Double yellow

Scenario 1
3-Task 0.55 0.77 0.57 0.32

4-Task 0.49 0.76 0.58 0.36

Scenario 2
3-Task 0.45 0.67 0.64 0.62

4-Task 0.52 0.66 0.65 0.61

Scenario 3
3-Task 0.31 0.72 0.70 0.37

4-Task 0.42 0.73 0.71 0.40

Scenario 4
3-Task 0.27 0.68 0.48 0.36

4-Task 0.42 0.69 0.42 0.40

Table 6. Simultaneous detection and classification recall

score for road marking classes (Red: Best).

Road marking class Stop line Straight arrow Crosswalk Safety zone

Scenario 1
3-Task 0.83 0.46 0.88 0.59

4-Task 0.78 0.80 0.94 0.80

Scenario 2
3-Task 0.60 0.41 0.81 0.47

4-Task 0.73 0.65 0.85 0.65

Scenario 3
3-Task 0.33 0.39 0.84 0.47

4-Task 0.56 0.63 0.93 0.61

Scenario 4
3-Task 0.60 0.48 0.82 0.37

4-Task 0.80 0.68 0.89 0.38
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Figure 9. Evaluation on the VPP task.

closely related to the VPP task. Other road markings have

shapes that give directions to VP from a geometric per-

spective. Consequently, responses to those classes become

highly activated.

5.6. Vanishing Point Prediction

In the case of a VP, we compare the VPP-only and 4-Task

networks. In this manner, we can observe how the VPP is

influenced by the lane and road marking detection. More-

over, we compare the performances of each scenario. Fig-

ure 9 shows the experimental results. The left graph shows

a comparison between two outputs: a prediction after the

first phase and a prediction after the second phase. The pre-

diction after the second phase is highly improved meaning

that the VPP task gets help from lane and road marking de-

tection tasks. The right graph shows the results of the pre-

diction after the second phase for each scenario.

6. Conclusions

In this work, we introduced lane and road marking

benchmark that covers four scenarios: daytime (no rain,

rain, heavy rain) and night conditions. We have also pro-

posed a multi-task network for simultaneous detection and

classification of lane and road markings, guided by a VP.

The evaluation shows that the VPGNet model is robust

under different weather conditions and performs in real-

time. Furthermore, we have concluded that the VPP task

enhances both lane and road marking detection and classi-

fication by enhancing activation of lane and road markings

and the boundary of the roadway.
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