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Abstract

Per-pixel ground-truth depth data is challenging to ac-

quire at scale. To overcome this limitation, self-supervised

learning has emerged as a promising alternative for train-

ing models to perform monocular depth estimation. In this

paper, we propose a set of improvements, which together re-

sult in both quantitatively and qualitatively improved depth

maps compared to competing self-supervised methods.

Research on self-supervised monocular training usually

explores increasingly complex architectures, loss functions,

and image formation models, all of which have recently

helped to close the gap with fully-supervised methods. We

show that a surprisingly simple model, and associated de-

sign choices, lead to superior predictions. In particular, we

propose (i) a minimum reprojection loss, designed to ro-

bustly handle occlusions, (ii) a full-resolution multi-scale

sampling method that reduces visual artifacts, and (iii) an

auto-masking loss to ignore training pixels that violate cam-

era motion assumptions. We demonstrate the effectiveness

of each component in isolation, and show high quality,

state-of-the-art results on the KITTI benchmark.

1. Introduction

We seek to automatically infer a dense depth image from

a single color input image. Estimating absolute, or even

relative depth, seems ill-posed without a second input image

to enable triangulation. Yet, humans learn from navigating

and interacting in the real-world, enabling us to hypothesize

plausible depth estimates for novel scenes [18].

Generating high quality depth-from-color is attractive

because it could inexpensively complement LIDAR sensors

used in self-driving cars, and enable new single-photo appli-

cations such as image-editing and AR-compositing. Solv-

ing for depth is also a powerful way to use large unlabeled

image datasets for the pretraining of deep networks for

downstream discriminative tasks [23]. However, collecting

large and varied training datasets with accurate ground truth

depth for supervised learning [55, 9] is itself a formidable

challenge. As an alternative, several recent self-supervised
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Figure 1. Depth from a single image. Our self-supervised model,

Monodepth2, produces sharp, high quality depth maps, whether

trained with monocular (M), stereo (S), or joint (MS) supervision.

approaches have shown that it is instead possible to train

monocular depth estimation models using only synchro-

nized stereo pairs [12, 15] or monocular video [76].

Among the two self-supervised approaches, monocular

video is an attractive alternative to stereo-based supervision,

but it introduces its own set of challenges. In addition to

estimating depth, the model also needs to estimate the ego-

motion between temporal image pairs during training. This

typically involves training a pose estimation network that

takes a finite sequence of frames as input, and outputs the

corresponding camera transformations. Conversely, using

stereo data for training makes the camera-pose estimation a

one-time offline calibration, but can cause issues related to

occlusion and texture-copy artifacts [15].

We propose three architectural and loss innovations that

combined, lead to large improvements in monocular depth

estimation when training with monocular video, stereo

pairs, or both: (1) A novel appearance matching loss to ad-

dress the problem of occluded pixels that occur when us-

ing monocular supervision. (2) A novel and simple auto-

masking approach to ignore pixels where no relative camera
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Figure 2. Moving objects. Monocular methods can fail to predict

depth for objects that were often observed to be in motion dur-

ing training e.g. moving cars – including methods which explicitly

model motion [71, 38, 51]. Our method succeeds here where oth-

ers, and our baseline with our contributions turned off, fail.

motion is observed in monocular training. (3) A multi-scale

appearance matching loss that performs all image sampling

at the input resolution, leading to a reduction in depth ar-

tifacts. Together, these contributions yield state-of-the-art

monocular and stereo self-supervised depth estimation re-

sults on the KITTI dataset [13], and simplify many compo-

nents found in the existing top performing models.

2. Related Work

We review models that, at test time, take a single color

image as input and predict the depth of each pixel as output.

2.1. Supervised Depth Estimation

Estimating depth from a single image is an inherently ill-

posed problem as the same input image can project to mul-

tiple plausible depths. To address this, learning based meth-

ods have shown themselves capable of fitting predictive

models that exploit the relationship between color images

and their corresponding depth. Various approaches, such as

combining local predictions [19, 55], non-parametric scene

sampling [24], through to end-to-end supervised learning

[9, 31, 10] have been explored. Learning based algorithms

are also among some of the best performing for stereo esti-

mation [72, 42, 60, 25] and optical flow [20, 63].

Many of the above methods are fully supervised, requir-

ing ground truth depth during training. However, this is

challenging to acquire in varied real-world settings. As a

result, there is a growing body of work that exploits weakly

supervised training data, e.g. in the form of known object

sizes [66], sparse ordinal depths [77, 6], supervised appear-

ance matching terms [72, 73], or unpaired synthetic depth

data [45, 2, 16, 78], all while still requiring the collection

of additional depth or other annotations. Synthetic train-

ing data is an alternative [41], but it is not trivial to generate

large amounts of synthetic data containing varied real-world

appearance and motion. Recent work has shown that con-

ventional structure-from-motion (SfM) pipelines can gen-

erate sparse training signal for both camera pose and depth

[35, 28, 68], where SfM is typically run as a pre-processing

step decoupled from learning. Recently, [65] built upon our

model by incorporating noisy depth hints from traditional

stereo algorithms, improving depth predictions.

2.2. Self­supervised Depth Estimation

In the absence of ground truth depth, one alternative is to

train depth estimation models using image reconstruction as

the supervisory signal. Here, the model is given a set of im-

ages as input, either in the form of stereo pairs or monocu-

lar sequences. By hallucinating the depth for a given image

and projecting it into nearby views, the model is trained by

minimizing the image reconstruction error.

Self-supervised Stereo Training

One form of self-supervision comes from stereo pairs.

Here, synchronized stereo pairs are available during train-

ing, and by predicting the pixel disparities between the pair,

a deep network can be trained to perform monocular depth

estimation at test time. [67] proposed such a model with dis-

cretized depth for the problem of novel view synthesis. [12]

extended this approach by predicting continuous disparity

values, and [15] produced results superior to contemporary

supervised methods by including a left-right depth consis-

tency term. Stereo-based approaches have been extended

with semi-supervised data [30, 39], generative adversarial

networks [1, 48], additional consistency [50], temporal in-

formation [33, 73, 3], and for real-time use [49].

In this work, we show that with careful choices regarding

appearance losses and image resolution, we can reach the

performance of stereo training using only monocular train-

ing. Further, one of our contributions carries over to stereo

training, resulting in increased performance there too.

Self-supervised Monocular Training

A less constrained form of self-supervision is to use

monocular videos, where consecutive temporal frames pro-

vide the training signal. Here, in addition to predicting

depth, the network has to also estimate the camera pose be-

tween frames, which is challenging in the presence of object

motion. This estimated camera pose is only needed during

training to help constrain the depth estimation network.

In one of the first monocular self-supervised approaches,

[76] trained a depth estimation network along with a sep-

arate pose network. To deal with non-rigid scene motion,

an additional motion explanation mask allowed the model

to ignore specific regions that violated the rigid scene as-

sumption. However, later iterations of their model available

online disabled this term, achieving superior performance.

Inspired by [4], [61] proposed a more sophisticated motion

model using multiple motion masks. However, this was not

fully evaluated, making it difficult to understand its utility.

[71] also decomposed motion into rigid and non-rigid com-

ponents, using depth and optical flow to explain object mo-

tion. This improved the flow estimation, but they reported

no improvement when jointly training for flow and depth
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Figure 3. Overview. (a) Depth network: We use a standard, fully convolutional, U-Net to predict depth. (b) Pose network: Pose between

a pair of frames is predicted with a separate pose network. (c) Per-pixel minimum reprojection: When correspondences are good, the

reprojection loss should be low. However, occlusions and disocclusions result in pixels from the current time step not appearing in both the

previous and next frames. The baseline average loss forces the network to match occluded pixels, whereas our minimum reprojection loss

only matches each pixel to the view in which it is visible, leading to sharper results. (d) Full-resolution multi-scale: We upsample depth

predictions at intermediate layers and compute all losses at the input resolution, reducing texture-copy artifacts.

estimation. In the context of optical flow estimation, [22]

showed that it helps to explicitly model occlusion.

Recent approaches have begun to close the performance

gap between monocular and stereo-based self-supervision.

[70] constrained the predicted depth to be consistent with

predicted surface normals, and [69] enforced edge con-

sistency. [40] proposed an approximate geometry based

matching loss to encourage temporal depth consistency.

[62] use a depth normalization layer to overcome the pref-

erence for smaller depth values that arises from the com-

monly used depth smoothness term from [15]. [5] make use

of pre-computed instance segmentation masks for known

categories to help deal with moving objects.

Appearance Based Losses

Self-supervised training typically relies on making as-

sumptions about the appearance (i.e. brightness constancy)

and material properties (e.g. Lambertian) of object surfaces

between frames. [15] showed that the inclusion of a local

structure based appearance loss [64] significantly improved

depth estimation performance compared to simple pairwise

pixel differences [67, 12, 76]. [28] extended this approach

to include an error fitting term, and [43] explored combining

it with an adversarial based loss to encourage realistic look-

ing synthesized images. Finally, inspired by [72], [73] use

ground truth depth to train an appearance matching term.

3. Method

Here, we describe our depth prediction network that

takes a single color input It and produces a depth map Dt.

We first review the key ideas behind self-supervised train-

ing for monocular depth estimation, and then describe our

depth estimation network and joint training loss.

3.1. Self­Supervised Training

Self-supervised depth estimation frames the learning

problem as one of novel view-synthesis, by training a net-

work to predict the appearance of a target image from the

viewpoint of another image. By constraining the network

to perform image synthesis using an intermediary variable,

in our case depth or disparity, we can then extract this in-

terpretable depth from the model. This is an ill-posed prob-

lem as there is an extremely large number of possible in-

correct depths per pixel which can correctly reconstruct

the novel view given the relative pose between those two

views. Classical binocular and multi-view stereo methods

typically address this ambiguity by enforcing smoothness

in the depth maps, and by computing photo-consistency on

patches when solving for per-pixel depth via global opti-

mization e.g. [11].

Similar to [12, 15, 76], we also formulate our problem

as the minimization of a photometric reprojection error at

training time. We express the relative pose for each source

view It′ , with respect to the target image It’s pose, as Tt→t′ .

We predict a dense depth map Dt that minimizes the photo-

metric reprojection error Lp, where

Lp =
∑

t′

pe(It, It′→t), (1)

and It′→t = It′
〈

proj(Dt, Tt→t′ ,K)
〉

. (2)

Here pe is a photometric reconstruction error, e.g. the L1

distance in pixel space; proj() are the resulting 2D coordi-

nates of the projected depths Dt in It′ and
〈〉

is the sam-

pling operator. For simplicity of notation we assume the

pre-computed intrinsics K of all the views are identical,

though they can be different. Following [21] we use bilin-

ear sampling to sample the source images, which is locally

sub-differentiable, and we follow [75, 15] in using L1 and

SSIM [64] to make our photometric error function pe, i.e.

pe(Ia, Ib) =
α

2
(1− SSIM(Ia, Ib)) + (1− α)‖Ia − Ib‖1,

where α = 0.85. As in [15] we use edge-aware smoothness

Ls = |∂xd
∗
t | e

−|∂xIt| + |∂yd
∗
t | e

−|∂yIt|, (3)
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Figure 1: Colors show 
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Figure 4. Benefit of min. reprojection loss in MS training. Pix-

els in the the circled region are occluded in IR so no loss is applied

between (IL, IR). Instead, the pixels are matched to I
−1 where

they are visible. Colors in the top right image indicate which of the

source images on the bottom are selected for matching by Eqn. 4.

where d∗t = dt/dt is the mean-normalized inverse depth

from [62] to discourage shrinking of the estimated depth.

In stereo training, our source image It′ is the second

view in the stereo pair to It, which has known relative pose.

While relative poses are not known in advance for monocu-

lar sequences, [76] showed that it is possible to train a sec-

ond pose estimation network to predict the relative poses

Tt→t′ used in the projection function proj. During train-

ing, we solve for camera pose and depth simultaneously,

to minimize Lp. For monocular training, we use the two

frames temporally adjacent to It as our source frames, i.e.

It′ ∈ {It−1, It+1}. In mixed training (MS), It′ includes the

temporally adjacent frames and the opposite stereo view.

3.2. Improved Self­Supervised Depth Estimation

Existing monocular methods produce lower quality

depths than the best fully-supervised models. To close this

gap, we propose several improvements that significantly in-

crease predicted depth quality, without adding additional

model components that also require training (see Fig. 3).

Per-Pixel Minimum Reprojection Loss

When computing the reprojection error from multiple

source images, existing self-supervised depth estimation

methods average together the reprojection error into each

of the available source images.This can cause issues with

pixels that are visible in the target image, but are not vis-

ible in some of the source images (Fig. 3(c)). If the net-

work predicts the correct depth for such a pixel, the corre-

sponding color in an occluded source image will likely not

match the target, inducing a high photometric error penalty.

Such problematic pixels come from two main categories:

out-of-view pixels due to egomotion at image boundaries,

and occluded pixels. The effect of out-of-view pixels can

be reduced by masking such pixels in the reprojection loss

[40, 61], but this does not handle disocclusion, where aver-

age reprojection can result in blurred depth discontinuities.

We propose an improvement that deals with both issues

Figure 5. Auto-masking. We show auto-masks computed after

one epoch, where black pixels are removed from the loss (i.e. µ =

0). The mask prevents objects moving at similar speeds to the

camera (top) and whole frames where the camera is static (bottom)

from contaminating the loss. The mask is computed from the input

frames and network predictions using Eqn. 5.

at once. At each pixel, instead of averaging the photometric

error over all source images, we simply use the minimum.

Our final per-pixel photometric loss is therefore

Lp = min
t′

pe(It, It′→t). (4)

See Fig. 4 for an example of this loss in practice. Using our

minimum reprojection loss significantly reduces artifacts at

image borders, improves the sharpness of occlusion bound-

aries, and leads to better accuracy (see Table 2).

Auto-Masking Stationary Pixels

Self-supervised monocular training often operates under the

assumptions of a moving camera and a static scene. When

these assumptions break down, for example when the cam-

era is stationary or there is object motion in the scene, per-

formance can suffer greatly. This problem can manifest it-

self as ‘holes’ of infinite depth in the predicted test time

depth maps, for objects that are typically observed to be

moving during training [38] (Fig. 2). This motivates our

second contribution: a simple auto-masking method that fil-

ters out pixels which do not change appearance from one

frame to the next in the sequence. This has the effect of

letting the network ignore objects which move at the same

velocity as the camera, and even to ignore whole frames in

monocular videos when the camera stops moving.

Like other works [76, 61, 38], we also apply a per-pixel

mask µ to the loss, selectively weighting pixels. However

in contrast to prior work, our mask is binary, so µ ∈ {0, 1},

and is computed automatically on the forward pass of the

network, instead of being learned or estimated from object

motion. We observe that pixels which remain the same be-

tween adjacent frames in the sequence often indicate a static

camera, an object moving at equivalent relative translation

to the camera, or a low texture region. We therefore set µ to

only include the loss of pixels where the reprojection error

of the warped image It′→t is lower than that of the original,

unwarped source image I ′t, i.e.

µ =
[

min
t′

pe(It, It′→t) < min
t′

pe(It, It′)
]

, (5)

where [ ] is the Iverson bracket. In cases where the camera

and another object are both moving at a similar velocity,
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µ prevents the pixels which remain stationary in the image

from contaminating the loss. Similarly, when the camera is

static, the mask can filter out all pixels in the image (Fig. 5).

We show experimentally that this simple and inexpensive

modification to the loss brings significant improvements.

Multi-scale Estimation

Due to the gradient locality of the bilinear sampler [21], and

to prevent the training objective getting stuck in local min-

ima, existing models use multi-scale depth prediction and

image reconstruction. Here, the total loss is the combina-

tion of the individual losses at each scale in the decoder.

[12, 15] compute the photometric error on images at the

resolution of each decoder layer. We observe that this has

the tendency to create ‘holes’ in large low-texture regions

in the intermediate lower resolution depth maps, as well as

texture-copy artifacts (details in the depth map incorrectly

transferred from the color image). Holes in the depth can

occur at low resolution in low-texture regions where the

photometric error is ambiguous. This complicates the task

for the depth network, now freed to predict incorrect depths.

Inspired by techniques in stereo reconstruction [56], we

propose an improvement to this multi-scale formulation,

where we decouple the resolutions of the disparity images

and the color images used to compute the reprojection er-

ror. Instead of computing the photometric error on the

ambiguous low-resolution images, we first upsample the

lower resolution depth maps (from the intermediate layers)

to the input image resolution, and then reproject, resam-

ple, and compute the error pe at this higher input resolution

(Fig. 3 (d)). This procedure is similar to matching patches,

as low-resolution disparity values will be responsible for

warping an entire ‘patch’ of pixels in the high resolution

image. This effectively constrains the depth maps at each

scale to work toward the same objective i.e. reconstructing

the high resolution input target image as accurately as pos-

sible.

Final Training Loss

We combine our per-pixel smoothness and masked photo-

metric losses as L = µLp + λLs, and average over each

pixel, scale, and batch.

3.3. Additional Considerations

Our depth estimation network is based on the general

U-Net architecture [53], i.e. an encoder-decoder network,

with skip connections, enabling us to represent both deep

abstract features as well as local information. We use a

ResNet18 [17] as our encoder, which contains 11M pa-

rameters, compared to the larger, and slower, DispNet

and ResNet50 models used in existing work [15]. Simi-

lar to [30, 16], we start with weights pretrained on Ima-

geNet [54], and show that this improves accuracy for our

compact model compared to training from scratch (Table 2).

Our depth decoder is similar to [15], with sigmoids at the

output and ELU nonlinearities [7] elsewhere. We convert

the sigmoid output σ to depth with D = 1/(aσ + b), where

a and b are chosen to constrain D between 0.1 and 100 units.

We make use of reflection padding, in place of zero padding,

in the decoder, returning the value of the closest border pix-

els in the source image when samples land outside of the

image boundaries. We found that this significantly reduces

the border artifacts found in existing approaches, e.g. [15].

For pose estimation, we follow [62] and predict the rota-

tion using an axis-angle representation, and scale the rota-

tion and translation outputs by 0.01. For monocular train-

ing, we use a sequence length of three frames, while our

pose network is formed from a ResNet18, modified to ac-

cept a pair of color images (or six channels) as input and to

predict a single 6-DoF relative pose. We perform horizon-

tal flips and the following training augmentations, with 50%
chance: random brightness, contrast, saturation, and hue jit-

ter with respective ranges of ±0.2, ±0.2, ±0.2, and ±0.1.

Importantly, the color augmentations are only applied to the

images which are fed to the networks, not to those used to

compute Lp. All three images fed to the pose and depth

networks are augmented with the same parameters.

Our models are implemented in PyTorch [46], trained for

20 epochs using Adam [26], with a batch size of 12 and an

input/output resolution of 640× 192 unless otherwise spec-

ified. We use a learning rate of 10−4 for the first 15 epochs

which is then dropped to 10−5 for the remainder. This was

chosen using a dedicated validation set of 10% of the data.

The smoothness term λ is set to 0.001. Training takes 8,

12, and 15 hours on a single Titan Xp, for the stereo (S),

monocular (M), and monocular plus stereo models (MS).

4. Experiments

Here, we validate that (1) our reprojection loss helps with

occluded pixels compared to existing pixel-averaging, (2)

our auto-masking improves results, especially when train-

ing on scenes with static cameras, and (3) our multi-scale

appearance matching loss improves accuracy. We evaluate

our models, named Monodepth2, on the KITTI 2015 stereo

dataset [13], to allow comparison with previously published

monocular methods.

4.1. KITTI Eigen Split

We use the data split of Eigen et al. [8]. Except in

ablation experiments, for training which uses monocular

sequences (i.e. monocular and monocular plus stereo) we

follow Zhou et al.’s [76] pre-processing to remove static

frames. This results in 39,810 monocular triplets for train-

ing and 4,424 for validation. We use the same intrinsics

for all images, setting the principal point of the camera to

the image center and the focal length to the average of all

the focal lengths in KITTI. For stereo and mixed training
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Method Train Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen [9] D 0.203 1.548 6.307 0.282 0.702 0.890 0.890

Liu [36] D 0.201 1.584 6.471 0.273 0.680 0.898 0.967

Klodt [28] D*M 0.166 1.490 5.998 - 0.778 0.919 0.966

AdaDepth [45] D* 0.167 1.257 5.578 0.237 0.771 0.922 0.971

Kuznietsov [30] DS 0.113 0.741 4.621 0.189 0.862 0.960 0.986

DVSO [68] D*S 0.097 0.734 4.442 0.187 0.888 0.958 0.980

SVSM FT [39] DS 0.094 0.626 4.252 0.177 0.891 0.965 0.984

Guo [16] DS 0.096 0.641 4.095 0.168 0.892 0.967 0.986

DORN [10] D 0.072 0.307 2.727 0.120 0.932 0.984 0.994

Zhou [76]† M 0.183 1.595 6.709 0.270 0.734 0.902 0.959

Yang [70] M 0.182 1.481 6.501 0.267 0.725 0.906 0.963

Mahjourian [40] M 0.163 1.240 6.220 0.250 0.762 0.916 0.968

GeoNet [71]† M 0.149 1.060 5.567 0.226 0.796 0.935 0.975

DDVO [62] M 0.151 1.257 5.583 0.228 0.810 0.936 0.974

DF-Net [78] M 0.150 1.124 5.507 0.223 0.806 0.933 0.973

LEGO [69] M 0.162 1.352 6.276 0.252 - - -

Ranjan [51] M 0.148 1.149 5.464 0.226 0.815 0.935 0.973

EPC++ [38] M 0.141 1.029 5.350 0.216 0.816 0.941 0.976

Struct2depth ‘(M)’ [5] M 0.141 1.026 5.291 0.215 0.816 0.945 0.979

Monodepth2 w/o pretraining M 0.132 1.044 5.142 0.210 0.845 0.948 0.977

Monodepth2 M 0.115 0.903 4.863 0.193 0.877 0.959 0.981

Monodepth2 (1024 × 320) M 0.115 0.882 4.701 0.190 0.879 0.961 0.982

Garg [12]† S 0.152 1.226 5.849 0.246 0.784 0.921 0.967

Monodepth R50 [15]† S 0.133 1.142 5.533 0.230 0.830 0.936 0.970

StrAT [43] S 0.128 1.019 5.403 0.227 0.827 0.935 0.971

3Net (R50) [50] S 0.129 0.996 5.281 0.223 0.831 0.939 0.974

3Net (VGG) [50] S 0.119 1.201 5.888 0.208 0.844 0.941 0.978

SuperDepth + pp [47] (1024 × 382) S 0.112 0.875 4.958 0.207 0.852 0.947 0.977

Monodepth2 w/o pretraining S 0.130 1.144 5.485 0.232 0.831 0.932 0.968

Monodepth2 S 0.109 0.873 4.960 0.209 0.864 0.948 0.975

Monodepth2 (1024 × 320) S 0.107 0.849 4.764 0.201 0.874 0.953 0.977

UnDeepVO [33] MS 0.183 1.730 6.57 0.268 - - -

Zhan FullNYU [73] D*MS 0.135 1.132 5.585 0.229 0.820 0.933 0.971

EPC++ [38] MS 0.128 0.935 5.011 0.209 0.831 0.945 0.979

Monodepth2 w/o pretraining MS 0.127 1.031 5.266 0.221 0.836 0.943 0.974

Monodepth2 MS 0.106 0.818 4.750 0.196 0.874 0.957 0.979

Monodepth2 (1024 × 320) MS 0.106 0.806 4.630 0.193 0.876 0.958 0.980

Table 1. Quantitative results. Com-

parison of our method to existing

methods on KITTI 2015 [13] using

the Eigen split. Best results in each

category are in bold; second best are

underlined.

All results here are presented with-

out post-processing [15]; see supple-

mentary Section F for improved post-

processed results. While our contribu-

tions are designed for monocular train-

ing, we still gain high accuracy in the

stereo-only category.

We additionally show we can get

higher scores at a larger 1024 × 320

resolution, similar to [47] – see sup-

plementary Section G. These high res-

olution numbers are bolded if they beat

all other models, including our low-res

versions.

Legend

D – Depth supervision

D* – Auxiliary depth supervision

S – Self-supervised stereo supervision

M – Self-supervised mono supervision

† – Newer results from github.

+ pp – With post-processing

(monocular plus stereo), we set the transformation between

the two stereo frames to be a pure horizontal translation of

fixed length. During evaluation, we cap depth to 80m per

standard practice [15]. For our monocular models, we re-

port results using the per-image median ground truth scaling

introduced by [76]. See also supplementary material Sec-

tion D.2 for results where we apply a single median scaling

to the whole test set, instead of scaling each image indepen-

dently. For results that use any stereo supervision we do not

perform median scaling as scale can be inferred from the

known camera baseline during training.

We compare the results of several variants of our model,

trained with different types of self-supervision: monocular

video only (M), stereo only (S), and both (MS). The results

in Table 1 show that our monocular method outperforms

all existing state-of-the-art self-supervised approaches. We

also outperform recent methods ([38, 51]) that explicitly

compute optical flow as well as motion masks. Qualitative

results can be seen in Fig. 7 and supplementary Section E.

However, as with all image reconstruction based approaches

to depth estimation, our model breaks when the scene con-

tains objects that violate the Lambertian assumptions of our

appearance loss (Fig. 8).

As expected, the combination of M and S training data

increases accuracy, which is especially noticeable on met-

rics that are sensitive to large depth errors e.g. RMSE. De-

spite our contributions being designed around monocular

training, we find that the in the stereo-only case we still

perform well. We achieve high accuracy despite using a

lower resolution than [47]’s 1024× 384, with substantially

less training time (20 vs. 200 epochs) and no use of post-

processing.

4.1.1 KITTI Ablation Study

To better understand how the components of our model con-

tribute to the overall performance in monocular training,

in Table 2(a) we perform an ablation study by changing

various components of our model. We see that the base-

line model, without any of our contributions, performs the

worst. When combined together, all our components lead

to a significant improvement (Monodepth2 (full)). More

experiments turning parts of our full model off in turn are

shown in supplementary material Section C.

Benefits of auto-masking The full Eigen [8] KITTI split

contains several sequences where the camera does not move

between frames e.g. where the data capture car was stopped

at traffic lights. These ‘no camera motion’ sequences can

cause problems for self-supervised monocular training, and

as a result, they are typically excluded at training time using

expensive to compute optical flow [76]. We report monoc-

ular results trained on the full Eigen data split in Table 2(c),

i.e. without removing frames. The baseline model trained

on the full KITTI split performs worse than our full model.
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Auto-

masking

Min.

reproj.

Full-res

multi-scale
Pretrained

Full Eigen

split
Abs Rel Sq Rel RMSE

RMSE

log
δ <1.25 δ <1.252 δ < 1.253

(a) Baseline X 0.140 1.610 5.512 0.223 0.852 0.946 0.973

Baseline + min reproj. X X 0.122 1.081 5.116 0.199 0.866 0.957 0.980

Baseline + automasking X 0.124 0.936 5.010 0.206 0.858 0.952 0.977

Baseline + full-res m.s. X X 0.124 1.170 5.249 0.203 0.865 0.953 0.978

Monodepth2 w/o min reprojection X X X 0.117 0.878 4.846 0.196 0.870 0.957 0.980

Monodepth2 w/o auto-masking X X X 0.120 1.097 5.074 0.197 0.872 0.956 0.979

Monodepth2 w/o full-res m.s. X X X 0.117 0.866 4.864 0.196 0.871 0.957 0.981

Monodepth2 with [76]’s mask X X X 0.123 1.177 5.210 0.200 0.869 0.955 0.978

Monodepth2 smaller (416 × 128) X X X X 0.128 1.087 5.171 0.204 0.855 0.953 0.978

Monodepth2 (full) X X X X 0.115 0.903 4.863 0.193 0.877 0.959 0.981

(b) Baseline w/o pt 0.150 1.585 5.671 0.234 0.827 0.938 0.971

Monodepth2 w/o pt X X X 0.132 1.044 5.142 0.210 0.845 0.948 0.977

(c) Baseline (full Eigen dataset) X X 0.146 1.876 5.666 0.230 0.848 0.945 0.972

Monodepth2 (full Eigen dataset) X X X X X 0.116 0.918 4.872 0.193 0.874 0.959 0.981

Table 2. Ablation. Results for different variants of our model (Monodepth2) with monocular training on KITTI 2015 [13] using the Eigen

split. (a) The baseline model, with none of our contributions, performs poorly. The addition of our minimum reprojection, auto-masking

and full-res multi-scale components, significantly improves performance. (b) Even without ImageNet pretrained weights, our much simpler

model brings large improvements above the baseline – see also Table 1. (c) If we train with the full Eigen dataset (instead of the subset

introduced for monocular training by [76]) our improvement over the baseline increases.

Input Zhou et al. [76] DDVO [62] Monodepth2 (M) Ground truth

Figure 6. Qualitative Make3D results. All methods were trained

on KITTI using monocular supervision.

Further, in Table 2(a), we replace our auto-masking loss

with a re-implementation of the predictive mask from [76].

We find that this ablated model is worse than using no mask-

ing at all, while our auto-masking improves results in all

cases. We see an example of how auto-masking works in

practice in Fig. 5.

Effect of ImageNet pretraining We follow previous work

[14, 30, 16] in initializing our encoders with weights pre-

trained on ImageNet [54]. While some other monocular

depth prediction works have elected not to use ImageNet

pretraining, we show in Table 1 that even without pretrain-

ing, we still achieve state-of-the-art results. We train these

‘w/o pretraining’ models for 30 epochs to ensure conver-

gence. Table 2 shows the benefit our contributions bring

both to pretrained networks and those trained from scratch;

see supplementary material Section C for more ablations.

4.2. Additional Datasets

KITTI Odometry In Section A of the supplementary ma-

terial we show odometry evaluation on KITTI. While our

focus is better depth estimation, our pose network performs

on par with competing methods. Competing methods typ-

ically feed more frames to their pose network which may

improve their ability to generalize.

KITTI Depth Prediction Benchmark We also perform ex-

periments on the recently introduced KITTI Depth Predic-

tion Evaluation dataset [59], which features more accurate

ground truth depth, addressing quality issues with the stan-

Type Abs Rel Sq Rel RMSE log10
Karsch [24] D 0.428 5.079 8.389 0.149

Liu [37] D 0.475 6.562 10.05 0.165

Laina [31] D 0.204 1.840 5.683 0.084

Monodepth [15] S 0.544 10.94 11.760 0.193

Zhou [76] M 0.383 5.321 10.470 0.478

DDVO [62] M 0.387 4.720 8.090 0.204

Monodepth2 M 0.322 3.589 7.417 0.163

Monodepth2 MS 0.374 3.792 8.238 0.201

Table 3. Make3D results. All M results benefit from median scal-

ing, while MS uses the unmodified network prediction.

dard split. We train models using this new benchmark split,

and evaluate it using the online server [27], and provide re-

sults in supplementary Section D.3. Additionally, 93% of

the Eigen split test frames have higher quality ground truth

depths provided by [59]. Like [1], we use these instead

of the reprojected LIDAR scans to compare our method

against several existing baseline algorithms, still showing

superior performance.

Make3D In Table 3 we report performance on the Make3D

dataset [55] using our models trained on KITTI. We out-

perform all methods that do not use depth supervision, with

the evaluation criteria from [15]. However, caution should

be taken with Make3D, as its ground truth depth and input

images are not well aligned, causing potential evaluation is-

sues. We evaluate on a center crop of 2× 1 ratio, and apply

median scaling for our M model. Qualitative results can be

seen in Fig. 6 and in supplementary Section E.

5. Conclusion

We have presented a versatile model for self-supervised

monocular depth estimation, achieving state-of-the-art

depth predictions. We introduced three contributions: (i) a

minimum reprojection loss, computed for each pixel, to deal
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Figure 7. Qualitative results on the KITTI Eigen split. Our models (MD2) in the last four rows produce the sharpest depth maps, which

are reflected in the superior quantitative results in Table 1. Additional results can be seen in the supplementary materiale Section E.

Monodepth2 (M)

Monodepth2 (M)

Figure 8. Failure cases. Top: Our self-supervised loss fails to

learn good depths for distorted, reflective and color-saturated re-

gions. Bottom: We can fail to accurately delineate objects where

boundaries are ambiguous (left) or shapes are intricate (right).

with occlusions between frames in monocular video, (ii)

an auto-masking loss to ignore confusing, stationary pixels,

and (iii) a full-resolution multi-scale sampling method. We

showed how together they give a simple and efficient model

for depth estimation, which can be trained with monocular

video data, stereo data, or mixed monocular and stereo data.
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[7] Djork-Arné Clevert, Thomas Unterthiner, and Sepp Hochre-

iter. Fast and accurate deep network learning by exponential

linear units (elus). arXiv, 2015.

[8] David Eigen and Rob Fergus. Predicting depth, surface nor-

mals and semantic labels with a common multi-scale convo-

lutional architecture. In ICCV, 2015.

[9] David Eigen, Christian Puhrsch, and Rob Fergus. Depth map

prediction from a single image using a multi-scale deep net-

work. In NeurIPS, 2014.

[10] Huan Fu, Mingming Gong, Chaohui Wang, Kayhan Bat-

manghelich, and Dacheng Tao. Deep ordinal regression net-

work for monocular depth estimation. In CVPR, 2018.

[11] Yasutaka Furukawa and Carlos Hernández. Multi-view

stereo: A tutorial. Foundations and Trends in Computer

Graphics and Vision, 2015.

[12] Ravi Garg, Vijay Kumar BG, and Ian Reid. Unsupervised

CNN for single view depth estimation: Geometry to the res-

cue. In ECCV, 2016.

[13] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we

ready for Autonomous Driving? The KITTI Vision Bench-

mark Suite. In CVPR, 2012.

[14] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra

Malik. Rich feature hierarchies for accurate object detection

and semantic segmentation. In CVPR, 2014.

[15] Clément Godard, Oisin Mac Aodha, and Gabriel J Bros-

tow. Unsupervised monocular depth estimation with left-

right consistency. In CVPR, 2017.

[16] Xiaoyang Guo, Hongsheng Li, Shuai Yi, Jimmy Ren, and

Xiaogang Wang. Learning monocular depth by distilling

cross-domain stereo networks. In ECCV, 2018.

[17] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In CVPR,

2016.

[18] Carol Barnes Hochberg and Julian E Hochberg. Familiar

size and the perception of depth. The Journal of Psychology,

1952.

[19] Derek Hoiem, Alexei A Efros, and Martial Hebert. Auto-

matic photo pop-up. TOG, 2005.

[20] Eddy Ilg, Nikolaus Mayer, Tonmoy Saikia, Margret Keuper,

Alexey Dosovitskiy, and Thomas Brox. FlowNet2: Evolu-

tion of optical flow estimation with deep networks. In CVPR,

2017.

[21] Max Jaderberg, Karen Simonyan, Andrew Zisserman, and

Koray Kavukcuoglu. Spatial transformer networks. In

NeurIPS, 2015.
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[72] Jure Žbontar and Yann LeCun. Stereo matching by training

a convolutional neural network to compare image patches.

JMLR, 2016.

[73] Huangying Zhan, Ravi Garg, Chamara Saroj Weerasekera,

Kejie Li, Harsh Agarwal, and Ian Reid. Unsupervised learn-

ing of monocular depth estimation and visual odometry with

deep feature reconstruction. In CVPR, 2018.

3837



[74] Zhenyu Zhang, Chunyan Xu, Jian Yang, Ying Tai, and Liang

Chen. Deep hierarchical guidance and regularization learn-

ing for end-to-end depth estimation. Pattern Recognition,

2018.

[75] Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss

functions for image restoration with neural networks. Trans-

actions on Computational Imaging, 2017.

[76] Tinghui Zhou, Matthew Brown, Noah Snavely, and David

Lowe. Unsupervised learning of depth and ego-motion from

video. In CVPR, 2017.

[77] Daniel Zoran, Phillip Isola, Dilip Krishnan, and William T

Freeman. Learning ordinal relationships for mid-level vi-

sion. In ICCV, 2015.

[78] Yuliang Zou, Zelun Luo, and Jia-Bin Huang. DF-Net: Un-

supervised joint learning of depth and flow using cross-task

consistency. In ECCV, 2018.

3838


