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Figure 1: We present a method for multi-view image fusion that is a applicable to a variety of scenarios: a higher resolution monochrome

image is colorized with a second color image (top row), two color images with different exposures are fused into an HDR lower-noise

image (middle row), and a high quality DSLR image is warped to the lower quality stereo views captured by a VR-camera (bottom row).

Abstract

We present an end-to-end learned system for fusing mul-

tiple misaligned photographs of the same scene into a cho-

sen target view. We demonstrate three use cases: 1) color

transfer for inferring color for a monochrome view, 2) HDR

fusion for merging misaligned bracketed exposures, and 3)

detail transfer for reprojecting a high definition image to

the point of view of an affordable VR180-camera. While the

system can be trained end-to-end, it consists of three dis-

tinct steps: feature extraction, image warping and fusion.

We present a novel cascaded feature extraction method that

enables us to synergetically learn optical flow at different

resolution levels. We show that this significantly improves

the network’s ability to learn large disparities. Finally, we

demonstrate that our alignment architecture outperforms a

state-of-the art optical flow network on the image warping

task when both systems are trained in an identical manner.

1. Introduction

In this paper we focus on the problem of fusing multiple

misaligned photographs into a chosen target view. Multi-

view image fusion has become increasingly relevant with

the recent influx of multi-camera mobile devices.

The form factor of these devices constrains the size of

lenses and sensors, and this limits their light capturing abil-

ity. Cameras with larger lens apertures and larger pixels

capture more photons per pixel, and thus show less promi-

nent photon shot noise. This is the reason mobile cameras

have been lagging behind large DSLR systems in quality.

In recent years the use of computational photography has

narrowed the gap significantly [11, 17, 19], but the funda-

mentals have not changed: more light means better images.

Lately it has become common to fit 2, 3 or even 5 cam-

eras [1, 6] into a single mobile device. The use of multiple

cameras significantly improves the light gathering ability of

the device. At the minimum two cameras capture twice the

light of a single camera, but often it is possible to do better

by recording different aspects of the scene with each camera
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and then fusing the results to get the best of both worlds.

One can envision a number of applications that fall into

this class, for example, fusing infrared and color images

[33], HDR fusion using bracketed exposures [28], or fusing

wide-angle and telephoto views for super-resolution within

the central region of the wide-angle image. In this paper

we show an end-to-end learned system that is suitable for a

number of multi-view fusion applications. We demonstrate

its effectiveness in three compelling multi-camera designs:

Color transfer: Monochrome cameras, such as those

available in some smart phones [1, 3] capture roughly three

times the number of photons compared to the cameras with

color mosaic sensors and do not exhibit artifacts introduced

by the mosaic. We explore fusing together a color image

and monochrome image from slightly different view points

to combine the desirable aspects of both cameras.

HDR fusion: We explore an HDR camera design where

two cameras take photographs simultaneously but with dif-

ferent exposure settings. We show that fusing the images

reduces noise and increases the dynamic range.

Detail transfer: We explore a novel architecture for

building a high-quality VR180[2] camera, where a high-

resolution image taken by a DSLR camera is warped to the

points of view of a cheaper VR180 camera with a field of

view close to 180 degrees and a lens separation that matches

the human interpupillary distance (IPD). The sizes of the

the lenses and bodies of DSLR cameras make it difficult to

record VR180 with a pair of DSLRs and achieve a small

enough IPD; our design sidesteps this issue.

Our system can be trained end-to-end but it consists of

three conceptual stages: feature extraction, warping and fu-

sion. We use a novel cascaded feature pyramid that en-

ables synergetic learning of image alignment across differ-

ent scales. We show that this architecture has a dramatic

impact on learning alignment over large disparities. Instead

of training the network to predict optical flow and using that

for alignment, we employ the idea of task oriented flow [36]

to optimize directly for our use cases since this has proven

to produce better results.

We demonstrate the performance of our system with an

ablation study and compare it with a state of the art optical

flow network [32]. We also compare our HDR fusion tech-

nique against Kalantari et al. [23], obtaining comparable re-

sults. Finally, we provide a large number of high resolution

examples in the supplementary material.

To summarize, the main contributions of this work are:

1) A novel end-to-end CNN architecture for merging in-

formation from multiple misaligned images. 2) An image

warping module that employs a cascaded feature pyramid

to learn optical flow on multiple resolution levels simultane-

ously. We show that this produces better results than state-

of-the-art optical flow for multi-view fusion. 3) A demon-

stration of the proposed architecture in three different sce-

narios: Color transfer, HDR fusion, and Detail transfer.

2. Related Work

2.1. High­Dynamic Range Imaging

The seminal work of Devebec and Malik [14] presented

a model of a camera’s pixel response that allows fusing mul-

tiple exposures into an HDR image. Although they assumed

a static camera and scene, the technique has recently been

introduced to mobile cameras, where a stack of frames is

fused to generate an HDR-composite [11, 17, 19]. This

works the best if the misalignment between the frames is

moderate, which is not the case in some of our applications

(we show this in the supplementary material).

Kalantari and Ramamoorthi [23] use a neural network

to generate HDR images from exposure stacks of dynamic

scenes and corresponding precomputed flow fields. Wu et

al [35] propose a similar technique that does not require

computing optical flow. Others have focused on burst im-

age fusion by using either recurrent networks [18] or per-

mutation invariant networks [8]. In contrast, our proposed

method jointly estimates a warp and fuses the different im-

ages to generate a high-quality composite.

2.2. Image Colorization

There is a large amount of literature on single image col-

orization [21, 37]. Most of the methods presented attempt to

generate artificial but plausible colors for grayscale images.

Jeon et al. [22] study stereo matching between a color

and a monochrome image in order to compute pixel dispar-

ity. They convert the monochrome image to YUV (lumi-

nance/chroma) format and populate the chroma (U and V)

channels with information from the color input, using the

previously computed disparity.

Wang et al. [33] propose colorizing infrared and ultravio-

let flash images in order to obtain low-noise pictures in low-

light conditions. However, their alignment is based on opti-

cal flow [9], and their neural network also needs to learn to

account for misregistration artifacts, whereas our network

aligns and colorizes at the same time.

2.3. VR Imaging

For virtual reality applications one would ideally cap-

ture a complete light field video of a scene. Multiple cam-

era designs have been proposed towards this end, includ-

ing rings [9] or spheres [26] of outward-facing cameras, or

planar camera arrays [34]. Many of these systems do not

directly produce stereo views that match the human inter-

pupillary distance, but rely on view interpolation to gener-

ate novel views of the scene using computational methods.

Using our proposed method for multi-lens fusion, we en-

vision creating a VR camera where we use detail transfer to

project a high quality DSLR image into the viewpoints of

a VR camera that captures images with the baseline that
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Figure 2: Our architecture takes inspiration from U-Net [30] with an encoder (feature extraction, Section 3.1) on the left and a decoder

(fusion, Section 3.3) on the right. Since U-Net cannot efficiently align images, an additional warping module is inserted in the middle

(Section 3.2). The green blocks An and Fk are kernels whereas the blue blocks represent features. Blocks An for n = 0, 1, 2 are feature

extraction kernels that are sequentially applied to each level of the image pyramid. For each level k, we concatenate the features obtained

by applying A0 on the current level, A1 on the previous level and A2 on the level before the previous one, yielding features sk for the source

image and tk for the target. Thus for all levels except the two finest ones, we have the same amount of feature channels (24 + 25 + 26).

This allows sharing the flow prediction module for these levels. The source features sk are warped to the target tk yielding w(sk). These

aligned features are then concatenated and fused with the information from the coarser pyramid levels to produce the fused output.

matches the human IPD. This is similar in spirit to the work

by Sawhney et al. [31] where a hybrid system with a low-

quality and a high-quality camera is used to record stereo-

scopic footage using conventional algorithms.

2.4. Optical Flow

The performance of optical flow techniques has im-

proved dramatically in recent years according to the Sintel

benchmark [12]. Fischer et al. [15] introduced FlowNet and

used large quantities of synthetic examples as training data.

More recent approaches borrow many concepts from tradi-

tional optical flow techniques, like coarse-to-fine refinement

and residual estimation [27, 32]. Ren et al. [29] extend this

idea to temporal flow, and propose computing the flow for a

frame in a video sequence by using the estimates for previ-

ous frames.

3. PixelFusionNet

We introduce PixelFusionNet, a novel end-to-end multi-

view image fusion network. The network takes as input two

or more images, misaligned in time and/or space, and pro-

duces a fused result that matches the point of view of the

first input. The network consists of three modules: feature

extraction, warping and fusion. These are explained next.

A diagram of the architecture is shown in Figure 2.

3.1. Feature Extraction

Our feature extraction architecture is motivated by the

observation that optical flow over large disparities is dif-

ficult to learn from moderately sized multi-view datasets.

One problem is that large disparities are solved on coarse

pyramid levels where only a small number of pixels are

available for learning. We are interested in processing

multi-megapixel images. We typically use N = 8 or 9 pyra-

mid levels and train with on crops of 1536×1536 pixels.

Thus the coarsest level has only 62 or 122 pixels, which is

a large disadvantage compared to the finest level filters that

are learned from more than 2 million pixels per image.

Intuitively, optical flow prediction should be learnable in

a scale-agnostic manner: a large disparity in a down-scaled

image should look the same as a small disparity at the orig-

inal resolution. In order to exploit this, we design our flow

prediction module (Section 3.2) to share weights among all

except two finest levels of the pyramid, which allows syn-

ergetic learning on multiple pyramid levels.

To share the flow prediction weights on multiple pyramid

levels we use a novel cascaded feature extraction architec-

ture that ensures that the meaning of filters at each shared

level is the same. We start by building an image pyramid

and extract features from it using the cascaded arrangement

shown in Figure 2. Each block An for n = 0, 1, 2 represents

two 3×3 convolutions with 2n+4 filters each (we denote the

finest pyramid level with zero). The blocks are repeated for

all the pyramid levels as shown in the figure. Note that the

extracted features are of same size for every level k ≥ 2.

This is in stark contrast to the traditional encoder architec-

ture [30] and other flow prediction methods where the num-

ber of filters grows with every down-sampling [16, 20, 32].
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Figure 3: The image warping module that is repeatedly applied

starting from the coarsest level k = N towards the finest level k =
0 to estimate optical flow. w refers to the warping operation, f ′

k

is the initial flow estimate (f ′

N = 0), Pk is the learnable residual

flow prediction module, ∆fk is the predicted residual flow and fk
is the refined flow at level k. See Section 3.2 for details.

Our image warping module follows the residual flow pre-

diction idea used in SpyNet [27] and PWC-Net [32], with

the caveat that weights are shared across most of the levels.

For each pyramid level k, an initial flow prediction f ′

k
is

obtained from level k + 1 by bi-linear up-sampling (at the

coarsest level, f ′

N
= 0). Next the image features at level k

are warped using this initial estimate. Then the warped fea-

tures and the target image features are fed into the learned

residual flow prediction network Pk, which only predicts a

small correction ∆fk to improve the initial estimate. The

refined flow fk is then upsampled to obtain f ′

k−1
and the

process repeats until we reach the finest level k = 0. The

only learned component in this module is the residual flow

prediction network Pk.

Our residual flow prediction network Pk is a serial

application of five 2d-convolutions: 3×3×32, 3×3×64,

1×1×64, 1×1×16 and 1×1×2. All except the last layer

use ReLU-activation. This module can be small because it

is only expected to make small residual corrections. If pre-

dictions at level k are accurate, level k + 1 will only ever

need correction vectors within the interval [-1,1] × [-1, 1].

The combined receptive field of the above is 5 × 5 to allow

for slightly larger corrections.

Note that while the structure of the warping module is

similar to SpyNet and PWC-Net, there are two key differ-

ences. 1) Weight sharing: Residual flow prediction modules

Pk, for k ≥ 2 use shared weights and are learned simul-

taneously on all resolution levels. 2) End-to-end training:

Instead of training to minimize the loss against the ground

truth optical flow we train to produce image warps by penal-

izing the difference between the warped image and the tar-

get. Thus the network computes a Task-Oriented Flow [36]

(see Section3.4 for the specific definition of the loss).

3.3. Fusion

Our fusion module follows the decoder side of the U-

Net [30] architecture. The input to the decoder is a fea-

ture pyramid where each level is constructed by concate-

nating the warped source image features with the target im-

age features and applying two 3×3 convolutions with fil-

ter sizes 2k+4 and ReLU activations, where k is the pyra-

mid level. We denote these convolutions as Fk in Figure 2.

Up-sampling from level k + 1 to k is performed by nearest

neighbor sampling followed by 2×2×2k+4 convolution. In

the fusion stage each level F0, F1 ... FN uses independently

learned weights.

At the finest level, F0 is followed by 1×1×3 convolution

with no activation function to produce an RGB-image.

warp warp+fusion ground truth

psnr: 33.90 psnr: 39.80 psnr: ∞

psnr: 32.88 psnr: 40.41 psnr: ∞

Figure 4: The advantage of adding the fusion stage demonstrated

with the color-transfer application. Top: plain warping shows ar-

tifacts due to multi-layered parallax on the mirrors. Middle: full

network produces pleasing results with higher PSNR. Bottom row:

even in easy cases, the fusion stage produces better results than im-

age warping. The PSNRs are computed from 3072x2560 images

instead of the small crops shown. The full images can be found

from the supplementary material.

3.4. Training

We use two losses for training: a reconstruction loss be-

tween the final image and the ground truth and warping

loss between the intermediate warped image and the ground

truth. Both are computed using the perceptual loss [38] with

the pre-trained VGG-19 network. We use the layer weights

given by [13]. We have found that the warping loss is the

key to generating good results, as otherwise the network

might fall into a local minimum where it tries to guess the

output without image warping. This is particularly true for

applications such as HDR fusion, where relatively good re-

sults may be obtained by just denoising the target view.

We also employ a regularization loss on the residual

flows. The loss is equal to the L2 norm of ∆fk for each

pyramid level, with weight λr = 5e−3. This is to encour-

age small residual predictions that are within the receptive

field of the residual flow prediction network, Pk.

For efficiency, we compute the warping loss from the
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(a) target image (b) full sharing (c) partial sharing (d) no sharing (e) PWC-Net (f) source image

Figure 5: Image warping experiment: Our warping module compared to the state of the art optical flow network. The example shown

here demonstrates a challenging case with 350 pixels of disparity. The source image on the right has been warped into the target image on

the left using four different models: 1) our approach with weight sharing across all levels 2) our best approach. 3) our approach using no

weight sharing across levels 4) PWC-Net. All four approaches have been trained with our dataset using VGG-loss and the same settings.

Metric No sharing Partial sharing Full sharing PWC-Net

L1 0.0144 0.0121 0.0129 0.0208
VGG 23.10 18.04 19.40 31.0

Table 1: Image warping experiment: Mean L1 and VGG-losses

over the test set on three different variants of our alignment ar-

chitecture + PWC-Net. Model partial sharing performs the

best on average. On visual inspection, it outperforms the other

models especially on large disparities (see Figure 5).

second finest resolution. We did not find a multi-resolution

loss as in PWC-Net or SpyNet useful in our experiments.

For all our training we use learning rate 1e−4, batch size

1 and the Adam optimizer. All in all, our network has 37

times fewer weights than the one of [32].

3.5. Image Warping Experiments

In this section we focus on the warping component

of our system and optimize only for the warping loss.

To demonstrate the effect of weight sharing, we show

an ablation study using three different variants of our ar-

chitecture: full sharing, partial sharing and

no sharing. full sharing and no sharing rep-

resent different ways of omitting our cascaded architecture.

In full sharing we share weights across all levels,

i.e. we have no independently learned levels at all. This

caps the number of extracted filters to 16 to control memory

consumption at the finest resolution.

In no sharing we do not share any weights and we

use a typical encoder architecture where the number of fil-

ters increases with every down-sampling.

Variant partial sharing refers to our proposed ar-

chitecture that shares weights across all except the two

finest levels.

In addition to the ablation study, we compare against a

publicly available implementation [4] of PWC-Net, a state

of the art optical flow network [32]. To make sure that the

receptive field is big enough for our use case, we increased

the pyramid depth of PWC-Net from 6 to 8, using 264 and

332 filters respectively.

The results are shown in Figure 5 and Table 1. All mod-

els were trained with the same data, the warping loss and

the settings explained in Section 3.4.

4. Applications

4.1. Color transfer

In our first experiment we transfer color from an RGB-

camera to the point of view of a monochrome target. This

task has practical value since monochrome cameras tend to

produce higher-quality images. A monochrome sensor does

not need a color filter mosaic and thus can capture a larger

number of photons. In addition monochrome images are

sharper as there is no need for demosaicing. For these rea-

sons, several cellphone manufacturers have released smart-

phones with additional monochrome cameras [1, 3].

To fuse the images we warp the color image to the

monochrome target. While the fusion could also be done

the other way around, we chose to warp the color image

because this ensures that the high-definition monochrome

pixels are not blurred by re-sampling or other stages.

Our proof-of-concept experiment uses a dataset captured

using a Yi Horizon stereo camera with fisheye lenses. We

chose this camera as it captures synchronized images by de-

fault. The baseline between the two lenses is 6.4 cm, so

warping is harder than in the cell phone use case where the

distance between lenses is usually much smaller.

We converted the left side images to monochrome, and

the network was tasked to predict the color images on that

side. We entertained the idea of predicting just chroma

while keeping luma fixed, but it turned out that the net-

work learned this even when predicting RGB-images. We

captured 397 images with 3200×2656 pixels. 61 were ran-

domly selected into the test set. We did not rectify the im-

ages. We trained using random 1536×1536 crops.

Figure 6 shows results from the test set. We numeri-

cally evaluate against U-Net trained for the same task and

an ablated version of our architecture where we only per-

form warping but no fusion. For numeric results see Ta-

ble 2. PixelFusionNet outperforms the other two techniques

in PSNR, VGG and SSIM metrics. Additionally, in Fig-

ure 6 we show a comparison against a larger network where

PWC-Net warped images are fed into U-Net for fusion.

While U-Net is capable of fixing small scale warping errors,

the results with larger disparities corroborates our findings

that our warping technique is better suited for the image fu-
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(a) color input (b) mono input (c) overlay (d) PWC+U-Net (e) PixelFusionNet (e) full fused image

Figure 6: Color transfer: Color (a) and mono images (b) are captured simultaneously from different viewpoints. The disparity is illustrated

by an overlay image (c). Color is transfered from the color image to the mono image using PWC-Net+U-Net (d) and our PixelFusionNet.

The full fused image is shown in (f). For high resolution examples, see the supplementary material.

sion task (described in Section 3.5).

We also experimented with a real monochrome camera

in a Huawei P20 Pro smart phone. This is shown in Fig-

ure 7. We fed images from the smart phone’s RGB and

mono cameras to our network. The fused color image shows

definition similar to the monochrome input and has fewer

demosaicing artifacts than the input color image.

4.2. HDR fusion

Merging differently exposed low dynamic range images

is a widely used technique for improving the dynamic range

of a photograph. Depending on the local luminance of the

scene, the ideal exposure time varies. If the exposure time

is too short noise will dominate the signal, whereas a long

(a) mono input (b) color input (c) fused result

Figure 7: Color transfer: The Huawei P20 Pro captures (a) a mono

and (b) a color image, with a crop highlighted in the second row.

(c) Our fused color result (c), from the point viewpoint of the mono

camera, is of higher resolution and contains fewer color artifacts.

exposure may saturate the highlights. By combining dif-

ferently exposed images, we can select the most suitable

exposure locally within the image.

As in all our applications, we focus on the case of misal-

gined input images. In Sections 4.2.1 and 4.2.2 we experi-

ment with spatial and temporal misalignement, respectively.

4.2.1 Multi-view HDR fusion

For this experiment we captured training data with a pair of

Canon 5DS DSLR cameras mounted side by side. We used

Tamron 45 mm f/1.8 lenses. An external switch was used to

trigger both cameras at the same time.

We let the cameras run in auto-exposure mode, fixing

aperture and ISO, and letting the cameras choose the expo-

sure times. We selected an exposure bias of -2 EV on the

left and +1 EV on the right side. Most of the time images

were exposed 3 EV apart, but since the cameras did not see

exactly the same scene the difference could be be larger or

smaller. We captured 266 8868×5792 pixel image pairs, in-

cluding indoor, outdoor, urban and rural subjects. We also

included portraits and close objects.

We down-scaled the raw images to half resolution to re-

duce noise and decrease the parallax in pixels. Then we

broke each image to two 2048×2048 pixel crops and added

simulated photon shot noise to approximate the noise levels

found in images shot with a phone camera. Then we de-

mosaiced both the noise-corrupted versions and the original

short-exposure left side image. We ensured that the same

white balancing was used in left and right images.
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(a) short exposure (b) long exposure (c) fused result

Figure 8: Magnified crops of the HDR fusion experiments. Note

the reduced noise in (c). For full images, see the supplementary

material.

With the two noise-corrupted images as inputs our net-

work was tasked to predict a noise-free short exposure im-

age on the left side. Note that single-image denoising and

HDR fusion are very similar problems. HDR fusion just

uses multiple images in hopes of achieving superior results.

We randomly selected 27 images as the test set, and as in

Section 4.1 we trained using random 1536×1536 crops.

In Table 2, we compare our results numerically against

U-Net, a common choice for neural image denoising [24].

We feed both short and long exposure images to U-Net. We

outperform U-Net in the PSNR and VGG metrics, but it

gives a slightly better SSIM score than our technique. For

visual results see Figure 8 and the supplementary material.

4.2.2 Multi-frame HDR fusion

We also evaluated our method against the state of the art

HDR fusion algorithm by Kalantari et al. [23]. Their input

consists of three images with short, medium and long ex-

posures. In their method all images are first brought into

alignment using the flow algorithm by Liu [25], and then

fused together as described in Section 2.

We trained our network using their training set and eval-

uated the results using the five images that they use to

showcase the algorithm in their paper. In this experiment,

we added an additional L2 reconstruction loss term with

λ = 10 to encourage low PSNR (Kalantari et al. optimize

solely for L2-loss).

This training set contains only 74 1500x1000 pixel im-

ages which is hardly enough to train the alignment network.

In contrast to Kalantari et al., who use a fixed optical flow

algorithm, our method requires more varied training data to

learn warping as well as fusion.

We use a data augmentation technique similar to the one

by Kalantari et al. Specifically, we apply random horizontal

and vertical flips and random a number of 90 degree rota-

tions, and we randomly shuffle the color channels. Despite

this, we suspect that training with a larger data set would be

helpful, but this remains as future work. We achieve quality

comparable to their method as shown numerically in Table 2

and visually in the supplementary material.

4.3. Detail transfer

It is common to record stereo imagery using two cameras

mounted side by side. Recently VR180 [2] has become a

popular capture and delivery format for virtual reality.

In VR180 cameras such as Yi Horizon [7], the two lenses

are mounted such that the baseline matches the human in-

terpupillary distance (6-7 cm [5]). This limits the size of

lenses and sensors and consequently the resolution and dy-

namic range of VR180 cameras are not very high.

We evaluated PixelFusionNet on the task of transferring

high-quality pixel data from images captured by a Canon

5DS to the points of view of the two lenses of a Yi Horizon.

To capture training data, we mounted a Yi Horizon be-

low a pair of Canon 5DS cameras. All three cameras were

connected to an external Arduino microcontroller, which

was outfitted with a shutter button. The Arduino was pro-

grammed to compensate for the cameras’ different shutter

delays, so that pressing the button made all three cameras

take a picture at the same time.

Before we could train PixelFusionNet we learned to de-

grade the DSLR-images on the right side to resemble the

Yi Horizon quality. We used U-Net as our degradation net-

work, which was shown samples of DLSR images and was

tasked to convert them to Yi Horizon images warped to the

same viewpoint using optical flow [10].

Once the degradation network was trained, we used it to

degrade all the DSLR-images on the right side. This gave us

a training set for the PixelFusionNet, which was shown the

original left-side DSLR image and the degraded right-side

image, and tasked to predict the original right-side image.

We show results visually in Figure 9 and numerically in

Table 2, where we compare against U-Net and the ablated

version of PixelFusionNet without warping. The full Pix-
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(a) Hi-def input (b) Lo-fi target (c) U-Net (d) Warp only (e) PixelFusionNet (f) Ground truth

Figure 9: Detail transfer experiments. With our technique the high-definition source image (a) is warped to the point of view of the low-

definition target image (b), and the images are fused to create image (e). For comparison we show results produced by U-Net (c) and by

learned image warping without the fusion stage (d). U-Net (c) has difficulties resolving the fine detail in the Roman numerals (top row)

and in the railings (bottom row). Image warping (d) exhibits artifacts in the railing close to the camera. These are small crops from the full

resolution 5289×4356 pixel images available in the supplementary material.

Color transfer Spatial HDR fusion Temporal HDR fusion Detail transfer

Approach PSNR VGG SSIM PSNR VGG SSIM PSNR VGG SSIM PSNR VGG SSIM

Kalantari [23] 42.67 7.45 0.9777
U-net [30] 37.12 14.48 0.9925 43.43 12.89 0.9815 31.96 26.59 0.8893
Warping 32.63 20.81 0.9580 29.86 27.96 0.9056
PixelFusionNet 38.20 12.66 0.9956 44.23 11.71 0.978 42.40 7.82 0.9777 32.75 21.18 0.9246

Table 2: The numeric evaluation of our method on three different applications and four different datasets.

elFusionNet outperforms the other two models in PSNR,

VGG and SSIM metrics.

5. Limitations

Our algorithm may fail to align two images if the dis-

parity is too large. The flow estimation searches correspon-

dences within a local window centered at each pixel. Our

network uses a receptive field of 5 × 5 pixels. Theoreti-

cally, the aggregate search radius over 9 pyramid levels is∑9

k=1
2k = 1022 but we found that disparities that ap-

proach the search radius 29 = 512 of the coarsest level can-

not be recovered. Whether this limitation can be removed

by increasing the pyramid depth remains as future work.

Moreover, disoccluded areas (parts of the target image

not visible on the source image) can cause problems. Our

algorithm has proven effective in inpainting these regions,

but there may be examples that are too hard. Finally, com-

puting correspondences on saturated images is an ill-posed

problem. This is best demonstrated in the HDR fusion fail-

ure case shown in the supplementary material.

6. Conclusion

We focused on the problem of multi-view image fusion,

and introduced PixelFusionNet, a novel end-to-end learn-

able architecture. Our model first extracts features on all

input images, then warps the computed features to the refer-

ence view, and finally fuses the information from all images

to generate a higher quality fused result. We have applied

our approach to three challenging problems: transferring

the color from one image to another taken with a higher

quality monochrome sensor; using two images taken at dif-

ferent exposures to generate a denoised HDR result; and

transferring details from a high-quality image onto a lower

quality stereo pair.

Our approach does not rely on camera calibration (nei-

ther extrinsics nor intrinsics are required) and thus does not

exploit epipolar constraints. However, this is also an ad-

vantage as the network can choose to warp patches from a

larger area if they are usable for the task at hand. In future

work we hope to evaluate our warp prediction network on

established optical flow and stereo benchmarks, especially

for data sets with large disparities.
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