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Figure 1: Lifelong learning of conditional image generation. Traditional training methods suffer from catastrophic forget-

ting: when we add new tasks, the network forgets how to perform previous tasks. Our Lifelong GAN is a generic framework

for conditional image generation that applies to various types of conditional inputs (e.g. labels and images).

Abstract

Lifelong learning is challenging for deep neural net-

works due to their susceptibility to catastrophic forgetting.

Catastrophic forgetting occurs when a trained network is

not able to maintain its ability to accomplish previously

learned tasks when it is trained to perform new tasks. We

study the problem of lifelong learning for generative mod-

els, extending a trained network to new conditional genera-

tion tasks without forgetting previous tasks, while assuming

access to the training data for the current task only. In con-

trast to state-of-the-art memory replay based approaches

which are limited to label-conditioned image generation

tasks, a more generic framework for continual learning of

generative models under different conditional image gener-

ation settings is proposed in this paper. Lifelong GAN em-

ploys knowledge distillation to transfer learned knowledge

from previous networks to the new network. This makes it

possible to perform image-conditioned generation tasks in a

lifelong learning setting. We validate Lifelong GAN for both

image-conditioned and label-conditioned generation tasks,

and provide qualitative and quantitative results to show the

generality and effectiveness of our method.

∗Equal Contribution

1. Introduction

Learning is a lifelong process for humans. We acquire

knowledge throughout our lives so that we become more ef-

ficient and versatile facing new tasks. The accumulation of

knowledge in turn accelerates our acquisition of new skills.

In contrast to human learning, lifelong learning remains an

open challenge for modern deep learning systems. It is

well known that deep neural networks are susceptible to a

phenomenon known as catastrophic forgetting [23]. Catas-

trophic forgetting occurs when a trained neural network is

not able to maintain its ability to accomplish previously

learned tasks when it is adapted to perform new tasks.

Consider the example in Figure 1. A generative model

is first trained on the task edges → shoes. Given a new

task segmentations → facades, a new model is initialized

from the previous one and fine-tuned for the new task. Af-

ter training, the model forgets about the previous task and

cannot generate shoe images given edge images as inputs.

One way to address this would be to combine the training

data for the current task with the training data for all pre-

vious tasks and then train the model using the joint data.

Unfortunately, this approach is not scalable in general: as

new tasks are added, the storage requirements and train-

ing time of the joint data grow without bound. In addition,

the models for previous tasks may be trained using private

or privileged data which is not accessible during the train-

ing of the current task. The challenge in lifelong learning
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is therefore to extend the model to accomplish the current

task, without forgetting how to accomplish previous tasks

in scenarios where we are restricted to the training data for

only the current task. In this work, we work under the as-

sumption that we only have access to a model trained on

previous tasks without access to the previous data.

Recent efforts [30, 4, 9] have demonstrated how discrim-

inative models could be incrementally learnt for a sequence

of tasks. Despite the success of these efforts, lifelong learn-

ing in generative settings remains an open problem. Param-

eter regularization [28, 15] has been adapted from discrim-

inative models to generative models, but poor performance

is observed [34]. The state-of-the-art continual learning

generative frameworks [28, 34] are built on memory replay

which treats generated data from previous tasks as part of

the training examples in the new tasks. Although memory

replay has been shown to alleviate the catastrophic forget-

ting problem by taking advantage of the generative setting,

its applicability is limited to label-conditioned generation

tasks. In particular, replay based methods cannot be ex-

tended to image-conditioned generation. The reason lies in

that no conditional image can be accessed to generate replay

training pairs for previous tasks. Therefore, a more generic

continual learning framework that can enable various con-

ditional generation tasks is valuable.

In this paper, we introduce a generic continual learn-

ing framework Lifelong GAN that can be applied to both

image-conditioned and label-conditioned image genera-

tion. We employ knowledge distillation [11] to address

catastrophic forgetting for conditional generative continual

learning tasks. Given a new task, Lifelong GAN learns to

perform this task, and to keep the memory of previous tasks,

information is extracted from a previously trained network

and distilled to the new network during training by encour-

aging the two networks to produce similar output values

or visual patterns. To the best of our knowledge, we are

the first to utilize the principle of knowledge distillation for

continual learning generative frameworks.

To summarize, our contributions are as follows. First, we

propose a generic framework for continual learning of con-

ditional image generation models. Second, we validate the

effectiveness of our approach for two different types of con-

ditional inputs: (1) image-conditioned generation, and (2)

label-conditioned generation, and provide qualitative and

quantitative results to illustrate the capability of our GAN

framework to learn new generation tasks without the catas-

trophic forgetting of previous tasks. Third, we illustrate the

generality of our framework by performing continual learn-

ing across diverse data domains.

2. Related Work

Conditional GANs. Image generation has achieved great

success since the introduction of GANs [10]. There also

has been rapid progress in the field of conditional image

generation [24]. Conditional image generation tasks can be

typically categorized as image-conditioned image genera-

tion and label-conditioned image generation.

Recent image-conditioned models have shown promis-

ing results for numerous image-to-image translation tasks

such as maps → satellite images, sketches → photos, la-

bels → images [12, 41, 40], future frame prediction [32],

superresolution [17], and inpainting [36]. Moreover, im-

ages can be stylized by disentangling the style and the con-

tent [13, 21] or by encoding styles into a stylebank (set of

convolution filters) [7]. Models [38, 22] for rendering a per-

son’s appearance onto a given pose have shown to be effec-

tive for person re-identification. Label-conditioned mod-

els [8, 18] have also been explored for generating images

for specific categories.

Knowledge Distillation. Proposed by Hinton et al. [11],

knowledge distillation is designed for transferring knowl-

edge from a teacher classifier to a student classifier. The

teacher classifier normally would have more privileged in-

formation [31] compared with the student classifier. The

privileged information includes two aspects. The first as-

pect is referred to as the learning power, namely the size

of the neural networks. A student classifier could have a

more compact network structure compared with the teacher

classifier, and by distilling knowledge from the teacher clas-

sifier to student classifier, the student classifier would have

similar or even better classification performance than the

teacher network. Relevant applications include network

compression [26] and network training acceleration [33].

The second aspect is the learning resources, namely the

amount of input data. The teacher classifier could have

more learning resources and see more data that the student

cannot see. Compared with the first aspect, this aspect is

relatively unexplored and is the focus of our work.

Continual Learning. For discriminative tasks e.g. classifi-

cation, many works have been proposed recently for solv-

ing the problem of catastrophic forgetting in computer vi-

sion [30, 4] and robotics [9]. Shmelkov et al. [30], Castro

et al. [4] and Li et al. [19] employed a distillation loss that

measures the discrepancy between the output of the old and

new network. Serrà et al. [29] proposed a task-based hard

attention mechanism to learn new tasks without forgetting

previous tasks. EWC [15], RWALK [5] and MAS [2] are

regularization-based approaches which regularize the net-

work parameters when learning new tasks. GEM based ap-

proaches [20, 6] store part of the training data from previous

tasks to regularize the gradients when learning new tasks

and aim at better performance in the single pass setting.

For generative tasks, relatively less work studies the

problem of catastrophic forgetting. Continual generative

modeling was first introduced by Seff et al. [28]. Their

approach incorporated the idea of EWC into the loss func-
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tion of GANs. The idea of memory replay, also men-

tioned in [28], is well explored by Wu et al. [34] for label-

conditioned image generation. Approaches based on EWC

have been explored for the task of label-conditioned image

generation [28, 34] to generate more realistic images, but

they present limited capability in both remembering previ-

ous categories and generating high quality images.

In this paper, we introduce knowledge distillation within

continual generative model learning, which has not been ex-

plored before. Our approach can be applied to both image-

conditioned generation, for which the replay mechanism is

not applicable, and label-conditioned image generation.

3. Approach

Our proposed Lifelong GAN addresses catastrophic for-

getting using knowledge distillation and, in contrast to re-

play based methods, can be applied to continually learn both

label-conditioned and image-conditioned generation tasks.

In this paper, we build our model on the state-of-the-art Bi-

cycleGAN [41] model. Our overall approach for continual

learning for a generative model is illustrated in Figure 2.

Given data from the current task, Lifelong GAN learns to

perform this task, and to keep the memory of previous tasks,

knowledge distillation is adopted to distill information from

a previously trained network to the current network by en-

couraging the two networks to produce similar output val-

ues or patterns given the same input. To avoid “conflicts”

that arise when having two desired outputs (current train-

ing goal and outputs from previous model) given the same

input, we generate auxiliary data for distillation from the

current data via two operations Montage and Swap.

3.1. Background: BicycleGAN

We first introduce the state-of-the-art BicycleGAN [41]

on which our model is built. Let the encoder be E, genera-

tor be G and discriminator be D. Denote the training set as

S = {(Ai,Bi)|Ai ∈ A,Bi ∈ B} where A and B stand for

the set of conditional and ground-truth images. For simplic-

ity, we use the notations A,B for an instance from the re-

spective domain. The Bicycle-GAN model consists of two

cycles and resembles two GAN models: cVAE-GAN and

cLR-GAN. Now, we describe the two cycles in detail.

cVAE-GAN. The first model is cVAE-GAN, which first en-

codes ground truth image B to latent code z̃ using the en-

coder E, then reconstructs the ground truth image as B̃

given the conditional image A and encoded latent code z̃.

The loss of cVAE-GAN consists of three terms: Limage
1 =

EA,B∼p(A,B),z̃∼E(B)[||B−G(A, z̃)||1] which encourages

the output of the generator to match the input; LKL =
EB∼p(B)[KL(E(B)||N (0, I))] which encourages the en-

coded latent distribution to be close to a standard Gaus-

sian to enable sampling at inference time; and LcVAE
GAN , the

standard adversarial loss which encourages the generator to

generate images that are not distinguishable from real im-

ages by the discriminator. The objective function of the

cVAE-GAN is:

LcVAE−GAN = min
G,E

max
D

LcVAE
GAN + λLimage

1 + λKLLKL,

(1)

where λ and λKL are loss weights for encoding and image

reconstruction, respectively.

cLR-GAN. The second model is cLR-GAN, which first gen-

erates a image B̃ given the conditional data A and latent

code z, then reconstructs the latent code as z̃ to enforce the

latent code z is used.

The loss of cLR-GAN consists of two terms: Llatent
1 =

EA∼p(A),z∼p(z)[||z − E(G(A, z))||1] which encourages

utilization of the latent code via reconstruction; and LcLR
GAN,

the standard adversarial loss which encourages the genera-

tor to generate images that are not distinguishable from real

images by the discriminator. The objective function of the

cLR-GAN is:

LcLR−GAN = min
G,E

max
D

LcLR
GAN + λlatentL

latent
1 , (2)

where λlatent is the loss weight for recovering the latent

code.

BicycleGAN is proposed to take advantage of both cy-

cles, hence the objective function is:

LBicycleGAN = min
G,E

max
D

LcVAE−GAN + LcLR−GAN.

(3)

3.2. Lifelong GAN with Knowledge Distillation

To perform continual learning of conditional generation

tasks, the proposed Lifelong GAN is built on top of Bicycle

GAN with the adoption of knowledge distillation. We first

introduce the problem formulation, followed by a detailed

description of our model, then discuss our strategy to tackle

the conflicting objectives in training.

Problem Formulation. During training of the tth task,

we are given a dataset of Nt paired instances St =
{(Ai,t,Bi,t)|Ai,t ∈ At,Bi,t ∈ Bt}

Nt

i=1 where At and

Bt denote the domain of conditional images and ground

truth images respectively. For simplicity, we use the no-

tations At,Bt for an instance from the respective domain.

The goal is to train a model Mt which can generate im-

ages of current task B̃t ← (At, z), without forgetting

how to generate images of previous tasks B̃i ← (Ai, z),
i = 1, 2, ..., (t− 1).

Let Mt be the tth model trained, and Mt−1 be the

(t − 1)th model trained. Both Mt−1 and Mt contain two

cycles (cVAE-GAN and cLR-GAN) as described in Sec-

tion 3.1. Inspired by continual learning methods for dis-

criminative models, we prevent the current model Mt from
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Figure 2: Overview of Lifelong GAN. Given training data for the tth task, model Mt is trained to learn this current task.

To avoid forgetting previous tasks, knowledge distillation is adopted to distill information from model Mt−1 to model Mt by

encouraging the two networks to produce similar output values or patterns given the auxiliary data as inputs.

forgetting the knowledge learned by the previous model

Mt−1 by inputting the data of the current task St to both

Mt and Mt−1, and distilling the knowledge from Mt−1 to

Mt by encouraging the outputs of Mt−1 and Mt to be sim-

ilar. We describe the process of knowledge distillation for

both cycles as follows.

cVAE-GAN. Recall from Section 3.1 that cVAE-GAN has

two outputs: the encoded latent code z̃ and the recon-

structed ground truth image B̃. Given ground truth image

Bt, the encoders Et and Et−1 are encouraged to encode it

in the same way and produce the same output; given en-

coded latent code z̃ and conditional image At, the genera-

tors Gt and Gt−1 are encouraged to reconstruct the ground

truth images in the same way. Therefore, we define the loss

for the cVAE-GAN cycle with knowledge distillation as:

Lt
cVAE−DL = Lt

cVAE−GAN

+ βEAt,Bt∼p(At,Bt) [||Et(Bt)− Et−1(Bt)||1

+ ||Gt(At, Et(Bt))−Gt−1(At, Et−1(Bt))||1],

(4)

where β is the loss weight for knowledge distillation.

cLR-GAN. Recall from Section 3.1 that cLR-GAN also has

two outputs: the generated image B̃ and the reconstructed

latent code z̃. Given the latent code z and conditional image

At, the generators Gt and Gt−1 are encouraged to generate

images in the same way; given the generated image B̃t, the

encoders Et and Et−1 are encouraged to encode the gener-

ated images in the same way. Therefore, we define the loss

for the cLR-GAN cycle as:

Lt
cLR−DL = Lt

cLR−GAN

+ βEAt∼p(At),z∼p(z) [||Gt(At, z)−Gt−1(At, z)||1

+ ||Et(Gt(At, z))− Et−1(Gt−1(At, z))||1].

(5)

The distillation losses can be defined in several ways,

e.g. the L2 loss [3, 30], KL divergence [11] or cross-

entropy [11, 4]. In our approach, we use L1 instead of L2

to avoid blurriness in the generated images.

Lifelong GAN is proposed to adopt knowledge distilla-

tion in both cycles, hence the overall loss function is:

Lt
Lifelong−GAN = Lt

cVAE−DL + Lt
cLR−DL. (6)

Conflict Removal with Auxiliary Data. Note that Equa-

tion 4 contains conflicting objectives. The first term en-

courages the model to reconstruct the inputs of the current

task, while the third term encourages the model to gener-

ate the same images as the outputs of the old model. In

addition, the first term encourages the model to encode the

input images to normal distributions, while the second term

encourages the model to encode the input images to a distri-

bution learned from the old model. Similar conflicting ob-

jectives exist in Equation 5. To sum up, the conflicts appear

when the model is required to produce two different out-

puts, namely mimicking the performance of the old model

and accomplishing the new goal, given the same inputs.

To address these conflicting objectives, we propose to

use auxiliary data for distilling knowledge from the old

model Mt−1 to model Mt. The use of auxiliary data for
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distillation removes these conflicts. It is important that

new auxiliary data should be used for each task, otherwise

the network could potentially implicitly encode them when

learning previous tasks. We describe approaches for doing

so without requiring external data sources in Sec. 3.3.

The auxiliary data S
aux
t = {(Aaux

i,t ,Baux
i,t )|Aaux

i,t ∈

A
aux
t ,Baux

i,t ∈ B
aux
t }

Nt

i=1 consist of Naux
t training pairs

where Aaux
t and B

aux
t denote the domain of auxiliary condi-

tional data and ground truth data respectively. For simplic-

ity, we use the notations A
aux
t ,Baux

t for an instance from

the respective domain.

The losses Lt
cVAE−DL and Lt

cLR−DL are re-written as:

Lt
cVAE−DL = Lt

cVAE−GAN

+ βEAaux

t
,Baux

t
∼p(Aaux

t
,Baux

t
) [||Et(B

aux
t )− Et−1(B

aux
t )||1

+ ||Gt(A
aux
t , Et(B

aux
t ))−Gt−1(A

aux
t , Et−1(B

aux
t ))||1],

(7)

Lt
cLR−DL = Lt

cLR−GAN

+ βEAaux

t
∼p(Aaux

t
),z∼p(z) [||Gt(A

aux
t , z)−Gt−1(A

aux
t , z)||1

+ ||Et(Gt(A
aux
t , z))− Et−1(Gt−1(A

aux
t , z))||1],

(8)

where β is the loss weight for knowledge distillation.

Lifelong GAN can be used for continual learning of both

image-conditioned and label-conditioned generation tasks.

The auxiliary images for knowledge distillation for both set-

tings can be generated using the Montage and Swap opera-

tions described in Section 3.3. For label-conditioned gener-

ation, we can simply use the categorical codes from previ-

ous tasks.

3.3. Auxiliary Data Generation

We now discuss the generation of auxiliary data. Recall

from Section 3.2 that we use auxiliary data to address the

conflicting objectives in Equations 4 and 5.

The auxiliary images do not require labels, and can in

principle be sourced from online image repositories. How-

ever, this solution may not be scalable as it requires a new

set of auxiliary images to be collected when learning each

new task. A more desirable alternative may be to gener-

ate auxiliary data by using the current data in a way that

avoids the over-fitting problem. We propose two operations

for generating auxiliary data from the current task data:

1. Montage: Randomly sample small image patches from

current input images and montage them together to

produce auxiliary images for distillation.

2. Swap: Swap the conditional image At and the ground

truth image Bt for distillation. Namely the encoder

receives the conditional image At and encodes it to a

latent code z̃, and the generator is conditioned on the

ground truth image Bt.

Both operations are used in image-conditioned generation;

in label-conditioned generation, since there is no condi-

tional image, only the montage operation is applicable.

Other alternatives may be possible. Essentially, the aux-

iliary data generation needs to provide out-of-task samples

that can be used to preserve the knowledge learned by the

old model. The knowledge is preserved using the distil-

lation losses, which encourage the old and new models to

produce similar responses on the out-of-task samples.

4. Experiments

We evaluate Lifelong GAN for two settings: (1) image-

conditioned image generation, and (2) label-conditioned

image generation. We are the first to explore continual

learning for image-conditioned image generation; no exist-

ing approaches are applicable for comparison. Addition-

ally, we compare our model with the memory replay based

approach which is the state-of-the-art for label-conditioned

image generation.

Training Details. All the sequential digit generation mod-

els are trained on images of size 64×64 and all other models

are trained on images of size 128×128. We use the Tensor-

flow [1] framework with Adam Optimizer [14] and a learn-

ing rate of 0.0001. We set the parameters λlatent = 0.5,

λKL = 0.01, and β = 5.0 for all experiments. The weights

of generator and encoder in cVAE-GAN and cLR-GAN are

shared. Extra training iterations on the generator and en-

coder using only distillation loss are used for models trained

on images of size 128× 128 for better remembering previ-

ous tasks.

Baseline Models. We compare Lifelong GAN to the fol-

lowing baseline models: (a) Memory Replay (MR): Images

generated by a generator trained on previous tasks are com-

bined with the training images for the current task to form

a hybrid training set. (b) Sequential Fine-tuning (SFT): The

model is fine-tuned in a sequential manner, with parameters

initialized from the model trained/fine-tuned on the previ-

ous task. (c) Joint Learning (JL): The model is trained uti-

lizing data from all tasks.

Note that for image-conditioned image generation, we

only compare with joint learning and sequential fine-tuning

methods, as memory replay based approaches are not appli-

cable without any ground-truth conditional input.

Quantitative Metrics. We use different metrics to evalu-

ate different aspects of the generation. In this work, we use

Acc, r-Acc and LPIPS to validate the quality of the gen-

erated data. Acc is the accuracy of the classifier network

trained on real images and evaluated on generated images

(higher indicates better generation quality). r-Acc is the ac-

curacy of the classifier network trained on generated images

and evaluated on real images (higher indicates better gener-

ation quality). LPIPS [39] is used to quantitatively evaluate
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Figure 3: Comparison among different approaches for con-

tinual learning of MNIST digit segmentations. Lifelong

GAN can learn the current task without forgetting the pre-

vious ones.

SFT JL Ours

Acc 58.02 94.25 95.90

MNIST r-Acc 61.56 96.79 96.14

LPIPS - 0.150 0.157

Acc 39.72 99.26 98.93

Image-to-Image r-Acc 49.88 98.98 99.37

LPIPS - 0.442 0.417

Table 1: Quantitative evaluation for image-conditioned gen-

eration. For MNIST digit generation, LPIPS for real images

is 0.154. For image-to-image translation, LPIPS for real im-

ages is 0.472.

the diversity as used in BicycleGAN [41]. Higher LPIPS

indicates higher diversity. Furthermore, LPIPS closer to the

ones of real images indicates more realistic generation.

4.1. Image­conditioned Image Generation

Digit Generation. We divide the digits in MNIST [16]

into 3 groups: {0,1,2}, {3,4,5}, and {6,7,8,9}1. The dig-

its in each group are dyed with a signature color as shown

in Figure 3. Given a dyed image, the task is to generate a

foreground segmentation mask for the digit (i.e. generate a

foreground segmentation given a dyed image as condition).

The three groups give us three tasks for sequential learning.

Generated images from the last task for all approaches

are shown in Figure 3. We can see that sequential fine-

tuning suffers from catastrophic forgetting (it is unable to

segment digits 0-5 from the previous tasks), while our ap-

proach can learn to generate segmentation masks for the

current task without forgetting the previous tasks.

Image-to-image Translation. We also apply Lifelong

GAN to more challenging domains and datasets with large

variation for higher resolution images. The first task is

image-to-image translation of edges → shoes photos [37,

35]. The second task is image-to-image translation of seg-

mentations → facades [27]. The goal of this experiment

1group {a,b,c} contains digits with label a, b and c. This applies to all

experiments on MNIST.

SFT JL MR Ours

Acc 21.59 98.08 97.54 97.52

MNIST r-Acc 21.21 87.72 85.57 87.77

LPIPS - 0.125 0.120 0.119

Acc 20.0 96.4 87.6 98.4

Flower r-Acc 19.6 83.6 60.4 85.6

LPIPS - 0.413 0.319 0.399

Table 2: Quantitative evaluation for label-conditioned im-

age generation tasks. For MNIST digit generation, LPIPS

for real images is 0.155. For flower image generation,

LPIPS for real images is 0.479.

is to learn the task of semantic segmentations → facades

without forgetting the task edges→ shoe photos. We sam-

ple ∼20000 image pairs for the first task and use all images

for the second task.

Generated images for all approaches are shown in Fig-

ure 4. For both Lifelong GAN and sequential fine-tuning,

the model of Task2 is initialized from the same model

trained on Task1. We show the generation results of each

task for Lifelong GAN. For sequential fine-tuning, we show

the generation results of the last task. It is clear that the se-

quentially fine-tuned model completely forgets the previous

task and can only generate incoherent facade-like patterns.

In contrast, Lifelong GAN learns the current generative task

while remembering the previous task. It is also observed

that Lifelong GAN is capable of maintaining the diversity

of generated images of the previous task.

We conduct an ablation study on image-to-image trans-

lation tasks. As per [41], a system which stays faithful to

the input should not exceed the LPIPS of real images. As

shown in Tab. 3, montage and swap improve performance.

Ours
w/o montage

w/o swap w/o swap

Acc 98.93 66.78 97.62
r-Acc 99.37 59.76 86.80
LPIPS 0.417 0.518 0.490

Table 3: Ablation Study. LPIPS for real images is 0.472.

4.2. Label­conditioned Image Generation

Digit Generation. We divide the MNIST [16] digits into

4 groups, {0,1,2}, {3,4}, {5,6,7} and {8,9}, resulting in

four tasks for sequential learning. Each task is to generate

binary MNIST digits given labels (one-hot encoded labels)

as conditional inputs.

Visual results for all methods are shown in Figure 5,

where we also include outputs of the generator after each

task for our approach and memory replay. Sequential fine-

tuning results in catastrophic forgetting, as shown by this

baseline’s inability to generate digits from any previous

tasks; when given a previous label, it will either generate

something similar to the current task or simply unrecog-
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Figure 4: Comparison among different approaches for continual learning of image to image translation tasks. Given the same

model trained for the task edges→ shoes, we train Lifelong GAN and sequential fine-tuning model on the task segmentations

→ facades. Sequential fine-tuning suffers from severe catastrophic forgetting. In contrast, Lifelong GAN can learn the current

task while remembering the old task.

Figure 5: Comparison among different approaches for continual learning of MNIST digit generation conditioned on label.

We demonstrate some intermediate results during different tasks of continual learning for our distillation based approach and

memory replay. Sequential fine-tuning suffers from severe forgetting issues while other methods give visually similar results

compared to the joint learning results.

nizable patterns. Meanwhile, both our approach and mem-

ory replay are visually similar to joint training results, in-

dicating that both are able to address the forgetting issue in

this task. Quantitatively, our method achieves comparable

classification accuracy to memory replay, and outperforms

memory replay in terms of reverse classification accuracy.

Flower Generation. We also demonstrate Lifelong GAN

on a more challenging dataset, which contains higher

resolution images from five categories of the Flower

dataset [25]. The experiment consists of a sequence of five

tasks in the order of sunflower, daisy, iris, daffodil, pansy.

Each task involves learning a new category.

Generated images for all approaches are shown in Fig-

ure 6. We show the generation results of each task for both

Lifelong GAN and memory replay to better analyze these

two methods. For sequential fine-tuning, we show the gen-

eration results of the last task which is enough to show that

the model suffers from catastrophic forgetting.

Figure 6 gives useful insights into the comparison be-

tween Lifelong GAN and memory replay. Both methods

can learn to generate images for new tasks while remember-

ing previous ones. However, memory replay is more sen-

sitive to generation artifacts appearing in the intermediate

tasks of sequential learning. While training Task3 (category

iris), both Lifelong GAN and memory replay show some

artifacts in the generated images. For memory replay, the

artifacts are reinforced during the training of later tasks and

gradually spread over all categories. In contrast, Lifelong

GAN is more robust to the artifacts and later tasks are much

less sensitive to intermediate tasks. Lifelong GAN treats
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Figure 6: Comparison among different approaches for continual learning of flower image generation tasks. Given the same

model trained for category sunflower, we train Lifelong GAN, memory replay and sequential fine-tuning for other tasks.

Sequential fine-tuning suffers from severe catastrophic forgetting, while both Lifelong GAN and memory replay can learn to

perform the current task while remembering the old tasks. Lifelong GAN is more robust to artifacts in the generated images

of the middle tasks, while memory replay is much more sensitive and all later tasks are severely impacted by these artifacts.

previous tasks and current tasks separately, trying to learn

the distribution of new tasks while mimicking the distribu-

tion of the old tasks.
Table 2 shows the quantitative results. Lifelong GAN

outperforms memory replay by 10% in terms of classifica-

tion accuracy and 25% in terms of reverse classification ac-

curacy. We also observed visually and quantitatively that

memory replay tends to lose diversity during the sequential

learning, and generates images with little diversity for the

final task.

Moreover, to evaluate the quality of generated images,

we conduct a user study with 20 participants. Each par-

ticipant is given 60 image pairs (ours, baseline). For each

pair, a participant is asked to pick the visually better image.

Table 4 shows the percentage of pairs where ours are pre-

ferred. The user study indicates that our approach outper-

forms memory replay (MR) though is not on par with joint

learning (JL). Note that we generate images from all cate-

gories to conduct the user study, thus it is not fair to include

the sequential fine-tuning in the comparison as it forgets all

previous tasks and generates images only for the last task.

flower (vs. MR) flower (vs. JL) img-to-img (vs. JL)

91.4% 28.2% 27.5%

Table 4: User Study.

5. Conclusion

We study the problem of lifelong learning for generative

networks and propose a distillation based continual learn-

ing framework enabling a single network to be extended to

new tasks without forgetting previous tasks with only su-

pervision for the current task. Unlike previous methods

that adopt memory replay to generate images from pre-

vious tasks as training data, we employ knowledge dis-

tillation to transfer learned knowledge from previous net-

works to the new network. Our generic framework en-

ables a broader range of generation tasks including image-

to-image translation, which is not possible using memory

replay based methods. We validate Lifelong GAN for both

image-conditioned and label-conditioned generation tasks,

and both qualitative and quantitative results illustrate the

generality and effectiveness of our method.
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