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Abstract

This paper introduces a regularization method to ex-
plicitly control the rank of a learned symmetric positive
semidefinite distance matrix in distance metric learning. To
this end, we propose to incorporate in the objective function
a linear regularization term that minimizes the k smallest
eigenvalues of the distance matrix. It is equivalent to min-
imizing the trace of the product of the distance matrix with
a matrix in the convex hull of rank-k projection matrices,
called a Fantope. Based on this new regularization method,
we derive an optimization scheme to efficiently learn the
distance matrix. We demonstrate the effectiveness of the
method on synthetic and challenging real datasets of face
verification and image classification with relative attributes,
on which our method outperforms state-of-the-art metric
learning algorithms.

1. Introduction
Distance metric learning is useful for many Computer

Vision tasks, such as image classification [14, 17, 26], re-
trieval [3, 8] or face verification [10, 18]. It emerges as a
promising learning paradigm, in particular because of its
ability to learn with attributes [20], further offering the ap-
pealing possibility to perform zero-shot learning, or to gen-
eralize to new classes at near zero cost [17].

Metric learning algorithms produce a linear transforma-
tion of data which is optimized to fit semantical relation-
ships between training samples. Different aspects of the
learning procedure have recently been investigated: how
the dataset is annotated and used in the learning process,
e.g. using pairs [18], triplets [21] or quadruplets [13] of
samples; design choices for the distance parameterization;
extensions to large scale context [17], etc. Surprisingly, few
attempts have been made for deriving a proper regulariza-
tion scheme, especially in the Computer Vision literature.
Regularization in metric learning is however a critical is-
sue, as it often limits model complexity, the number of in-
dependent parameters to learn, and thus overfitting. Mod-
els learned with regularization usually better exploit corre-
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Figure 1. Top 5 similarity search for two queries from the Public
Figure Face and Outdoor Scene Recognition datasets. We show
for each query the 5 most similar images using our metric learning
approach (first row), and the well-known metric learning approach
LMNN (second row). On these examples, our scheme performs
better and succeeds to return semantically relevant images. This
shows the importance of the proposed regularization scheme to
learn a meaningful distance matrix and limit overfitting.

lations between features and often have improved predictive
accuracy [14].

In this paper, we propose a novel regularization approach
for metric learning that explicitly controls the rank of the
learned distance matrix. Figure 1 illustrates the relevance
of our approach. We present retrieval results after metric
learning with the proposed method, and provide an illus-
trative comparison with LMNN [26], which is one of the
most popular non-regularized metric learning algorithms.
The regularization scheme introduced in this paper signif-
icantly improves the performance of the semantical visual
search.

The remainder of the paper is organized as follows. Sec-
tion 2 positions the paper with respect to related works.
Our regularization framework is introduced in Section 3
and the resulting optimization scheme in Section 4. Sec-
tion 5 presents toy experiments to grasp the meaning of the
proposed regularization. Section 6 demonstrates the effec-
tiveness of our metric learning scheme in two challenging
computer vision applications. Finally, Section 7 concludes
the paper and gives directions for future work.

1



Notations: let Sd and Sd+ denote the sets of d×d real-valued
symmetric and symmetric positive semidefinite (PSD) ma-
trices, respectively. For matrices A ∈ Sd and B ∈ Sd,
denote the Frobenius inner product by 〈A,B〉 = tr(A>B)
where tr denotes the trace of a matrix. ΠSd+(A) is the
orthogonal projection of the matrix A ∈ Sd onto the
positive semidefinite cone Sd+. For a given vector a =
(a1, . . . , ad)

> ∈ Rd, Diag(a) = A ∈ Sd corresponds to
a square diagonal matrix such that ∀i, Ai,i = ai. λ(A)
is the vector of eigenvalues of matrix A arranged in non-
increasing order. λ(A)i is the i-th largest eigenvalue of A.
xi ∈ Rd (resp. xj ∈ Rd) is the vector representation of im-
age pi (resp. pj) and we note xij = (xi − xj). Finally, for
x ∈ R, let [x]+ = max(0, x).

2. Related work
Image representation for classification has been deeply

investigated in recent years [4, 19]. The traditional Bag-of-
Words representation [24] has been extended for the cod-
ing step [9, 28] as well as for the pooling [1], or with bio-
inspired models [22, 25]. Nonetheless, similarity metrics
are also crucial to compare, classify and retrieve images.

We focus in this work on supervised distance metric
learning methods. Some of them consider sets of simi-
lar and dissimilar pairs of images for training [6, 18, 27].
They learn a distance metric that preserves distance rela-
tions among the training data. Other methods consider
triplets [3, 8, 21, 26] of images, which are easy to gen-
erate in classification. For instance, LMNN [26] learns a
distance metric for k-Nearest Neighbors (k-NN) approach
using those triplet-wise training sets.

In this paper, we consider the widely used Mahalanobis
distance metricDM that is parameterized by the PSD matrix
M ∈ Sd+ such that D2

M(pi, pj) = (xi − xj)>M(xi − xj) =
(xij)>Mxij . It can also be rewritten:

D2
M(pi, pj) = 〈M, xijx>ij〉 (1)

In Computer Vision, many approaches do not learn the
Mahalanobis distance matrix M explicitly, but prefer work-
ing on a specific matrix decomposition: i.e. M = L>L
where L ∈ Re×d and d is the data dimension. An objective
function to minimize over L is defined using a loss function
expressed over the different constraints of the training set
[17, 18]. Although the resulting optimization is very fast,
it is not convex w.r.t. L, leading to many local minima with
different objective values that depend on the initialization
of L. In addition, an explicit regularization term is rarely
introduced in the learning scheme. For instance, that lack
of regularization makes LMNN prone to overfitting [3]. To
limit this shortcoming, many approaches [17, 18, 26] per-
form early stopping which stops an iterative optimization
process before convergence. However, this method needs
to be carefully tuned for each dataset.

Different types of regularization in the objective func-
tion defined over M ∈ Sd+ have been proposed in the ma-
chine learning literature. Schultz and Joachims [21] use the
squared Frobenius norm ‖M‖2F , following the SVM frame-
work to learn a diagonal PSD distance matrix. However,
the diagonal form of their model does not benefit from cor-
relations between data. The ITML method (Information-
Theoretic Metric Learning [6]) uses a LogDet regularizer
that constrains the distance matrix to be strictly positive def-
inite, which in practice often results in high-rank solutions
that are subject to overfitting. Another powerful way to reg-
ularize, is to control the rank of M. Imposing a low-rank
solution limits the number of free parameters in the metric,
and hence prevents overfitting. To that end, some methods
[14, 16, 23] add the trace tr(M) as a regularization term,
because it is a convex surrogate for rank(M). However, it
does not allow an explicit control over the rank of M: the
trace of the distance matrix reaches its minimum possible
value iff the distance matrix is a zero matrix. In practice,
this trivial solution is never obtained because of the associ-
ated constraints.

In this paper, we investigate a new optimization scheme
with a regularization term that explicitly controls the rank
of M. Such a scheme allows to avoid overfitting without
any trick such as early stopping. The main contributions of
this paper are: 1) We introduce a new regularization strat-
egy based on the convex hull of rank-k projection matri-
ces, called Fantope, which allows to explicitly control the
rank of distance matrices. 2) We propose an efficient algo-
rithm to solve the new optimization scheme. 3) Our frame-
work outperforms state-of-the-art metric learning methods
on synthetic and challenging real Computer Vision datasets.

3. Metric learning Fantope regularization

Objective function: a metric learning algorithm aims at de-
termining M such that the metric satisfies most of the con-
straints defined by the training information. It is generally
formulated as an optimization problem of the form:

min
M

µR(M) + `(M,A) (2)

where `(M,A) is a loss function that penalizes constraints
that are not satisfied, R(M) is a regularization term on the
parameter M of the metric, and µ ≥ 0 is the regulariza-
tion parameter. `(M,A) measures the ability of the matrix
M to satisfy some distance constraints given in the training
set. The type of constraints depends on the way relation-
ships between training samples are provided, e.g. relations
between pairs, triplets, quadruplets [13] etc. The details on
the design of the setA and the loss `(M,A) are specified in
Section 4.1. In this paper, we focus on defining an effective
regularization term R(M).



3.1. Motivation for the proposed regularization

As mentioned in Section 2, controlling the rank of the
PSD distance matrix M is a powerful way to limit overfit-
ting and to better exploit correlations between features. A
standard way to promote low-rank solutions is to use the
nuclear norm ‖M‖∗ as a regularization term. In the case of
PSD matrices, the nuclear norm corresponds to the trace:
∀M ∈ Sd+, ‖M‖∗ = tr(M). However, trace(-norm) regular-
ization is somewhat limited as it seeks a rank-0 matrix (i.e.
M = 0). Alternatively, we propose a regularization term
that reaches its minimum when the rank of the learned PSD
matrix is smaller or equal to a fixed target rank. We then
formulate the regularization term R(M) as the sum of the k
smallest eigenvalues of M ∈ Sd+:

R(M) =

d∑
i=d−k+1

λ(M)i (3)

Such a minimization of R(M) will naturally converge to
a subspace corresponding to the (d − k) most significant
eigenvalues. As the rank of the PSD matrix M ∈ Sd+ is the
number of its non-zero eigenvalues and all the eigenvalues
of M ∈ Sd+ are non-negative, the proposed regularization
term R(M) allows an explicit control over the rank of M:

R(M) equals 0 iff rank(M) ≤ d− k (4)

We explain in the following how to express R(M) in a con-
venient way.

3.2. Explicit rank control regularization

Using Ky Fan’s theorem [7], we can rewrite the sum of
the k smallest eigenvalues of any symmetric matrix M as the
trace tr(WM) where W is in the convex hull of the set com-
prising outer product of orthonormal matrices (rank-k pro-
jection matrices). This convex hull is called a Fantope [5].
Our regularization term (Eq. (3)) may be expressed as:

R(M) = tr(WM) = 〈M,W〉 (5)

where the matrix W ∈ Sd+ (in a Fantope) allows to project
the matrix M onto the target k-dimensional subspace.

A simple way to construct such a matrix W ∈ Sd+
is to use the eigendecomposition of M ∈ Sd+: M =

VMDiag(λ(M))V>M where VM is an orthogonal matrix. As
λ(M) is arranged in non-increasing order, a simple thresh-
old allows to project data onto the subspace generated by
the k eigenvectors corresponding to the k smallest eigen-
values. Let us construct w = (w1, . . . , wd)

> ∈ Rd such
that:

wi =

{
0 if 1 ≤ i ≤ d− k (the first d− k elements)
1 if d− k + 1 ≤ i ≤ d (the last k elements)

(6)

We then express W as:

W = VMDiag(w)V>M (7)

From Eq. (7), it is simple to verify that the definition of
R(M) in Eq. (5) matches with the one in Eq. (3):

R(M) = tr(WM) = tr(VMDiag(w)V>MVMDiag(λ(M))V>M)

= tr(Diag(w)Diag(λ(M))) = w>λ(M) =

d∑
i=d−k+1

λ(M)i

As the last k elements of λ(M) (the k smallest eigenval-
ues of M) equal 0 iff rank(M) ≤ d− k, one can deduce the
expected property given in Eq. (4) that R(M) = 0 iff the
rank of M is smaller or equal to d− k.

Fantope regularization is a generalization of trace reg-
ularization. Indeed, for every matrix M ∈ Sd+, tr(M) =
tr(IdM). Trace regularization is equivalent to a Fantope
regularization where tr(WM) is the sum of the d smallest
eigenvalues of M (W = VMDiag(1)V>M = Id).

It is also worth noting that W could be fixed in the con-
vex hull of rank-k projection matrices without exploiting
the eigendecomposition of M (as constructed in Eq. (7)). In
this case, a (strictly) positive value of R(M) = tr(WM) is
not necessarily the sum of the k smallest eigenvalues of M.
However, if tr(WM) equals 0, then R(M) includes the sum
of the k smallest eigenvalues of M and the rank of M is then
smaller or equal to d− k [5].

4. Metric learning optimization algorithm
4.1. Optimization problem

Constraints: we focus on quadruplet-wise constraints [13]
that encompass pairwise and triplet-wise constraints. They
involve distance comparisons of the form D(pk, pl) >
D(pi, pj) for any quadruplet of images q = (pi, pj , pk, pl).
Our goal is to learn a metric DM parameterized by M that
satisfies the following constraint for all q in a training setA:

∀q ∈ A, D2
M(pk, pl) ≥ δq +D2

M(pi, pj) (8)

where δq is a safety margin specific to each quadruplet q.
The triplet constraint D2

M(pi, pk) ≥ 1 +D2
M(pi, pj) can be

trivially obtained from Eq. (8) with q = (pi, pj , pi, pk) and
δq = 1. The formulation in Eq. (8) is also able to express
relationships between a set of similar pairs S or dissimilar
pairs D, as used for example in [6, 18]. The dissimilar pair
(pi, pj) ∈ D can be integrated with q = (pi, pi, pi, pj) and
δq = l leading to the constraint D2

M(pi, pj) ≥ l where l is
the minimum value to consider images pi and pj as dissim-
ilar. In the same way, the similar pair (pi, pj) ∈ S can be
integrated with q = (pi, pj , pi, pi), δq = −u, leading to the
constraint u ≥ D2

M(pi, pj) where u is a given upper bound
that enforces the distance between two similar images pi



and pj to be smaller than the given threshold u. We specify
in the experiments (Section 6) how l and u are defined.

Using Eq. (1), our quadruplet-wise constraints in Eq. (8)
using q = (pi, pj , pk, pl) ∈ A can be rewritten:

∀q ∈ A, 〈M, xklx>kl − xijx>ij〉 ≥ δq (9)

Optimization: in order to learn a metric DM that obeys the
constraints in Eq. (9), we define a global loss `(M,A) =∑
q∈A `M(q) that accumulates losses over all the quadru-

plets in the training set A. We design the loss for a single
quadruplet: `M(q) = max

(
0, δq + 〈M, xijx>ij − xklx>kl〉

)
.

By including our regularization term and `(M,A), our op-
timization problem becomes:

min
M∈Sd+

fW(M) = µR(M) + `(M,A) (10)

where

fW(M) =µ〈M,W〉

+
∑
q∈A

[
δq + 〈M, xijx>ij − xklx>kl〉

]
+

(11)

where µ ≥ 0 is a regularization parameter and 〈M,W〉 is
the sum of the k smallest eigenvalues of M.

4.2. Solving the optimization problem

Although the function defined in Eq. (11) is not globally
convex due to the constraint 〈M,W〉 =

∑d
i=d−k+1 λ(M)i,

it is convex w.r.t. M when W is fixed. We then first propose
to perform a subgradient descent over M. We alternate the
update of M and W by fixing one of these matrices and up-
dating the other. M is updated by performing a subgradient
descent: the subgradient of Eq. (11) w.r.t. M is:

5M = µW +
∑
q∈A+

(
xijx>ij − xklx>kl

)
(12)

whereA+ is the subset of constraints inA that are not satis-
fied (Eq. (9)). The obtained value after subgradient descent
over M is projected onto the cone of PSD matrices at each
iteration. W is updated by construction as explained in Sec-
tion 3.2 so that 〈M,W〉 is the sum of the k smallest eigen-
values of M. That process stops when the objective value
(Eq. (10)) stops decreasing. The global learning scheme is
described in Algorithm 1.

4.3. Efficiency discussion

An alternative method to solve the problem in Eq. (11)
is to switch the update between M and W after a full sub-
gradient descent over M (i.e. fix W and optimize over M
until convergence, then construct W (Eq. (7)), and iterate).
Note that this option is computationally demanding since
the outer loop that alternates between M and W has to be

Algorithm 1 Metric Learning with Fantope Regularization
input : Training constraintsA, hyper-parameter µ and step

size η > 0.
output : M ∈ Sd+

Initialize M ∈ Sd+,W← VMDiag(w)V>M (Eq. (7))
repeat

Compute5M (Eq. (12))
M← ΠSd+(M− η5M)

W← VMDiag(w)V>M (Eq. (7))
until stopping criterion (e.g. convergence)

performed several times until convergence, requiring sev-
eral full subgradient optimizations for which the projection
onto the cone of PSD matrices is performed at each itera-
tion. In addition, we experimentally noticed that this opti-
mization strategy did not improve accuracy.

When the input space dimension d is large, the eigen-
decomposition required at each iteration of the subgradient
descent (Algorithm 1) also becomes computationally ex-
pensive. As in [14], we propose an adaptation of the Al-
ternating Direction Method of Multipliers (ADMM) [2] to
learn a metric. We then adapt Eq. (10) in this way:

min
M∈Sd,Z∈Sd

fW(M) + g(Z) s.t. M = Z (13)

where

g(Z) =

{
0 if Z ∈ Sd+

+∞ if Z /∈ Sd+
(14)

and fW(M) is given in Eq. (11). Introducing a Lagrange
multiplier Λ ∈ Sd, we obtain the augmented Lagrangian:

Lρ(M,Z,Λ) = fW(M)+g(Z)+〈Λ,M−Z〉+ ρ

2
‖M−Z‖2F

(15)
where ρ > 0 is a scaling parameter. The ADMM algorithm
written in scaled form follows the successive updates de-
scribed in Algorithm 2, where U = 1

ρΛ. Algorithm 2 finds
the optimal M before updating W, as previously proposed.
However, the approximation and speed up in Algorithm 2
comes from the constraint M ∈ Sd+ which has been replaced
by the constraint M ∈ Sd, whereas g(Z) promotes a PSD
solution matrix.

5. Synthetic example
We propose to start exploring the behavior of our Fan-

tope regularization method using a synthetic dataset with a
target metric DT parameterized by a known low-rank dis-
tance matrix T ∈ Sd+. For this purpose, we create a random
symmetric positive definite matrix A ∈ Se+ with rank(A) =
e and e < d, and define the target PSD distance matrix

T ∈ Sd+: T =

(
A 0
0 0

)
with rank(T) = rank(A) = e.



Algorithm 2 Metric Learning with Fantope Regularization
(ADMM version)
input : Constraints A and hyper-parameters µ, ρ

Initialize t = 1, Mt = Zt ∈ Sd+, Ut ← 0, Wt ←
VMtDiag(w)V>Mt (Eq. (7))
repeat

Mt+1 ← argminM∈SdfWt(M)+ ρ
2‖M−(Zt−Ut)‖2F

Zt+1 ← ΠSd+(Mt+1 + Ut)
Ut+1 ← Ut + Mt+1 − Zt+1

Wt+1 ← VMt+1Diag(w)V>Mt+1 (Eq. (7))
t← t+ 1

until stopping criterion
return ΠSd+(Mt)

We generate a set X of feature vectors xi ∈ Rd from a
uniform distribution in [0, 1[ for each component. The dis-
tance between two feature vectors xi and xj is given by:
D2

T(xi, xj) = (xi − xj)T(xi − xj). In order to build a
training set A, we randomly sample pairs of distances us-
ing quadruplets in X 4 and get the ground-truth using D2

T,
so that: ∀(xi, xj , xk, xl) ∈ A, D2

T(xk, xl) > D2
T(xi, xj).

The set A is used to learn our matrix M by solving Eq. (10)
where δq = 1 and W ∈ Sd+ such that rank(W) = (d− e) as
defined in Eq. (7).

A test set T and a validation set V are generated in the
same way as A. To illustrate the relevance of the proposed
method, we focus on having a small e and large d: we set
e = 10, d = 50, |A| = 104, |V| = |T | = 106 and |X | =
8000. In this setting, 80% of the features are noisy.
Evaluation Metrics: we compute the number of satisfied
constraints on the test set T , the accuracy being measured
as the percentage of satisfied constraints on T . We also
compare the similarity between the learned PSD matrix
M ∈ Sd+ and the target matrix T ∈ Sd+. The similarity
between M and T is measured as the distance ‖M−T‖2F =∑
ij(Mi,j−Ti,j)2. M and T are rescaled so that their largest

element is 1.
Results: to evaluate the impact of Fantope regularization,
we compare the following metric learning schemes:
–No regularization: setting µ = 0 in Eq. (11), and applying
a subgradient descent over M ∈ Sd+1.
–Subgradient Descent over L: setting µ = 0 in Eq. (11),
Eq. (10) is solved using a subgradient descent over L ∈
Re×d where M = L>L2.
–Trace(-norm) Regularization: setting µ > 0 and W = Id.
–Fantope Regularization: setting µ > 0.
–Fantope and Trace Regularization: replacing the regular-

1This scheme usually leads to high-rank solutions prone to overfitting.
2This method is often used in the Computer Vision literature [17, 18].

Although the problem is not convex w.r.t. L, this method controls the rank
of M and avoids overfitting as rank(M) = rank(L) ≤ e with e < d.

Regularization Acc. rank(M) ‖M− T‖2F
No Regularization 89.3% 31 1.07
SD over L 92.7% 10 0.44
Trace 95.1% 4 0.38
Fantope 97.5% 10 0.04
Fantope and Trace 98.0% 10 0.03

Table 1. Toy experiment results. Fantope regularization allows to
approximate the target matrix T better than other methods.

ization term µtr(WM) by R(M) = γtr(M) + µtr(WM).

For each method, the hyper-parameters γ > 0 and µ > 0
are determined based on the validation set V .

Table 1 reports the accuracies and distances between T
and the learned matrices M. Methods without explicit reg-
ularization (µ = 0 in Eq. (11)) obtain the worst results
(89.3% and 92.7% accuracy). Trace regularization ignores
most of the noisy features but learns a matrix whose rank is
a lot smaller than the target rank e = 10. That leads to an
accuracy of 95.1% and illustrates the fact that trace regular-
ization cannot fine-control the rank of the solution matrix,
although it promotes low-rank solutions. Finally, Fantope
regularization outperforms the other methods by reaching
97.5% accuracy (and 98% when combined with trace regu-
larization). In addition, the rank of the learned matrix cor-
responds exactly to the target rank.

We also ran the Fantope regularization with ADMM (Al-
gorithm 2) and got 96.6% accuracy. It performs slightly
worse than Algorithm 1 because there is no projection onto
the cone of PSD matrices at each iteration. Nonetheless, it
performs better than the methods that do not use Fantope
regularization. We will use only the Algorithm 1 in the fol-
lowing experiments.

6. Experiments

We evaluate the proposed metric learning regularization
method in two different Computer Vision applications. The
first experiment is a face verification task, for which the
similarity constraints come from relations between pairs of
face images that are either similar or dissimilar. In the sec-
ond experiment, we evaluate recognition performance on
image classification with relative attributes [20]. In this con-
text, we work with features defined in attribute space.

6.1. Face verification: LFW

In the face verification task, we are provided with pairs of
face images. The goal is to learn a classifier that determines
whether image pairs are similar (represent the same person)
or dissimilar (represent two different persons).



6.1.1 Experiment setup

Dataset and evaluation metric: we use the publicly avail-
able Labeled Faces in the Wild (LFW) dataset [11]. It con-
tains more than 13,000 images of faces collected from the
Web and can be considered as the current state-of-the-art
face recognition benchmark. We focus in this paper on the
“restricted” paradigm where we are only provided with two
sets of pairs of images: set S of similar pairs (same person)
and set D of dissimilar images (different person). We fol-
low the standard evaluation protocol that uses View 2 data
for training and testing (10 predefined folds of 600 image
pairs each), and View 1 for validation.

To generate our constraints, we use S and D and we set
the upper bound u = 0.5 and the lower bound l = 1.5 fol-
lowing the scheme explained in Section 4.1 . The distance
of a test pair is compared to the threshold l+u

2 = 1 to deter-
mine whether the pair is similar or dissimilar.
Image representation: we use the same input features and
setup as popular metric learning methods [6, 10, 18] that
were already tested on this dataset. We strictly follow the
setup described in [18]. We use the SIFT descriptors [15]
computed by [10] available on their website. Each face
image is represented by 27 SIFT descriptors. Those 27
descriptors are concatenated in a single histogram, and a
element-wise square-root is performed on this histogram to
return face image representations xi.
Initialization of the distance matrix M ∈ Sd+: let e be
the target rank of the learned matrix M ∈ Sd+. To initialize
the PSD matrix M, we first compute the matrix L ∈ Re×d
that is composed of the coefficients for the e most domi-
nant principal components of the training data. M is then
constructed by computing M = L>L.

6.1.2 Results

We now provide a quantitative evaluation of our method in
the described setup. The target rank e of our regularization
term is fixed to e = 40, as in [18].
Impact of regularization: we compare here the impact of
Fantope regularization over trace regularization. Table 2
shows classification accuracies when solving Eq. (10) with
both regularization methods. Fantope regularization out-
performs trace regularization by a large margin (82.3% vs.
77.6%). This illustrates the importance of having an ex-
plicit control on the rank of the distance matrix. In the
following, we combine trace and Fantope regularization by
replacing the regularization term R(M) = µtr(WM) by
R(M) = γtr(M) + µtr(WM), with γ � µ.
State-of-the-art results: we now compare Fantope Regu-
larization to other popular metric learning algorithms. Ta-
ble 3 shows performances of ITML [6], LDML [10] and
PCCA [18] reported in [10] and [18] in the linear metric
learning setup. These methods are the most popular metric

Regularization Method Accuracy (in %)
Trace-norm Regularization 77.6 ± 0.7
Fantope Regularization 82.3 ± 0.5

Table 2. Accuracies (mean and standard error) obtained on LFW
in the “restricted” setup with our learning framework in different
regularization settings.

learning methods when the task is to decide whether a pair is
similar or dissimilar. Fantope regularization, which reaches
82.3 ± 0.5% accuracy, outperforms ITML and LDML and
is comparable to PCCA on LFW in this setup. We explain
in the following how our method can reach 83.5± 0.5 %.

Method Accuracy (in %)
ITML [10] 76.2 ± 0.5
LDML [10] 77.5 ± 0.5
PCCA [18] 82.2 ± 0.4
Proposed Method 83.5 ± 0.5

Table 3. Results (mean and standard error) on LFW in the “re-
stricted” setup of state-of-the-art linear metric learning algorithms
and of our method with early stopping.

Number of iterations 10 100 1000 104

Accuracy (in %) 79.2 79.3 75.8 63.2
± 0.5 ± 0.5 ± 0.5 ± 0.5

Table 4. Accuracy of Mignon’s code [18] on LFW as a function
of the number of iterations of gradient descent. The performance
of PCCA [18] greatly depends upon the early stopping criterion.

Impact of early stopping: it is worth mentioning that ac-
curacy of 82.2% obtained with PCCA [18] is obtained by
performing early stopping. Table 4 reports the accuracies
we obtained on LFW by testing the code of PCCA [18]
provided by its authors, as a function of the number of
iterations of gradient descent. 82.2% is the accuracy ob-
tained with 30 iterations. We can notice that the PCCA
performance decreases for larger numbers of iterations (e.g.
75.8% and 63.2% with 1000 and 10000 iterations, respec-
tively). As in [18], we integrated this early stopping cri-
terion in our method and determined the maximum num-
ber of iterations of subgradient descent from the validation
set View 1. We reach an accuracy of 83.5 ± 0.5%. To the
best of our knowledge, this is the best result obtained for
linear metric learning methods in the same setup (same in-
put features). As a conclusion, our regularization scheme
makes our method much more robust than PCCA [18] to
early stopping.
Impact of the hyper-parameter µ: Fig. 2 illustrates the
impact of the Fantope regularization on the rank of the so-
lution matrix M ∈ Sd+ and on the accuracy on LFW as we
modify the value of µ (Eq. (11)) when we perform early



stopping. We observe that µ has a real impact on the rank of
the solution matrix: the rank of M decreases as µ increases
and reaches the expected rank e = 40 for high values of µ.
On the other hand, the accuracy of the method first increases
and eventually decreases as µ increases. Nonetheless, the
recognition performed with high values of µ (82.3%) is still
better than without regularization (81.2% with µ = 0).
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Figure 2. (left) rank and (right) accuracy of the learned metric on
LFW in the “restricted” setup as a function of the hyper-parameter
µwith early stopping. The expected rank is e = 40. The proposed
regularization controls rank(M) while improving accuracy when
compared to the absence of regularization (µ = 0).

6.2. Metric learning in attribute space

In this subsection, we focus the image classification
task where the goal is to assign an image to a predefined
class. Particularly, we focus on the case where classes are
described with attributes. Attributes are human-nameable
(high-level) concepts used to describe images. For instance,
in the context of scene recognition, they can describe the
degree of presence of openness or perspective in images.
In the image classification task with attributes, we are pro-
vided images described with attributes. Each image pi is
described by a vector xi ∈ Rd where d is the number of
attributes. The j-th element of xi represents the score (de-
gree) of presence of the j-th attribute in xi.

6.2.1 Experiment setup

To evaluate and compare our Fantope regularization ap-
proach, we follow a classification framework inspired
from [20] for scene and face recognition on the OSR [19]
and PubFig [12] datasets.
Datasets: we experiment with the two datasets used in [20]:
Outdoor Scene Recognition (OSR) [19] containing 2688
images from 8 scene categories and a subset of Public Fig-
ure Face (PubFig) [12] containing 771 images from 8 face
categories. We use the image features made publicly avail-
able by [20]: a 512-dimensional GIST [19] descriptor for
OSR and a concatenation of the GIST descriptor and a 45-
dimensional Lab color histogram for PubFig. We also use
relative ordering of classes according to some semantic at-
tributes (e.g. images in face class (a) have a stronger pres-
ence of attribute “smiling” than images in class (b)).

Classification model OSR PubFig
Gaussian Distribution [20] 69.7 ± 1.5 70.6 ± 1.8
LMNN 71.7 ± 1.7 74.3 ± 1.9
LMNN + Trace 72.4 ± 2.0 75.0 ± 1.6
LMNN + Fantope (ours) 73.7 ± 1.8 77.5 ± 1.6

Table 5. Test accuracies (mean and standard deviation in %) ob-
tained on OSR and Pubfig. Fantope regularization improves recog-
nition in the classification task.

Baselines: we use two baselines: (1) The relative attribute
learning problem described in [20] that uses relative at-
tribute annotations on classes to compute high-level repre-
sentations of images xi ∈ Rd, a Gaussian distribution is
learned for each class. (2) the Large Margin Nearest Neigh-
bor (LMNN) [26] that is a popular metric learning method
used for image classification. For each image, LMNN tries
to satisfy the condition that members of a predefined set of
target neighbors (of the same class) are closer than samples
from other classes. High-level representations xi ∈ Rd are
used as input features of the LMNN classifier. We use the
publicly available codes of [20] and [26].
Integration of regularization: we modify the code of [26]
to integrate trace and Fantope regularization, the stopping
criterion is the convergence of the algorithm (i.e. the objec-
tive function stops decreasing).
Learning setup: we use the same experimental setup
as [20]. N = 30 training images are used per class to learn
the representations xi and classifiers, the rest is for testing.
The performance is measured as the average classification
accuracy across all classes over 30 random train/test splits.

6.2.2 Results

Table 5 reports accuracies of baselines and our proposed
regularization method on both OSR and PubFig datasets.

Fantope regularization applied to LMNN significantly
improves recognition over baselines, particularly on Pub-
Fig. It outperforms the classic LMNN algorithm (without
regularization) with a margin of 2 and 3% on OSR and
PubFig, respectively. Trace-norm regularization also out-
performs the absence of regularization. These results vali-
date the importance of a proper regularization for predictive
accuracy. Fantope regularization finds a low e-dimensional
subspace where distances can be computed with e < d (e.g.
e = 8 with d = 11 on PubFig) and allows to exploit cor-
relations between features better than methods that learn a
high-rank distance matrix. In this case, each feature corre-
sponds to the score of presence of an attribute in images.
Notably, by considering the learned matrix M ∈ Sd+ as a
covariance matrix, the most correlated attributes w.r.t. the
Pearson product-moment correlation coefficient are “smil-
ing”, “chubby” and “male-looking” on the PubFig dataset.



Query Top 5 results

Figure 3. Some results of similarity search on the PubFig and
OSR datasets. We show for each query the 5 nearest neighbors
returned by our method (first row) and by LMNN (second row).
Results in green correspond to images in the same class as the
query whereas results in red are images from different classes.

This result is expected as the women of the PubFig dataset
(Scarlett Johansson and Miley Cyrus) are annotated in [20]
as more chubby and smiling more than most men of the
dataset. On the OSR dataset, the attributes “close depth”,
“open” and “perspective”, which are all related to the no-
tion of depth, are also strongly correlated.

Fig. 1 and 3 illustrate on some examples how our scheme
is effective to learn semantics. Particularly on PubFig, the
learned metric gives priority to semantical similarity rather
than visual similarity: the images retrieved by the classic
LMNN are more visually similar than the images returned
by our Fantope regularization. However, they are more of-
ten in different categories than the category of the query.

7. Conclusion
We proposed a new regularization scheme for metric

learning that explicitly controls the rank of the learned dis-
tance matrix. Our method generalizes the trace regulariza-
tion, and can be applied to various optimization frameworks
to impose a meaningful structure on the learned PSD ma-
trix. We also derived an efficient metric learning algorithm
that combines the regularization term with a loss function
that can incorporate constraints between pairs or triplets
of images. We also demonstrate that regularization greatly
improves recognition on both controlled and real datasets,
showing the relevance of this new regularization to limit

overfitting. Future work includes the learning of a better de-
signed ADMM formulation scheme that takes into account
the fact that the objective function is not convex.

References
[1] S. Avila, N. Thome, M. Cord, E. Valle, and A. de A. Arajo. Pooling in image

representation: The visual codeword point of view. Computer Vision and Image
Understanding (CVIU), 117(5):453 – 465, 2013. 2

[2] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers.
Foundations and Trends in Machine Learning, 3(1):1–122, 2011. 4

[3] G. Chechik, V. Sharma, U. Shalit, and S. Bengio. Large scale online learning
of image similarity through ranking. JMLR, 11:1109–1135, 2010. 1, 2

[4] M. Cord and P. Cunningham. Machine learning techniques for multimedia.
Springer, 2008. 2

[5] J. Dattorro. Convex optimization and Euclidean distance geometry. Meboo
Publishing USA, 2005. 3

[6] J. V. Davis, B. Kulis, P. Jain, S. Sra, and I. S. Dhillon. Information-theoretic
metric learning. In ICML, 2007. 2, 3, 6

[7] K. Fan. On a theorem of weyl concerning eigenvalues of linear transformations
i. Proceedings of the National Academy of Sciences of the United States of
America, 35(11):652, 1949. 3

[8] A. Frome, Y. Singer, F. Sha, and J. Malik. Learning globally-consistent local
distance functions for shape-based image retrieval and classification. In ICCV,
2007. 1, 2

[9] H. Goh, N. Thome, M. Cord, and J. Lim. Unsupervised and supervised visual
codes with restricted boltzmann machines. In ECCV, 2012. 2

[10] M. Guillaumin, J. Verbeek, and C. Schmid. Is that you? metric learning ap-
proaches for face identification. In ICCV, 2009. 1, 6

[11] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller. Labeled faces in the
wild: A database for studying face recognition in unconstrained environments.
Technical Report 07-49, University of Massachusetts, Amherst, 2007. 6

[12] N. Kumar, A. Berg, P. Belhumeur, and S. Nayar. Attribute and simile classifiers
for face verification. In ICCV, 2009. 7

[13] M. T. Law, N. Thome, and M. Cord. Quadruplet-wise image similarity learning.
In ICCV, 2013. 1, 2, 3

[14] D. Lim, B. McFee, and G. Lanckriet. Robust structural metric learning. In
ICML, 2013. 1, 2, 4

[15] D. Lowe. Distinctive image features from scale-invariant keypoints. IJCV,
60(2):91–110, 2004. 6

[16] B. McFee and G. Lanckriet. Metric learning to rank. In ICML, 2010. 2
[17] T. Mensink, J. Verbeek, F. Perronnin, and G. Csurka. Distance-based image

classification: Generalizing to new classes at near-zero cost. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 35(11):2624–2637, 2013. 1, 2,
5

[18] A. Mignon and F. Jurie. Pcca: A new approach for distance learning from
sparse pairwise constraints. In CVPR, 2012. 1, 2, 3, 5, 6

[19] A. Oliva and A. Torralba. Modeling the shape of the scene: A holistic repre-
sentation of the spatial envelope. IJCV, 42(3):145–175, 2001. 2, 7

[20] D. Parikh and K. Grauman. Relative attributes. In ICCV, 2011. 1, 5, 7, 8
[21] M. Schultz and T. Joachims. Learning a distance metric from relative compar-

isons. In NIPS, 2003. 1, 2
[22] T. Serre, L. Wolf, S. Bileschi, M. Riesenhuber, and T. Poggio. Robust object

recognition with cortex-like mechanisms. IEEE Transactions on Pattern Anal-
ysis and Machine Intelligence, 29(3):411–426, 2007. 2

[23] C. Shen, J. Kim, L. Wang, and A. van den Hengel. Positive semidefinite metric
learning with boosting. In NIPS, 2009. 2

[24] J. Sivic and A. Zisserman. Video google: A text retrieval approach to object
matching in videos. In ICCV, 2003. 2

[25] C. Theriault, N. Thome, and M. Cord. Extended coding and pooling in the
hmax model. IEEE Transactions on Image Processing, 22(2):764–777, 2013.
2

[26] K. Weinberger and L. Saul. Distance metric learning for large margin nearest
neighbor classification. JMLR, 10:207–244, 2009. 1, 2, 7

[27] E. Xing, A. Ng, M. Jordan, and S. Russell. Distance metric learning, with
application to clustering with side-information. In NIPS, 2002. 2

[28] J. Yang, K. Yu, Y. Gong, and T. Huang. Linear spatial pyramid matching using
sparse coding for image classification. In CVPR, 2009. 2


