
Full-Resolution Residual Networks for Semantic Segmentation in Street Scenes

Tobias Pohlen Alexander Hermans Markus Mathias Bastian Leibe

Visual Computing Institute

RWTH Aachen University, Germany

tobias.pohlen@rwth-aachen.de {hermans, mathias, leibe}@vision.rwth-aachen.de

Abstract

Semantic image segmentation is an essential compo-

nent of modern autonomous driving systems, as an accu-

rate understanding of the surrounding scene is crucial to

navigation and action planning. Current state-of-the-art

approaches in semantic image segmentation rely on pre-

trained networks that were initially developed for classify-

ing images as a whole. While these networks exhibit out-

standing recognition performance (i.e., what is visible?),

they lack localization accuracy (i.e., where precisely is

something located?). Therefore, additional processing steps

have to be performed in order to obtain pixel-accurate seg-

mentation masks at the full image resolution. To allevi-

ate this problem we propose a novel ResNet-like architec-

ture that exhibits strong localization and recognition per-

formance. We combine multi-scale context with pixel-level

accuracy by using two processing streams within our net-

work: One stream carries information at the full image res-

olution, enabling precise adherence to segment boundaries.

The other stream undergoes a sequence of pooling oper-

ations to obtain robust features for recognition. The two

streams are coupled at the full image resolution using resid-

uals. Without additional processing steps and without pre-

training, our approach achieves an intersection-over-union

score of 71.8% on the Cityscapes dataset.

1. Introduction

Recent years have seen an increasing interest in self driv-

ing cars and in driver assistance systems. A crucial aspect

of autonomous driving is to acquire a comprehensive under-

standing of the surroundings in which a car is moving. Se-

mantic image segmentation [49, 38, 21, 53, 33], the task of

assigning a set of predefined class labels to image pixels, is

an important tool for modeling the complex relationships of

the semantic entities usually found in street scenes, such as

cars, pedestrians, road, or sidewalks. In automotive scenar-

ios it is used in various ways, e.g. as a pre-processing step to

discard image regions that are unlikely to contain objects of

RU

+

:

FRRU

+

:

FRRU

+

:

FRRU

+

:

RU

+

:

:

Pooling

Unpooling

Residual stream

Pooling stream

Figure 1. Example output and the abstract structure of our full-

resolution residual network. The network has two processing

streams. The residual stream (blue) stays at the full image reso-

lution, the pooling stream (red) undergoes a sequence of pooling

and unpooling operations. The two processing streams are coupled

using full-resolution residual units (FRRUs).

interest [42, 15], to improve object detection [4, 23, 24, 58],

or in combination with 3D scene geometry [32, 17, 35].

Many of those applications require precise region bound-

aries [20]. In this work, we therefore pursue the goal of

achieving high-quality semantic segmentation with precise

boundary adherence.

Current state-of-the-art approaches for image segmenta-

tion all employ some form of fully convolutional network

(FCN) [38] that takes the image as input and outputs a prob-

ability map for each class. Many papers rely on network

architectures that have already been proven successful for

image classification such as variants of the ResNet [25] or

the VGG architecture [50]. Starting from pre-trained nets,

where a large number of weights for the target task can

be pre-set by an auxiliary classification task, reduces train-

ing time and often yields superior performance compared to

training a network from scratch using the (possibly limited

amount of) data of the target application. However, a main

limitation of using such pre-trained networks is that they

14151



severely restrict the design space of novel approaches, since

new network elements such as batch normalization [27] or

new activation functions often cannot be added into an ex-

isting architecture.

When performing semantic segmentation using FCNs, a

common strategy is to successively reduce the spatial size

of the feature maps using pooling operations or strided con-

volutions. This is done for two reasons: First, it signifi-

cantly increases the size of the receptive field and second, it

makes the network robust against small translations in the

image. While pooling operations are highly desirable for

recognizing objects in images, they significantly deteriorate

localization performance of the networks when applied to

semantic image segmentation. Several approaches exist to

overcome this problem and obtain pixel-accurate segmenta-

tions. Noh et al. [41] learn a mirrored VGG network as a

decoder, Yu and Koltun [55] introduce dilated convolutions

to reduce the pooling factor of their pre-trained network.

Ghiasi et al. [20] use multi-scale predictions to successively

improve their boundary adherence. An alternative approach

used by several methods is to apply post-processing steps

such as CRF-smoothing [30].

In this paper, we propose a novel network architecture

that achieves state-of-the-art segmentation performance

without the need for additional post-processing steps and

without the limitations imposed by pre-trained architec-

tures. Our proposed ResNet-like architecture unites strong

recognition performance with precise localization capabil-

ities by combining two distinct processing streams. One

stream undergoes a sequence of pooling operations and is

responsible for understanding large-scale relationships of

image elements; the other stream carries feature maps at

the full image resolution, resulting in precise boundary ad-

herence. This idea is visualized in Figure 1, where the two

processing streams are shown in blue and red. The blue

residual stream reflects the high-resolution stream. It can

be combined with classical residual units (left and right), as

well as with our new full-resolution residual units (FRRU).

The FRRUs from the red pooling lane act as residual units

for the blue stream, but also undergo pooling operations and

carry high-level information through the network. This re-

sults in a network that successively combines and computes

features at two resolutions.

This paper makes the following contributions: (i) We

propose a novel network architecture geared towards pre-

cise semantic segmentation in street scenes which is not

limited to pre-trained architectures and achieves state-of-

the-art results. (ii) We propose to use two processing

streams to realize strong recognition and strong localization

performance: One stream undergoes a sequence of pooling

operations while the other stream stays at the full image res-

olution. (iii) In order to foster further research in this area,

we published our code and the trained models on GitHub.

2. Related Work

The dramatic performance improvements from using

CNNs for semantic segmentation have brought about an in-

creasing demand for such algorithms in the context of au-

tonomous driving scenarios. As a large amount of anno-

tated data is crucial in order to train such deep networks,

multiple new datasets have been released to encourage fur-

ther research in this area, including Synthia [45], Virtual

KITTI [18], and Cityscapes [11]. In this work, we fo-

cus on Cityscapes, a recent large-scale dataset consisting

of real-world imagery with well-curated annotations. Given

their success, we will constrain our literature review to deep

learning based semantic segmentation approaches and deep

learning network architectures.

Semantic Segmentation Approaches. Over the last years,

the most successful semantic segmentation approaches have

been based on convolutional neural networks (CNNs).

Early approaches constrained their output to a bottom-up

segmentation followed by a CNN based region classifica-

tion [54]. Rather than classifying entire regions in the first

place, the approach by Farabet et al. performs pixel-wise

classification using CNN features originating from multiple

scales, followed by aggregation of these noisy pixel predic-

tions over superpixel regions [16].

The introduction of so-called fully convolutional net-

works (FCNs) for semantic image segmentation by Long

et al. [38] opened a wide range of semantic segmentation

research using end-to-end training [13]. Long et al. fur-

ther reformulated the popular VGG architecture [50] as a

fully convolutional network (FCN), enabling the use of pre-

trained models for this architecture. To improve segmen-

tation performance at object boundaries, skip connections

were added which allow information to propagate directly

from early, high-resolution layers to deeper layers.

Pooling layers in FCNs fulfill a crucial role in order to

increase the receptive field size of later units and with it the

classification performance. However, they have the down-

side that the resulting network outputs are at a lower reso-

lution. To overcome this, various strategies have been pro-

posed. Some approaches extract features from intermedi-

ate layers via some sort of skip connections [38, 8, 36, 7].

Noh et al. propose an encoder/decoder network [41]. The

encoder computes low-dimensional feature representations

via a sequence of pooling and convolution operations. The

decoder, which is stacked on top of the encoder, then learns

an upscaling of these low-dimensional features via subse-

quent unpooling and deconvolution operations [56]. Simi-

larly, Badrinarayanan et al. [2, 3] use convolutions instead

of deconvolutions in the decoder network. In contrast, our

approach preserves high-resolution information throughout

the entire network by keeping a separate high-resolution

processing stream.

4152



Many approaches apply smoothing operations to the out-

put of a CNN in order to obtain more consistent predic-

tions. Most commonly, conditional random fields (CRFs)

[30] are applied on the network output [9, 8, 12, 34, 6].

More recently, some papers approximate the mean-field in-

ference of CRFs using specialized network architectures

[57, 48, 37]. Other approaches to smoothing the net-

work predictions include domain transform [8, 19] and

superpixel-based smoothing [16, 39]. Our approach is able

to swiftly combine high- and low-resolution information,

resulting in already smooth output predictions. Experiments

with additional CRF smoothing therefore did not result in

significant performance improvements.

Network architectures. Since the success of the AlexNet

architecture [31] in the ImageNet Large-Scale Visual Clas-

sification Challenge (ILSVRC) [47], the vision community

has seen several milestones with respect to CNN architec-

tures. The network depth has been constantly increased,

first with the popular VGG net [50], then by using batch nor-

malization with GoogleNet [51]. Lately, many computer vi-

sion applications have adopted the ResNet architecture [25],

which often leads to signification performance boosts com-

pared to earlier network architectures. All of these develop-

ments show how important a proper architecture is. How-

ever, so far most of these networks have been specifically

tailored towards the task of classification, in many cases in-

cluding a pre-training step on ILSVRC. As a result, some

of their design choices may contribute to a suboptimal per-

formance when performing pixel-to-pixel tasks such as se-

mantic segmentation. In contrast, our proposed architecture

has been specifically designed for segmentation tasks and

reaches competitive performance on the Cityscapes dataset

without requiring ILSVRC pre-training.

3. Network Architectures for Segmentation

Feed-Forward Networks. Until recently, the majority of

feedforward networks, such as the VGG-variants [50], were

composed of a linear sequence of layers. Each layer in such

a network computes a function F and the output xn of the

n-th layer is computed as

xn = F(xn−1;Wn) (1)

where Wn are the parameters of the layer (see 2a). We refer

to this class of network architectures as traditional feedfor-

ward networks.

Residual Networks (ResNets). He et al. observed that

deepening traditional feedforward networks often results in

an increased training loss [25]. In theory, however, the train-

ing loss of a shallow network should be an upper bound

on the training loss of a corresponding deep network. This

is due to the fact that increasing the depth by adding lay-

ers strictly increases the expressive power of the model.

A deep network can express all functions that the original

shallow network can express by using identity mappings for

the added layers. Hence a deep network should perform at

least as well as the shallower model on the training data.

The violation of this principle implied that current training

algorithms have difficulties optimizing very deep traditional

feedforward networks. He et al. proposed residual networks

(ResNets) that exhibit significantly improved training char-

acteristics, allowing network depths that were previously

unattainable.

A ResNet is composed of a sequence of residual units

(RUs). As depicted in Figure 2b, the output xn of the n-th

RU in a ResNet is computed as

xn = xn−1 + F(xn−1;Wn) (2)

where F(xn−1 ;Wn) is the residual, which is parameter-

ized by Wn. Thus, instead of computing the output xn di-

rectly, F only computes a residual that is added to the input

xn−1. One commonly refers to this design as skip connec-

tion, because there is a connection from the input xn−1 to

the output xn that skips the actual computation F .

It has been empirically observed that ResNets have su-

perior training properties over traditional feedforward net-

works. This can be explained by an improved gradient flow

within the network. In order to understand this, consider

the n-th and m-th residual units in a ResNet where m > n

(i.e., the m-th unit is closer to the output layer of the net-

work). By applying the recursion (2) several times, He et

al. showed in [26] that the output of the m-th residual unit

admits a representation of the form

xm = xn +
m−1
∑

i=n

F(xi;Wi+1). (3)

Furthermore, if l is the loss that is used to train the network,

we can use the chain rule of calculus and express the deriva-

tive of the loss l with respect to the output xn of the n-th RU

as

∂l

∂xn

=
∂l

∂xm

∂xm

∂xn

=
∂l

∂xm

+
∂l

∂xm

m−1
∑

i=n

∂F(xi;Wi+1)

∂xn

.
(4)

Thus, we find

∂l

∂Wn

=
∂l

∂xn

∂xn

∂Wn

=
∂xn

∂Wn

(

∂l

∂xm

+
∂l

∂xm

m−1
∑

i=n

∂F(xi;Wi+1)

∂xn

)

.

(5)

We see that the weight updates depend on two sources of

information, ∂l
∂xm

and ∂l
∂xm

∑m−1
i=n

∂F(xi;Wi+1)
∂xn

. While the

amount of information that is contained in the latter may de-

pend crucially on the depth n, the former allows a gradient

4153



flow that is independent of the depth. Hence, gradients can

flow unhindered from the deeper unit to the shallower unit.

This makes training even extremely deep ResNets possible.

Full-Resolution Residual Networks (FRRNs). In this pa-

per, we unify the two above-mentioned principles of net-

work design and propose full-resolution residual networks

(FRRNs) that exhibit the same superior training properties

as ResNets but have two processing streams. The features

on one stream, the residual stream, are computed by adding

successive residuals, while the features on the other stream,

the pooling stream, are the direct result of a sequence of

convolution and pooling operations applied to the input.

Our design is motivated by the need to have networks

that can jointly compute good high-level features for recog-

nition and good low-level features for localization. Regard-

less of the specific network design, obtaining good high-

level features requires a sequence of pooling operations.

The pooling operations reduce the size of the feature maps

and increase the network’s receptive field, as well as its ro-

bustness against small translations in the image. While this

is crucial to obtaining robust high-level features, networks

that employ a deep pooling hierarchy have difficulties track-

ing low-level features, such as edges and boundaries, in

deeper layers. This makes them good at recognizing the

elements in a scene but bad at localizing them to pixel ac-

curacy. On the other hand, a network that does not em-

ploy any pooling operations behaves the opposite way. It

is good at localizing object boundaries, but performs poorly

at recognizing the actual objects. By using the two pro-

cessing streams together, we are able to compute both kinds

of features simultaneously. While the residual stream of

an FRRN computes successive residuals at the full image

resolution, allowing low level features to propagate effort-

lessly through the network, the pooling stream undergoes a

sequence of pooling and unpooling operations resulting in

good high-level features. Figure 1 visualizes the concept of

having two distinct processing streams.

An FRRN is composed of a sequence of full-resolution

residual units (FRRUs). Each FRRU has two inputs and

two outputs, because it simultaneously operates on both

streams. Figure 2c shows the structure of an FRRU. Let

zn−1 be the residual input to the n-th FRRU and let yn−1

be its pooling input. Then the outputs are computed as

zn = zn−1 +H(yn−1, zn−1;Wn) (6)

yn = G(yn−1, zn−1;Wn), (7)

where Wn are the parameters of the functions G and H,

respectively.

If G ≡ 0, then an FRRU corresponds to an RU since it

disregards the pooling input yn, and the network effectively

becomes an ordinary ResNet. On the other hand, if H ≡ 0,

then the output of an FRRU only depends on its input via

(a) Layer in a traditional feedforward network

xn−1 F(xn−1;Wn) xn

(b) Residual Unit

xn−1 F(xn−1;Wn) + xn

(c) Full-Resolution Residual Unit (FRRU)

H(yn−1, zn−1;Wn)
G(yn−1, zn−1;Wn)

zn−1

yn−1

+ zn

yn

Figure 2. The figure compares the structures of different network

design elements. (a) shows a layer in a traditional feedforward net-

work; (b) shows a residual unit; (c) shows a full-resolution residual

unit.

the function G. Hence, no residuals are computed and we

obtain a traditional feedforward network. By carefully con-

structing G and H, we can combine the two network princi-

ples.

In order to show that FRRNs have similar training char-

acteristics as ResNets, we adapt the analysis presented in

[26] to our case. Using the same recursive argument as be-

fore, we find that for m > n, zm has the representation

zm = zn +

m−1
∑

i=n

H(yi, zi;Wi+1). (8)

We can then express the derivative of the loss l with respect

to the weights Wn as

∂l

∂Wn

=
∂l

∂zn

∂zn

∂Wn

+
∂l

∂yn

∂yn

∂Wn

=
∂zn

∂Wn

(

∂l

∂zm
+

∂l

∂zm

m−1
∑

i=n

∂H(yi, zi;Wi+1)

∂zn

)

+
∂l

∂yn

∂yn

∂Wn

. (9)

Hence, the weight updates depend on three sources of in-

formation. Analogous to the analysis of ResNets, the two

sources ∂l
∂yn

∂yn

∂Wn

and ∂l
∂zm

∑m−1
i=n

∂H(yi,zi;Wi+1)
∂zn

depend

crucially on the depth n, while the term ∂l
∂zm

is indepen-

dent of the depth. Thus, we achieve a depth-independent

gradient flow for all parameters that are used by the resid-

ual function H. If we use some of these weights in order to

compute the output of G, all weights of the unit benefit from

the improved gradient flow. This is most easily achieved by

reusing the output of G in order to compute H. However,

we note that other designs are possible.

Figure 3 shows our proposed FRRU design. The unit first

concatenates the two incoming streams by using a pooling

layer in order to reduce the size of the residual stream. Then

the concatenated features are fed through two convolution

4154



zn−1

yn−1

:

conv3×3 + BN + ReLU conv3×3 + BN + ReLU

conv1×1 + bias

:

+

yn

zn

G H

Figure 3. The figure shows our design of a full-resolution residual

unit (FRRU). The inner red box marks the parts of the unit that are

computed by the function G while the outer blue box indicates the

parts that are computed by the function H.

units. Each convolution unit consists of a 3 × 3 convolu-

tion layer followed by a batch normalization layer [27] and

a ReLU activation function. The result of the second con-

volution unit is used in two ways. First, it forms the pooling

stream input of the next FRRU in the network and second it

is the basis for the computed residual. To this end, we first

adjust the number of feature channels using a 1 × 1 con-

volution and then upscale the spatial dimensions using an

unpooling layer. Because the features might have to be up-

scaled significantly (e.g., by a factor of 16), we found that

simply upscaling by repeating the entries along the spatial

dimensions performed superior to bilinear interpolation.

In Figure 3, the inner red box corresponds to the function

G while the outer blue box corresponds to the function H.

We can see that the output of G is used in order to compute

H, because the red box is entirely contained within the blue

box. As shown above, this design choice results in superior

gradient flow properties for all weights of the unit.

Table 1 shows the two network architectures that we

used in order to assess our approach’s segmentation per-

formance. The proposed architectures are based on several

principles employed by other authors. We follow Noh et

al. [41] and use an encoder/decoder formulation. In the en-

coder, we reduce the size of the pooling stream using max

pooling operations. The pooled feature maps are then suc-

cessively upscaled using bilinear interpolation in the de-

coder. Furthermore, similar to Simonyan and Zisserman

[50], we define a number of base channels that we double

after each pooling operation (up to a certain upper limit).

Instead of choosing 64 base channels as in VGG net, we

use 48 channels in order to have a manageable number of

trainable parameters. Depending on the input image resolu-

tion, we use FRRN A or FRRN B to keep the relative size

of the receptive fields consistent.

4. Training Procedure

Following Wu et al., we train our network by minimizing

a bootstrapped cross-entropy loss [52]. Let c be the number

of classes, y1, ..., yN ∈ {1, ..., c} be the target class labels

for the pixels 1, ..., N , and let pi,j be the posterior class

probability for class j and pixel i. Then, the bootstrapped

FRRN A

conv5×5

48
+ BN + ReLU

3× RU48

pooling

stream

residual

stream

max pool conv1×1

32

3× FRRU96

max pool

4× FRRU192

max pool

2× FRRU384

max pool

2× FRRU384

unpool

2× FRRU192

unpool

2× FRRU192

unpool

2× FRRU96

unpool

pooling

stream

residual

stream

concatenate

3× RU48

conv1×1
c + Bias

Softmax

17.7M parameters

FRRN B

conv5×5

48
+ BN + ReLU

3× RU48

pooling

stream

residual

stream

max pool conv1×1

32

3× FRRU96

max pool

4× FRRU192

max pool

2× FRRU384

max pool

2× FRRU384

max pool

2× FRRU384

unpool

2× FRRU192

unpool

2× FRRU192

unpool

2× FRRU192

unpool

2× FRRU96

unpool

pooling

stream

residual

stream

concatenate

3× RU48

conv1×1
c + Bias

Softmax

24.8M parameters

Table 1. The table shows our two network designs. By convk×k

m

we denote a convolution layer having m kernels each of size k ×
k. The notations RUm and FRRUm refer to residual units and

full-resolution residual units whose convolutions have m channels,

respectively. The parameter c indicates the number of classes to

predict.

cross-entropy loss over K pixels is defined as

l = −
1

K

N
∑

i=1

1[pi,yi
< tK ] log pi,yi

, (10)

where 1[x] = 1 iff x is true and tk ∈ R is chosen such that

|{i ∈ {1, ..., N} : pi,yi
< tk}| = K. The threshold param-

eter tk can easily be determined by sorting the predicted log

probabilities and choosing the K + 1-th one as threshold.

Figure 4 visualizes the concept. Depending on the number

of pixels K that we consider, we select misclassified pix-

els or pixels where we predict the correct label with a small

probability. We minimize the loss using ADAM [28].

Because each FRRU processes features at the full im-

age resolution, training a full-resolution residual network is

very memory intensive. Recall that in order for the back-

propagation algorithm [46] to work, the entire forward pass

has to be stored in memory. If the memory required to store

the forward pass for a given network exceeds the available

GPU memory, we can no longer use the standard back-

propagation algorithm. In order to alleviate this problem,

4155



Image Ground Truth Predictions K = 512× 32 K = 512× 64 K = 512× 128

Void Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign Vegetation

Terrain Sky Person Rider Car Truck Bus Train Motorcycle Bicycle

Figure 4. Pixels used by the bootstrapped cross-entropy loss for varying values of K. The images and ground truth annotations originate

from the twice-subsampled Cityscapes validation set [11]. Pixels that are labeled void are not considered for the bootstrapping process.

we partition the computation graph into several subsequent

blocks by manually placing cut points in the graph. We then

compute the derivatives for each block individually. To this

end, we perform one (partial) forward pass per block and

only store the feature maps for the block whose derivatives

are computed given the derivative of the subsequent block.

This simple scheme allows us to manually control a space-

time trade-off. The idea of recomputing some intermediate

results on demand is also used in [22] and [10]. Note that

these memory limitations only apply during training. Dur-

ing testing, there is no need to store results of each opera-

tion in the network and our architecture’s memory footprint

is comparable to that of a ResNet encoder/decoder archi-

tecture. We made code for the gradient computation for

arbitrary networks publicly available in Theano/Lasagne.

In order to reduce overfitting, we used two methods of

data augmentation: translation augmentation and gamma

augmentation. The former method randomly translates an

image and its annotations. In order to keep consistent im-

age dimensions, we have to pad the translated images and

annotations. To this end, we use reflection padding on the

image and constant padding with void labels on the annota-

tions. Our second method of data augmentation is gamma

augmentation. We use a slightly modified gamma augmen-

tation method detailed in the supplementary material.

5. Experimental Evaluation

We implemented our models using Theano/Lasagne [1,

14]. We evaluate our approach on the recently released

Cityscapes benchmark [11] containing images recorded in

50 different cities. This benchmark provides 5,000 images

with high-quality annotations split up into a training, vali-

dation, and test set (2,975, 500, and 1,525 images, respec-

tively). The dense pixel annotations span 30 classes fre-

quently occurring in urban street scenes, out of which 19

are used for actual training and evaluation. Annotations for

the test set remain private and comparison to other methods

is performed via a dedicated evaluation server.

We report the results of our FRRNs for two set-

tings: FRRN A trained on quarter-resolution (256 × 512)

Cityscapes images; and FRRN B trained on half-resolution

(512 × 1024). We then upsample our predictions using bi-

linear interpolation in order to report scores at the full im-

age resolution of 1024 × 2048 pixels. Directly training at

the full Cityscapes resolution turned out to be too memory

intensive with our current design. However, as our experi-

mental results will show, even when trained only on half-

resolution images, our FRRN B’s results are competitive

with the best published methods trained on full-resolution

data. Unless specified otherwise, the reported results are

based on the Cityscapes test set. Qualitative results are

shown in Figure 6, in the supplementary material, and in

our result video1.

5.1. Residual Network Baseline

Our network architecture can be described as a

ResNet [25] encoder/decoder architecture, where the resid-

uals remain at the full input resolution throughout the net-

work. A natural baseline is thus a traditional ResNet en-

coder/decoder architecture with long-range skip connec-

tions [38, 41]. In fact, such an architecture resembles a

single deep hourglass module in the stacked hourglass net-

work architecture [40]. This baseline differs from our pro-

posed architecture in two important ways: While the feature

maps on our residual stream are processed by each FRRU,

the feature maps on the long-range skip connections are not

processed by intermediate layers. Furthermore, long-range

skip connections are scale dependent, meaning that features

at one scale travel over a different skip connection than fea-

tures at another scale. This is in contrast to our network de-

sign, where the residual stream can carry upscaled features

from several pooling stages simultaneously.

In order to illustrate the benefits of our approach over

the natural baseline, we converted the architecture FRRN

A (Table 1a) to a ResNet as follows: We first replaced all

FRRUs by RUs and then added skip connections that con-

nect the input of each pooling layer to the output of the

corresponding unpooling layer. The resulting ResNet has

slightly fewer parameters than the original FRRN (16.7 ×

1https://www.youtube.com/watch?v=PNzQ4PNZSzc

4156



Method

S
u

b
sa

m
p

le

C
o

ar
se

P
re

-t
ra

in
ed

◦ ◦
M

ea
n

R
o

ad

S
id

ew
al

k

B
u

il
d

in
g

W
al

l

F
en

ce

P
o

le

T
ra

f.
L

ig
h

t

T
ra

f.
S

ig
n

V
eg

et
at

io
n

T
er

ra
in

S
k
y

P
er

so
n

R
id

er

C
ar

T
ru

ck

B
u

s

T
ra

in

M
o

to
rc

y
cl

e

B
ic

y
cl

e

SegNet [2] ×4 X 57.0 96.4 73.2 84.0 28.5 29.0 35.7 39.8 45.2 87.0 63.8 91.8 62.8 42.8 89.3 38.1 43.1 44.2 35.8 51.9

FRRN A ×4 63.0 97.6 79.1 88.3 32.0 36.4 51.7 57.1 62.5 90.9 69.5 93.3 75.2 51.3 91.6 30.2 43.1 39.2 46.0 62.6

ENet [44] ×2 58.3 96.3 74.2 85.0 32.2 33.2 43.5 34.1 44.0 88.6 61.4 90.6 65.5 38.4 90.6 36.9 50.5 48.1 38.8 55.4

DeepLab [43] ×2 X X 64.8 97.4 78.3 88.1 47.5 44.2 29.5 44.4 55.4 89.4 67.3 92.8 71.0 49.3 91.4 55.9 66.6 56.7 48.1 58.1

FRRN B ×2 71.8 98.2 83.3 91.6 45.8 51.1 62.2 69.4 72.4 92.6 70.0 94.9 81.6 62.7 94.6 49.1 67.1 55.3 53.5 69.5

Dilation [55] ×1 X 67.1 97.6 79.2 89.9 37.3 47.6 53.2 58.6 65.2 91.8 69.4 93.7 78.9 55.0 93.3 45.5 53.4 47.7 52.2 66.0

Adelaide [34] ×1 X 71.6 98.0 82.6 90.6 44.0 50.7 51.1 65.0 71.7 92.0 72.0 94.1 81.5 61.1 94.3 61.1 65.1 53.8 61.6 70.6

LRR [20] ×1 X 69.7 97.7 79.9 90.7 44.4 48.6 58.6 68.2 72.0 92.5 69.3 94.7 81.6 60.0 94.0 43.6 56.8 47.2 54.8 69.7

LRR [20] ×1 X X 71.8 97.9 81.5 91.4 50.5 52.7 59.4 66.8 72.7 92.5 70.1 95.0 81.3 60.1 94.3 51.2 67.7 54.6 55.6 69.6

Table 2. IoU scores from the Cityscapes test set. We highlight the best published baselines for the different sampling rates. (Additional

anonymous submissions exist as concurrent work.) Bold numbers represent the best, italic numbers the second best score for a class. We

also indicate the subsampling factor used on the input images, whether additional coarsely annotated data was used, and whether the model

was initialized with pre-trained weights.

106 vs. 17.7×106). This is due to the concatenated features

in FRRUs and the additional 1×1 convolutions that connect

the pooling to the residual stream.

We train both networks on the quarter-resolution

Cityscapes dataset for 45,000 iterations at a batch size of

3. We use a learning rate of 10−3 for the first 35,000 iter-

ations and then reduce it to 10−4 for the following 10,000

iterations. Both networks converged within these iterations.

The FRRN A resulted in a validation set mean IoU score

of 65.7% while the ResNet baseline only achieved 62.8%,

showing a significant advantage of our FRRNs. Training

FRRN B is performed in a similar fashion. Detailed train-

ing curves are shown in the supplementary material.

5.2. Quantitative Evaluation

Overview. In Table 2 we compare our method to the

best (published) performers on the Cityscapes leader board,

namely LRR [20], Adelaide [23], and Dilation [55]. Note

that our network performs on par with the very complex and

well engineered system by Ghiasi et al. (LRR). Among the

top performers on Cityscapes, only ENet refrain from us-

ing a pre-trained network. However, they target real-time

performance and trade accuracy for speed. Thus, they do

not obtain top scores. To the best of our knowledge, we are

the first to show that it is possible to obtain state-of-the-art

results even without pre-training.

Subsampling Factor. An interesting observation that we

made on the Cityscapes test set is a correlation between

the subsampling factor and the test performance. This

correlation can be seen in Figure 5 where we show the

scores of several approaches currently listed on the leader

board against their respective subsampling factors. Unsur-

prisingly, most of the best performers operate on the full-

resolution input images. Throughout our experiments, we

consistently outperformed other approaches who trained on

55 60 65 70 75 80

1

2

3

4

Mean IoU Score (%)

S
u

b
sa

m
p

li
n

g
fa

ct
o

r

Published Unpublished

LRR [20] Adelaide [34]

Dilation [55] ENet [44]

SegNet [2] DeepLab [43]

FRRN A/B

Figure 5. Comparison of the mean IoU scores of all approaches on

the leader board of the Cityscapes segmentation benchmark based

on the subsampling factor of the images that they were trained on.

the same image resolutions. Even though we only train

on half-resolution images, Figure 5 clearly shows we can

match the current published state-of-the-art (LRR [20]).

We expect that further improvements can be obtained by

switching to full-resolution training.

5.3. Boundary Adherence

Due to several pooling operations (and subsequent up-

sampling) in many of today’s FCN architectures, bound-

aries are often overly smooth, resulting in lost details and

edge-bleeding. This leads to suboptimal scores, but it

also makes the output of a semantic segmentation approach

harder to use without further post-processing. Since in-

accurate boundaries are often not apparent from the stan-

dard evaluation metric scores, a typical approach is a trimap

evaluation in order to quantify detailed boundary adher-

ence [29, 30, 20]. During trimap evaluation, all predic-

tions are ignored if they do not fall within a certain radius

r of a ground truth label boundary. Figure 7 visualizes our

trimap evaluation performed on the validation set for vary-

ing trimap widths r between 1 and 80 pixels. We compare to

LRR [20] and Dilation [55], who made code and pre-trained

4157



Image Ground Truth Ours LRR [20] Dilation [55]

Void Road Sidewalk Building Wall Fence Pole Traffic Light Traffic Sign Vegetation

Terrain Sky Person Rider Car Truck Bus Train Motorcycle Bicycle

Figure 6. Qualitative comparison on the Cityscapes validation set. Interesting cases are the fence in the first row, the truck in the second

row, or the street light poles in the last row. An interesting failure case is shown in the third row: all methods struggle to find the correct

sidewalk boundary, however our network makes a clean and reasonable prediction. Please consult the supplemental material for more

qualitative results.

0 20 40 60 80

40

60

80

Trimap width r [pixels]

M
ea

n
Io

U
S

co
re

[%
]

Dilation [55] LRR [20]

FRRN B

Figure 7. The trimap evaluation on the validation set. The solid

lines show the mean IoU score of our approach and two top per-

forming methods that released their code. The dashed lines show

the mean IoU score when using the 7 Cityscapes category labels.

models available. We see that our approach outperforms

the competition consistently for all radii r. Furthermore, it

should be noted that the method of [20] is based on an ar-

chitecture specifically designed for clean boundaries. Our

method achieves better boundary adherence, both numeri-

cally and qualitatively (see Figure 6), with a much simpler

architecture and without ImageNet pre-training.

Often one can boost both the numerical score and the

boundary adherence by using a fully connected CRF as

post-processing step. We tried to apply a fully connected

CRF with Gaussian kernel, as introduced by Krähenbühl

and Koltun [30]. We used the standard appearance and

smoothness kernels and tuned parameters on the valida-

tion set by running several thousand Hyperopt iterations [5].

Applying this post processing step yielded a marginal in-

crease in the average IoU score of ∼ 0.5% on the validation

set. This further supports the claim that our architecture na-

tively solves problems that were conventionally addressed

using costly post processing steps. Given the high com-

putation time and low yield we decided against any post-

processing steps.

5.4. Runtime

A forward pass of our proposed architectures FRRN A

and FRRN B takes 0.166s and 0.469s on images of size

256 × 512 and 512 × 1024, respectively. This compares

to 0.081s of the ResNet architecture on images of size

256 × 512. All measurements were averaged over 100 in-

dividual forward passes on an NVidia Titan X Pascal GPU.

While FRRNs are indeed slower than the ResNet baseline,

they are faster or as fast as other methods on the Cityscapes

leaderboard that report runtimes.

6. Conclusion

In this paper we propose a novel network architecture for

semantic segmentation in street scenes. Our architecture

is clean, does not require additional post-processing, can

be trained from scratch, shows superior boundary adher-

ence, and reaches state-of-the-art results on the Cityscapes

benchmark. We published code and all trained models

on GitHub2. Since we do not incorporate design choices

specifically tailored towards semantic segmentation, we be-

lieve that our architecture will also be applicable to other

tasks such as stereo or optical flow where predictions are

performed per pixel.

Acknowledgment. This work was funded by the EU

project STRANDS (ICT-2011-600623) and the ERC Start-

ing Grant project CV-SUPER (ERC-2012-StG-307432).

2https://github.com/TobyPDE/FRRN

4158



References

[1] R. Al-Rfou, G. Alain, A. Almahairi, et al. Theano: A

Python framework for fast computation of mathematical ex-

pressions. abs/1605.02688, 2016. 6

[2] V. Badrinarayanan, A. Handa, and R. Cipolla. SegNet:

A Deep Convolutional Encoder-Decoder Architecture for

Robust Semantic Pixel-Wise Labelling. arXiv:1505.07293,

2015. 2, 7

[3] V. Badrinarayanan, A. Kendall, and R. Cipolla. Segmenta-

tionNet: A Deep Convolutional Encoder-Decoder Architec-

ture for Image Segmentation. arXiv:1511.00561, 2015. 2

[4] M. Bansal, B. Matei, H. Sawhney, S.-H. Jung, and J. Eledath.

Pedestrian Detection with Depth-Guided Structure Labeling.

In ICCV Workshop, 2009. 1

[5] J. Bergstra, D. Yamins, and D. D. Cox. Making a Science of

Model Search: Hyperparameter Optimization in Hundreds

of Dimensions for Vision Architectures. In ICML, 2013. 8

[6] S. Chandra and I. Kokkinos. Fast, Exact and Multi-Scale In-

ference for Semantic Image Segmentation with Deep Gaus-

sian CRFs. arXiv:1603.08358, 2016. 3

[7] H. Chen, Q. Dou, L. Yu, and P. Heng. VoxResNet: Deep

Voxelwise Residual Networks for Volumetric Brain Segmen-

tation. arXiv:1608.05895, 2016. 2

[8] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.

Yuille. Semantic Image Segmentation with Deep Convolu-

tional Nets and Fully Connected CRFs. ICLR, 2015. 2, 3

[9] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L.

Yuille. DeepLab: Semantic Image Segmentation with Deep

Convolutional Nets, Atrous Convolution, and Fully Con-

nected CRFs. arXiv:1606.00915, 2016. 3

[10] T. Chen, B. Xu, C. Zhang, and C. Guestrin. Training Deep

Nets with Sublinear Memory Cost. arXiv:1604.06174, 2016.

6

[11] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

Cityscapes Dataset for Semantic Urban Scene Understand-

ing. In CVPR, 2016. 2, 6

[12] J. Dai, K. He, and J. Sun. BoxSup: Exploiting Bounding

Boxes to Supervise Convolutional Networks for Semantic

Segmentation. In ICCV, 2015. 3

[13] J. Dai, K. He, and J. Sun. Convolutional Feature Masking

for Joint Object and Stuff Segmentation. In CVPR, 2015. 2

[14] S. Dieleman, J. Schlter, C. Raffel, et al. Lasagne: First re-

lease., Aug. 2015. 6

[15] A. Ess, T. Müller, H. Grabner, and L. Van Gool.

Segmentation-Based Urban Traffic Scene Understanding. In

BMVC, 2009. 1

[16] C. Farabet, C. Couprie, L. Najman, and Y. LeCun. Learn-

ing Hierarchical Features for Scene Labeling. PAMI, 35(8),

2013. 2, 3

[17] G. Floros and B. Leibe. Joint 2d-3d temporally consistent se-

mantic segmentation of street scenes. In CVPR, pages 2823–

2830. IEEE, 2012. 1

[18] A. Gaidon, Q. Wang, Y. Cabon, and E. Vig. Virtual Worlds as

Proxy for Multi-Object Tracking Analysis. In CVPR, 2016.

2

[19] E. S. L. Gastal and M. M. Oliveira. Domain Transform for

Edge-Aware Image and Video Processing. In ACM Trans.

Graphics, 2011. 3

[20] G. Ghiasi and C. C. Fowlkes. Laplacian Reconstruction and

Refinement for Semantic Segmentation. In ECCV, 2016. 1,

2, 7, 8

[21] S. Gould, J. Rodgers, D. Cohen, G. Elidan, and D. Koller.

Multi-class segmentation with relative location prior. IJCV,

80(3):300–316, 2008. 1

[22] A. Gruslys, R. Munos, I. Danihelka, M. Lanctot, and

A. Graves. Memory-Efficient Backpropagation Through

Time. arXiv:1606.03401, 2016. 6

[23] C. Gu, J. J. Lim, P. Arbeláez, and J. Malik. Recognition

using Regions. In CVPR. IEEE, 2009. 1, 7

[24] B. Hariharan, P. Arbeláez, R. Girshick, and J. Malik. Simul-

taneous Detection and Segmentation. In ECCV. Springer,

2014. 1

[25] K. He, X. Zhang, S. Ren, and J. Sun. Deep Residual Learning

for Image Recognition. In CVPR, 2016. 1, 3, 6

[26] K. He, X. Zhang, S. Ren, and J. Sun. Identity Mappings in

Deep Residual Networks. In ECCV, 2016. 3, 4

[27] S. Ioffe and C. Szegedy. Batch Normalization: Accelerat-

ing Deep Network Training by Reducing Internal Covariate

Shift. In ICML, 2015. 2, 5

[28] D. P. Kingma and J. Ba. Adam: A Method for Stochastic

Optimization. In ICLR, 2015. 5

[29] P. Kohli, P. H. Torr, et al. Robust Higher Order Potentials for

Enforcing Label Consistency. IJCV, 82(3):302–324, 2009. 7

[30] P. Krähenbühl and V. Koltun. Efficient Inference in Fully

Connected CRFs with Gaussian Edge Potentials. In NIPS,

2011. 2, 3, 7, 8

[31] A. Krizhevsky, I. Sutskever, and G. Hinton. ImageNet Clas-

sification with Deep Convolutional Networks. In NIPS,

2012. 3

[32] A. Kundu, Y. Li, F. Dellaert, F. Li, and J. M. Rehg. Joint se-

mantic segmentation and 3d reconstruction from monocular

video. In ECCV, pages 703–718, 2014. 1

[33] L. Ladicky, J. Shi, and M. Pollefeys. Pulling things out of

perspective. In CVPR, pages 89–96, 2014. 1

[34] G. Lin, C. Shen, I. D. Reid, and A. van den Hengel. Efficient

piecewise training of deep structured models for semantic

segmentation. In CVPR, 2016. 3, 7

[35] B. Liu, S. Gould, and D. Koller. Single image depth estima-

tion from predicted semantic labels. In CVPR, pages 1253–

1260. IEEE, 2010. 1

[36] W. Liu, A. Rabinovich, and A. C. Berg. ParseNet: Looking

Wider to See Better. 2015. 2

[37] Z. Liu, X. Li, P. Luo, C. C. Loy, and X. Tang. Semantic

Image Segmentation via Deep Parsing Network. In ICCV,

2015. 3

[38] J. Long, E. Shelhamer, and T. Darrell. Fully Convolutional

Networks for Semantic Segmentation. In CVPR, 2015. 1, 2,

6

[39] M. Mostajabi, P. Yadollahpour, and G. Shakhnarovich. Feed-

forward Semantic Segmentation With Zoom-Out Features.

In CVPR, 2015. 3

4159



[40] A. Newell, K. Yang, and J. Deng. Stacked Hourglass Net-

works for Human Pose Estimation. In ECCV, 2016. 6

[41] H. Noh, S. Hong, and B. Han. Learning Deconvolution Net-

work for Semantic Segmentation. In ICCV, 2015. 2, 5, 6

[42] A. Ošep, A. Hermans, F. Engelmann, D. Klostermann,

M. Mathias, and B. Leibe. Multi-Scale Object Candidates

for Generic Object Tracking in Street Scenes. In ICRA, 2016.

1

[43] G. Papandreou, L. Chen, K. P. Murphy, and A. L. Yuille.

Weakly-and Semi-Supervised Learning of a Deep Convolu-

tional Network for Semantic Image Segmentation. In ICCV,

2015. 7

[44] A. Paszke, A. Chaurasia, S. Kim, and E. Culurciello. ENet:

A Deep Neural Network Architecture for Real-Time Seman-

tic Segmentation. arXiv:1606.02147, 2016. 7

[45] G. Ros, L. Sellart, J. Materzynska, D. Vazquez, and

A. Lopez. The SYNTHIA Dataset: A Large Collection

of Synthetic Images for Semantic Segmentation of Urban

Scenes. In CVPR, 2016. 2

[46] D. E. Rumelhart, G. E. Hinton, and R. J. Williams. Learn-

ing representations by back-propagating errors. Nature, 323,

1986. 5

[47] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. S. Bernstein,

A. C. Berg, and F. Li. ImageNet Large Scale Visual Recog-

nition Challenge. IJCV, 115(3), 2015. 3

[48] A. G. Schwing and R. Urtasun. Fully Connected Deep Struc-

tured Networks. arXiv:1503.02351, 2015. 3

[49] J. Shotton, M. Johnson, and R. Cipolla. Semantic texton

forests for Image categorization and segmentation. In CVPR,

2008. 1

[50] K. Simonyan and A. Zisserman. Very Deep Convolutional

Networks for Large-Scale Image Recognition. In ICLR,

2015. 1, 2, 3, 5

[51] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,

D. Anguelov, D. Erhan, V. Vanhoucke, and A. Rabinovich.

Going Deeper with Convolutions. In CVPR, 2015. 3

[52] Z. Wu, C. Shen, and A. v. d. Hengel. Bridging Category-

level and Instance-level Semantic Image Segmentation.

arXiv:1605.06885, 2016. 5

[53] J. Xiao and L. Quan. Multiple view semantic segmentation

for street view images. In ICCV. IEEE, 2009. 1

[54] J. Yan, Y. Yu, X. Zhu, Z. Lei, and S. Z. Li. Object Detection

by Labeling Superpixels. In CVPR, 2015. 2

[55] F. Yu and V. Koltun. Multi-Scale Context Aggregation by

Dilated Convolutions. In ICLR, 2016. 2, 7, 8

[56] M. D. Zeiler, G. W. Taylor, and R. Fergus. Adaptive Decon-

volutional Networks for Mid and High Level Feature Learn-

ing. In CVPR, 2011. 2

[57] S. Zheng, S. Jayasumana, B. Romera-Paredes, V. Vineet,

Z. Su, D. Du, C. Huang, and P. H. S. Torr. Conditional Ran-

dom Fields as Recurrent Neural Networks. In ICCV, 2015.

3

[58] Y. Zhu, R. Urtasun, R. Salakhutdinov, and S. Fidler.

segDeepM: Exploiting Segmentation and Context in Deep

Neural Networks for Object Detection. In CVPR, 2015. 1

4160


